( 您好!臺灣時間:2024/03/01 08:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hsin-Ling Peng
論文名稱(外文):Karyotype of Doritis pulcherrima Based on Distribution of Several Repetitive DNA Sequences
外文關鍵詞:Doritis pulcherrimarepetitive DNA sequenceskaryotype analysisGA microsatellite
  • 被引用被引用:5
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
朵麗蘭具有19對中位中節或次中位中節的染色體,其無法經由傳統的細胞遺傳學技術來辨識。本實驗從朵麗蘭基因組庫中選殖到數種重複性DNA序列,包括一種由7 bp為重複單位組成的頭尾相接重複性序列,兩種富含(GA)n微衛星序列。利用螢光原位雜交的技術將這些重複性序列、兩種核糖體RNA基因以及阿拉伯芥型的端粒序列定位到朵麗蘭有絲分裂中期的染色體上,依據這些序列在染色體上的分佈位置以及雜交訊號的差異,建立朵麗蘭核型。
Doritis pulcherrima has 19 pairs of metacentric or submetacentric chromosomes which could not be distinguished from each other by conventional cytological techniques. Several repetitive DNA sequences including one tandem repeat consisting of 7-bp repeat units, two (GA)n microsatellite sequences were isolated from genomic DNA library of Doritis pulcherrima. These repetitive DNA sequences together with two ribosomal RNA genes and Arabidopsis-type telomeric sequences were mapped to mitotic metaphase chromosomes using fluorescence in situ hybridization. Based on the variation in the spatial and quantitative distribution of these repetitive sequences, the karyotype of Doritis pulcherrima was established.
台灣蘭藝. (1973). Doritaenopsis and Doritis 12, 61-62.
李文靜. (2002). 蝴蝶蘭屬植物核糖體RNA基因的選殖及實質定位. 國立台灣大學植物學研究所碩士論文.
李宜學. (2000). 利用螢光原位雜交探討微衛星體序列在蝴蝶蘭的實質分佈. 國立台灣大學植物學研究所碩士論文.
黃建豪. (1999). 蝴蝶蘭兩種重複性DNA序列的分離與定性. 國立台灣大學植物學研究所碩士論文.
陳文輝. (2002). 蝴蝶蘭的品種改良. 科學發展 351, 32-39.
Adams, S.P., Leitch, I.J., Bennett, M.D., Chase, M.W., and Leitch, A.R. (2000). Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Amer. J. Bot. 87, 1578-1583.
Adams, S.P., Hartman, T.P., Lim, K.Y., Chase, M.W., Bennett, M.D., Leitch, I.J., and Leitch, A.R. (2001). Loss and recovery of Arabidopsis-type telomere repeat sequences 5''-(TTTAGGG)n-3'' in the evolution of a major radiation of flowering plants. Proc. R. Soc. Lond. B. Biol. Sci. 268, 1541-1546.
Ananiev, E.V., Vales, M.I., Phillips, R.L., and Rines, H.W. (2002). Isolation of A/D and C genome specific dispersed and clustered repetitive DNA sequences from Avena sativa. Genome 45, 431-441.
Andras, S.C., Hartman, T.P., Marshall, J.A., Marchant, R., Power, J.B., Cocking, E.C., and Davey, M.R. (1999). A drop-spreading technique to produce cytoplasm-free mitotic preparations from plants with small chromosomes. Chromosome Res. 7, 641-647.
Ausubel, F.M., R. Brent, D.D., More, J.G., Sediman, J.A., Smith, and K. Struhl. (1989). Current Protocols in Molecular Biology. Greene Publishing Associates and Wile-Interscience USA.
Bowen, N.J., and Jordan, I.K. (2002). Transposable elements and the evolution of eukaryotic complexity. Curr. Issues Mol. Biol. 4, 65-76.
Cheng Z, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164, 665–672.
Christenson, E.A. (2001). Phalaenopsis:a monograph. (Oregon: Timber Press).
Cooper, E. (1945). Doritis pulcherrima and D. species. The Orchid Review, 143.
Cox, A.V., Bennett, S.T., Parokonny, A.S., Kenton, A., Callimassia M.A., and Bennett, M.D. (1993). Comparison of plant telomere locations using a PCR-generated synthetic probe. Ann. Bot. 72, 239-247.
De Melo, N.F., and Guerra, M. (2003). Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann. Bot. 92, 309-316.
Dechyeva, D., Gindullis, F., and Schmidt, T. (2003). Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res. 11, 3-21.
Dressler, R.L. (1993). Phylogeny and classification of the Orchid family. (Oregon: Dioscorides Press).
Fernandez-Calvin, B., Benavente, E., and Orellana, J. (1995). Meiotic pairing in wheat-rye derivatives detected by genomic in situ hybridization and C banding-A comparative analysis. Chromosoma 103, 554-558.
Fukunaga, K., Ichitani, K., and Kawase, M. (2006). Phylogenetic analysis of the rDNA intergenic spacer subrepeats and its implication for the domestication history of foxtail millet, Setaria italica. Theor. Appl. Genet. 113, 261-269.
Gawel, N.J., and Jarrent, R.L. (1991). A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Bio. Rep. 9, 262-266.
Gindullis, F., Desel, C., Galasso, I., Schdidt, T. (2001) The large-scale organization of the centromeric region in Beta species. Genome Res. 11, 253–265.
Heslop-Harrison, J.S. (2000). Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12, 617-636.
Hudakova, S., Michalek, W., Presting, G.G., ten Hoopen, R., dos Santos, K., Jasencakova, Z., and Schubert, I. (2001) Sequence organization of barley centromeres. Nucleic Acids Res. 29, 5029–5035.
Jamilena, M., Ruiz Rejon, C., and Ruiz Rejon, M. (1994). A molecular analysis of the origin of the Crepis capillaris B chromosome. J. Cell Sci. 107, 703-708.
Jiang, J., Birchler, J.A., Parrott, W.A., and Dawe, R.K. (2003). A molecular view of plant centromeres. Trends Plant Sci. 8, 570-575.
Kao, Y.Y., Chang, S.B., Lin, T.Y., Hsieh, C.H., Chen, Y.H., Chen, W.H., and Chen, C.C. (2001). Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann. Bot. 87, 387-395.
Koo, D.H., Plaha, P., Lim, Y.P., Hur, Y., and Bang, J.W. (2004). A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor. Appl. Genet. 109, 1346-1352.
Koo, D.H., Choi, H.W., Cho, J., Hur, Y., and Bang, J.W. (2005). A high-resolution karyotype of cucumber (Cucumis sativus L. ''Winter Long'') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48, 534-540.
Kubis, S., Schmidt, T., and Heslop-Harrison, J.S. (1998). Repetitive DNA elements as a major component of plant genomes. Ann. Bot. 82, 45-55.
Kumar, A., and Bennetzen, J.L. (1999). Plant retrotransposons. Ann. Rev. Genet. 33, 479-532.
Lamb, J.C., and Birchler, J.A. (2006). Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173, 1007-1021.
Lin, C.C., Chen, Y.H., Chen, W.H., Chen, C.C., and Kao, Y.Y. (2005). Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Bot. Bull. Acad. Sinica. 46, 339-345.
Lin, S., Lee, H.C., Chen, C.C., Kao, Y.Y., Fu, Y.M., Chen, Y.H., and Lin, T.Y. (2001). Nuclear DNA contents of Phalaenopsis species and Doritis pulcherrima. J. Amer. Soc. Hort. Sci. 126, 195-199.
Mizuno, H., Wu, J., Kanamori, H., Fujisawa, M., Namiki, N., Saji, S., Katagiri, S., Katayose, Y., Sasaki, T., and Matsumoto, T. (2006). Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. Plant J. 46, 206-217.
Nagaki, K., Tsujimoto, H., and Sasakuma, T. (1998). A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosome Res. 6, 295-302.
Navratilova, A., Neumann, P., and Macas, J. (2003). Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann. Bot. 91, 921-926.
Neumann, P., Nouzova, M., and Macas, J. (2001). Molecular and cytogenetic analysis of repetitive DNA in pea (pisum sativum L.). Genome 44, 716-728.
Ouyang, S., and Buell, C.R. (2004). The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res. 32, D360-363.
Panaud, O., G. Magpantay, and S. McCouch. (1993). A protocol for nonradioactive DNA labeling and detection in the RFLP analysis of rice and tomato using single-copy probes. Plant Mol. Bio. Rep. 11, 54-59.
Pich, U., and Schubert, I. (1998). Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res. 6, 315-321.
Porebski, S., Bailey, L.G., and Baum, B.R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Bio. Rep. 15, 8-19.
Puizina, J., Weiss-Schneeweiss, H., Pedrosa-Harand, A., Kamenjarin, J., Trinajstic, I., Riha, K., and Schweizer, D. (2003). Karyotype analysis in Hyacinthella dalmatica (Hyacinthaceae) reveals vertebrate-type telomere repeats at the chromosome ends. Genome 46, 1070-1076.
Richards, E.J., and Ausubel, F.M. (1988). Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53, 127-136.
Sambrook, J., Fritsch, E.F., and Maniatis., T. (1989). Molecular Cloning : A Laboratory Manual, 2nd ed. (New York, Cold Spring Harbor: Cold Spring Harbor Laboratory Press).
Sweet, H.R. (1980). The genus Phalaenopsis. (California, Pomona: Day Printing Corporation).
Sykorova, E., Lim, K.Y., Chase, M.W., Knapp, S., Leitch, I.J., Leitch, A.R., and Fajkus, J. (2003). The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J. 34, 283-291.
Tawn, E.J., and Whitehouse, C.A. (2001). Frequencies of chromosome aberrations in a control population determined by G banding. Mutat Res. 490, 171-177.
Ugarkovic, D. (2005). Functional elements residing within satellite DNAs. EMBO Reports 6, 1035-1039.
Valarik, M., Simkova, H., Hribova, E., Safar, J., Dolezelova, M., and Dolezel, J. (2002). Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.). Chromosome Res. 10, 89-100.
Weimarck, A. (1975). Heterochromatin polymorphism in the rye karyotype as detected by the Giemsa C-banding technique. Hereditas 79, 293-300.
Weiss-Schneeweiss, H., Riha, K., Jang, C.G., Puizina, J., Scherthan, H., and Schweizer, D. (2004). Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesises vertebrate-type telomere sequences. Plant J. 37, 484-493.
Weiss, H., and Scherthan, H. (2002). Aloe spp. - plants with vertebrate-like telomeric sequences. Chromosome Res. 10, 155-164.
Yamada, K., Nishida-Umehara, C., and Matsuda, Y. (2004). A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Chromosoma 112, 277-287.
Yamada, K., Kamimura, E., Kondo, M., Tsuchiya, K., Nishida-Umehara, C., and Matsuda, Y. (2006). New families of site-specific repetitive DNA sequences that comprise constitutive heterochromatin of the Syrian hamster (Mesocricetus auratus, Cricetinae, Rodentia). Chromosoma 115, 36-49.
Yang, T.J., Lee, S., Chang, S.B., Yu, Y., De Jong, H., and Wing, R.A. (2005). In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 114, 103-117.
Zhong, X.B., Fransz, P.F., Wennekes-Eden, J., Ramanna, M.S., van Kammen, A., Zabel, P., and Hans de Jong, J. (1998). FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J. 13, 507-517.
第一頁 上一頁 下一頁 最後一頁 top