( 您好!臺灣時間:2023/12/07 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yi-Chiu Lin
論文名稱(外文):Impact of Atmospheric Input on Phytoplankton Biomass over NWPO – A Preliminary Study
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
經由長期資料的比對結果我們發現在西北太平洋區域中,沙塵的沉降量與海洋表層葉綠素濃度在30°N~40°N一帶的相關性高達0.6~0.8,氣膠光學厚度與葉綠素濃的則是在25°N~35°N一帶有較高的相關性(0.5~0.7)。由2001~2005年的藻華個案分析中,我們發現36個受大氣沉降影響的藻華個案。在文中提及的個案中,葉綠素濃度變化最大的是40°N/150°E一帶於2001年4月23日的沙塵事件經過之後葉綠素濃度上升了2~8 mg/m3,為原本的2~8倍;而在個案分析中我們發現,在20°N/155°E一帶在2004年2月17日的藻華事件與模擬之硝酸沉降在時間與空間上的變化較為一致,支持了汙染物可能會影響浮游植物生長的這項假設,此個案中葉綠素濃度上升了0.04~0.2 mg/m3,為原本的2~3倍。
Marine phytoplankton is the basis of the ocean ecosystem. It can absorb carbon dioxide and release DMS, both of which can bring up negative feedbacks to climate forcing. Martin (1988) proposed the Iron Hypothesis, which pointed out that iron is the limiting nutrient of phytoplankton growth in some marine regions. In the open ocean, iron input to the ocean mostly comes from the deposition of atmospheric dust. Besides, anthropogenic pollutants, as potentials sources themselves to the photoplankton, could also enhance the dissolvability of iron in the ocean. So, anthropogenic pollutants are also discussed in this study.
Therefore, the goal of this study is to evaluate the impact of Asian atmospheric input on the primary production over the Northwestern Pacific Ocean (NWPO). We first used a dust deflation and transport model (TAQM/kosa and TAQM) to simulate dust deposition and pollution deposition onto the oceans, and then compared simulation results with the phytoplankton concentration (in chlorophyll-a) observed by the NASA/SeaWiFS (Sea-viewing Wide Field of view Sensor) Satellite for the period of January 2001 to December 2005.
From the analysis of monthly data, we found high correlations (0.6~0.8) between chlorophyll-a and dust deposition around 30°N~40°N of NWPO, and high correlation (0.5~0.7) between chlorophyll-a and AOD around 25°N~35°N of NWPO. Through event studies we found 36 events that atmospheric input stimulated phytoplankton bloom. In these events the most significant event H1 shows that in this dust event phytoplankton concentration increased by 0.2~2 mg/m3 (2~8 times) around 40°N/150°E. Besides, in event L11 phytoplankton concentration increased by 0.04~0.2 mg/m3 (2~3 times) around 20°N/155°E after nitrate deposition. This shows nitrate deposition is also an important factor to influence phytoplankton bloom.
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 x

第一章 前言 1
第二章 研究方法 4
2.1 遙測資料 4
2.1.1 MODIS 4
2.1.2 SeaWiFS 5
2.1.3 QuikSCAT 6
2.1.4 TRMM/TMI 6
2.2 其他觀測資料 6
2.3 數值模式 7
2.3.1 中尺度氣象模式MM5 7
2.3.2 台灣空氣品質模式TAQM 8
2.3.3 沙塵模組 10
第三章 葉綠素濃度控因的資料分析 11
3.1 葉綠素濃度分佈 11
3.2 氣膠光學厚度分佈 12
3.3 沙塵沉降分佈 13
3.4 氣膠光學厚度、沙塵沉降與葉綠素濃度相關性分析 13
3.5 海面10 m風場、海表面溫度與葉綠素濃度相關性分析 16
3.6 討論 18
第四章 藻華個案分析 20
4.1 分析方法 20
4.2 個案分析 21
4.2.1 個案H1 22
4.2.2 個案L2 22
4.2.3 個案L11 23
4.2.4 個案L19 24
4.3 討論 25
第五章 結語 27
參考文獻 29
圖表 33
附錄A 模式驗證 59
附錄B 各網格達PBI、AEI、DEI指標之時間 63
姚若潔譯,Paul G. Falkowski撰, 2002:大海中的隱形森林。科學人, 8 ,30-37
Anthes, R. A., and T.T. Warner, 1978:Development of hydro-dynamical models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045-1078.
Anthes, R. A., E. Y. Hsie, Y. H. Kuo, 1987: Description of the Penn State/NCAR Mesoscal Model Version 4 (MM4). NCAR Technical Note, NCAR/TN-282+STR, 66 pp.
Blackadar, A. K., and H. Tennekes, 1968: Asymptotic similarity in neutral barotropic atmospheric layers. J. Atmos. Sci., 25, 1015-1020
Boyd, P. W., A. J. Watson, C. S. Law et al., 2000: A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695-702
Boyer, T. P., J. I. Antonov, H. E. Garcia, et al., 2006: World Ocean Database 2005. S. Levitus, Ed., NOAA Atlas NESDIS 60, U.S. Gov. Printing Office, Washiton, D.C., 190 pp
Chen, J. P., Z. F. Wang, C. Y. Young, et al., 2004: Simulations of Asian yellow dust incursion over Taiwan for the Spring of 2002 and 2003. Terrestrial, Atmospheric and Oceanic Sciences, 15, 949-981
Charlson, R. J., E. Lovelock, M. O. Andreae et al., 1987: Oceanic phytophankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655-661.
Dacey, J. W., and S. G. Wakeham, 1986: Oceanic dimethylsulfide: production during zooplankton grazing on phytoplankton, Science, 233, 1314-1316
Denman K. L. and A. E. Gargett, 1983: Time and space scales of vertical mixing and advention of phytoplankton in the upper ocean. Limnology and Oceanography, 28, 801-815
Duce, R. A. 1986: The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity, p. 495-529. In P. Buat-Menard [ed.], The role of air-sea exchange in geochemical cycling. Redel.
Dudhia, J., 1993:A nonhydrostatic version of the Penn State-NCAR meso-scale model:Validation tests and simulation of an Atlantic cyclone and the cold front. Mon. Wea. Rev., 121, 1493-1513.
Faust, B. C., J. Hoigne, 1990: Photolysis of Fe(ш)-hydroxy complexes as sources of OH radicals in cloud, fog and rain, Atmos. Environ., 24, 79-89
Fung, I. Y., S. K. Meyn, I. Tegen, et al., 2000: Iron supply and demand in the upper ocean. Global Biogeochemical Cycles, 14, 281-295
Grell, G. A., J. Dudhia, and D. R., Stauffer, 1994: A description of the fifth-generation Penn Stat / NCAR mesoscal model (MM5). NCAR Technical Note, NCAR/TN-398+STR, 121 pp.
Hobbs, P. V., 1993:Aerosol-Cloud-Climate Interactions. Academic Press, Inc., 233pp.
Kidder, S. Q. and T. H. Vonder Haar, 1995: Satellite meteorology : an intruoduction. Academic Press, 466pp.
Lenes JM., 2001: Iron fertilization and the Trichodesmium response on the West Florida shelf.,Limnology and Oceanography,46, 1261-1277
Liou K. N., 2002:An Introduction to Atmospheric Radiation, second edition, Academic Press Inc., 583pp.
Martine J. H.,S. E. Fitzwater. 1988: Iron deficiency limits phytoplankton growth in the N. E. Pacific Subarctic. Nature, 331, 341-343
Martin, J. H., 1990: Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography, 5, 1-13
Monin, A. S. and A. M. Yaglom, 1971: Statistical fluid mechanics. Mass. Inst. Technol.
Moore, R. M., J. E. Milley, and A. Chatt, 1984: The potential for biological mobilization of trace elements from Aeolian dust in the ocean and its importance in the case of iron. Oceanol. Acta, 7, 221-228
Pruppacher, H.R., and J.D. Klett, 1997: Microphysics of Clouds and Precipitation. 976pp
Sabine, C. L., A. Richard, G. Nicolas, et al., 2004: The Oceanic Sink for Anthropogenic CO2. Science, 305, 367-371
Tsuda A., S. Takeda, H. Saito, et al., 2003: A Mesoscale Iron Enrichment in the Western Subarctic Pacific Induces a Large Centric Diatom Bloom. Science, 300, 958-961
Wang, C. C., C. T. Lee, S. C. Liu, et al., 2004︰Aerosol Characterization at Taiwan’s Northern Tip During Ace-Asia. Terrestrial, Atmospheric and Oceanic Sciences, 15,839-856
Wang Z., H. Ueda, and M. Huang, 2000: A deflation model for use in modeling long-range transport of yellow sand over East Asia. Journal of Geophysical Research, 105, 26,947-26,959
Young R. W., K. L.Carder, P. R. Betzer, et al., 1991: Atmospheric iron inputs and primary productivity : Phytoplankton responses in the North Pacific. Global Biogeochemical Cycles, 5, 2, 119-134
Zhuang, G., 1991: thesis, Univ. of Rhode Island.
Zhuang, G., Z. Yi, R. A. Duce, et al., 1992: Link between iron and suphur cycles suggested by detection of Fe(II) in remote marine aerosols. Nature, 355, 537-539

DAAC Data Pool
Oceancolor WEB
Remote Sensing System
World Ocean Atlas 2005
第一頁 上一頁 下一頁 最後一頁 top