跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅方懿
研究生(外文):Fang-yi Lo
論文名稱:斑馬魚FoxD5在體節形成中所扮演的角色
論文名稱(外文):Zebrafish Forkhead Box D5 Plays a Role in Somitogenesis
指導教授:蔡懷楨蔡懷楨引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:斑馬魚體節
外文關鍵詞:zebrafishsomiteFoxD5
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在各胚層的發育中,Forkhead Box (Fox)轉錄因子皆扮演重要的命運決定角色。雖然已知斑馬魚中FoxD3在體節發育時,能維持myf5在體節的表現並藉此參與於肌肉的發育;但FoxD轉錄因子家族中的另一員,FoxD5,在體節發育時也會表現在presomitic mesoderm (PSM)前端生成中的體節處,而這個FoxD轉錄因子是否在體節發育的過程中扮演調控的角色目前仍不清楚。在本篇研究中,為了了解FoxD5在體節生成時的功能,利用專一抑制基因轉譯之Morpholino Oligonucletides (MO)對1-cell時期之斑馬魚胚胎進行顯微注射以抑制FoxD5的轉譯,並在體節發育已完成之24 hpf時、及體節仍在形成之14 hpf (約12-somite stage)時分別觀察FoxD5-MO注射個體 (FoxD5 morphants),發現新生成之體節處有產生體節發育畸形的現象。利用全胚胎原位雜交實驗(Wholemount in situ Hybridization),獲知於PSM呈現週期性表現之her1及deltaC基因,在FoxD5 morphants中週期性的表現並沒有受到影響;但是決定體節前後極性之mespa的表現下降,且mepsb的表現由條帶狀(stripe pattern)轉成”salt and pepper”之點狀表現;而參與體節表皮化之基因papc在體節S-II至S0之位置原本呈現3個條帶狀表現,但FoxD5 morphants卻增加為5至6個條帶狀之型態。這些結果顯示FoxD5並不影響體節之週期性形成,而是藉由調節體節生成之過程而參與在體節之發育。進一步觀察體節後期分化之肌肉發育,發現在FoxD5 morphants中雖然myf5在體節的表現下降卻由表現上升的myod所補償,因而使得myogenin的表現沒有發生變化,顯示FoxD5 morphants之肌肉發育沒有受到影響;而觀察抑制FoxD3的胚胎中,FoxD5在新生成體節中會有表現異位的表現,顯示FoxD3在PSM之功能可能由FoxD5來補充。另一方面,觀察過量表現FoxD5的胚胎,發現體節及肌肉發育沒有明顯異常,但體軸發育則產生嚴重畸形的性狀;根據上述觀察結果,推測FoxD5可能在體節及體軸發育上扮演不同角色:在體軸發育時,FoxD5則可能參與於胚胎軸向決定;而在體節中,FoxD5具有維持體節前後極性進而促使體節正常形成之功能。
In all germ layers, Forkhead Box (Fox) transcriptional factors play important roles in the determination of cell fates. During somitogenesis, zebrafish FoxD3 is known of maintaining the somitic expression of myf5, and subsequently regulates myogenesis. FoxD5, another gene of the FoxD family, is also expressed in forming somites of the anterior PSM. However, the regulatory function of FoxD5 in somitogenesis is not clear. To address this issue, we microinjected Morpholino Oligonucleotides (MO), which acts as a specific translational inhibitor, into 1-cell stage zebrafish embyos to knockdown the expression of FoxD5. Results showed that the newly forming somites of the FoxD5-MO-injected embryos were malformed both in the stage when the somitogenesis was completed (24-hpf) and in the stage when the somitogenesis was in progress (14-hpf). By whole-mount in situ hybridization, the cyclic patterns of her1 and deltaC in PSM were not altered in the FoxD5 morphants. Nevertheless, the anteroposterior polarity determinants mespa and mespb were both affected: the expression of mespa was downregulated and the expression of mespb was changed from the stripe pattern to the disrupted pattern called “salt and pepper”. In addition, the expression of papc, which is involved in the epithelializtion of somites, was increased from 3 bands of stripes at S-II, S-I, and S0 to 5-6 bands. These observations suggested that FoxD5 dose not take parts in the cyclic pre-pattern of the PSM, but involves in the process of somite formation. Furthermore, myogenesis was not affected in the FoxD5 morphants, owing to the results of myf5 downergulation in somites and myod upregulation due to the knockdown of myf5, and therefore resulted in myogenin normal expression. In addition, FoxD5 was upregulated in the FoxD3-knockdown embryos, suggesting that FoxD5 might compensate the functions of FoxD3 in the PSM. On the other hand, in spite of the severely distorted axis, the FoxD5-overexpressed embryos displayed neither somite nor muscle defects. Based on these results, we speculate that FoxD5 plays different roles in axis and somite formation. During somitogenesis, FoxD5 functions in the maintenance of the anteroposterior polarity of somites, and in turn plays roles in proper formation of somites.
中文摘要 ------------------------------------------------- 1
英文摘要 ------------------------------------------------- 2
前言 ------------------------------------------------- 4
實驗材料與方法 ------------------------------------------------- 13
結果 ------------------------------------------------ 26
討論 ------------------------------------------------ 35
參考文獻 ------------------------------------------------ 50
圖 ------------------------------------------------ 64
表 ------------------------------------------------- 80
附錄 ------------------------------------------------- 84
Ang, S.L., Rossant, J., 1994. HNF-3 beta is essential for node and notochord formation in mouse development. Cell. 78, 561–574.

Aoyama, H., Asamoto, K., 1988. Determination of somite cells: independence of cell differentiation and morphogenesis. Development. 104, 15–28.

Aulehla, A., Johnson, R.L., 1999. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Developmental Biololgy. 207, 49– 61.

Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., Herrmann, B.G., 2003. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Developmental Cell. 4, 395–406.

Bonkowsky, J.L., Chien, C.B., 2005. Molecular cloning and developmental expression of foxP2 in zebrafish. Developmental Dynamics. 234, 740–746.

Braun, T., Bober, E., Rudnicki, M. A., Jaenisch, R., Arnold, H. H., 1994. MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development, 120, 3083–3092.

Carlsson, P., Mahlapuu, M., 2002. Forkhead Transcription Factors: Key Players in Development and Metabolism. Developmental Biology. 250, 1–23.

Chen, S.-R., Kimelman, D., 2000. The role of the yolk syncytial layer in germ layer patterning in zebrafish. Development. 127, 4681–4689.

Chen, Y.-H., Lee, W.-C., Liu,C.-F., Tsai, H.-J., 2001. Molecular Structure, Dynamic Expression, and Promoter Analysis of Zebrafish (Danio rerio) myf-5 Gene. Genesis. 29, 22–35.


Chen, Y.-H., Wang, Y.-H., Chang, M.-Y., Lin, C.-Y., Weng, C.-W., Westerfield, M., Tsai, H.-J., 2007. Multiple upstream modules regulate zebrafish myf5 expression. BMC Developmental Biology. 7, 1–14.

Christ, B., and Ordahl, C. P., 1995. Early stages of chick somite development. Anatomy and Embryology. 191, 381–396.

Coutelle, O., Blagden, C.S., Hampson, R., Halai, C., Rigby, P.W.J., Hughes S.M., 2001. Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Developmental Biology. 236, 1–150.

Conlon, R.A., Reaume, A.G., Rossant, J., 1995. Notch1 is required for the coordinate segmentation of somites. Development. 121, 1533–1545.

Danilova, N., Visel, A., Willett, C.E., Steiner, L.A., 2004. Expression of the winged helix/forkhead gene, foxn4, during zebrafish development. Developmental Brain Research. 153, 115–119.

Dale, J. K., Pourqui?, O., 2000. A clock-work somite. BioEssays. 22, 72–83.

Dottori, M., Gross M.K., Labosky, P., Goulding, M., 2001. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development. 128, 4127–4138.

Durbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A., Shanmugalingam, S., Guthrie, B., Lindberg, R., and Holder, N., 1998. Eph signaling is required for segmentation and differentiation of the somites. Genes and Development. 12, 3096–3109.

Durbin, L., Sordino, P., Barrios, A., Gering, M., Thisse, C., Thisse, B., Brennan, C., Green, A.,Wilson, S., and Holder, N., 2000. Anteroposterior patterning is required within segments for somite boundary formation in developing zebrafish. Development. 127, 1703–1713.




El-Hodiri, H., Bhatia-Dey, N., Kenyon, K., Ault, K., Dirksen, M., Jamrich, M., 2001. Fox (forkhead) genes are involved in the dorsoventral patterning of the Xenopus mesoderm. International Journal of Developmental Biology. 45, 265–271.

Fetka, I., Doederlein, G., Bouwmeester, T., 2000. Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus. Mechanisms of Development. 93, 49–58.

Freyaldenhoven, B.S., Freyaldenhoven, M.P., Iacovoni, J.S., Vogt, P.K., 1997. Avian winged helix proteins CWH-1, CWH-2 and CWH-3 repress transcription from Qin binding sites. Cancer Research. 57, 123–129.

F?rthauer, M., Celst, J.V., Thisse, C., Thisse, B., 2004. Fgf signalling controls the dorsoventral patterning of the zebrafish embryo. Development. 131, 2853–2864.

Gajiwala, K.S. and Burley, S.K., 2000. Winged helix proteins. Current Opinion in Structural Biology.10, 110–116.

Hatini, V., Huh, S.O., Herzlinger, D., Soares, V.C., Lai, E., 1996. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF2. Genes and Development. 10,1467–1478.

Holley, S.A., Geisler, R., Nu?sslein-Volhard, C., 2000. Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes and Development. 14, 1678–1690.

Holley, S.A., J?lich, D., Rauch, G.-J., Geisler, R., N?sslein-Volhard, C., 2002. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development. 129, 1175–1183.

Holley, S.A., Takeda, H., 2002. Catching a wave: the oscillator and wavefront that create the zebrafish somite. Seminars in Cell and Developmental Biology. 13, 481–488.

Hribal, M.L., Nakae, J., Kitamura, T., Shutter, J.R., Accili, D., 2003. Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors. The Journal of Cell Biology. 162, 535–541.

Hromas, R., Ye, H., Spinella, M., Dmitrovsky, E., Xu, D., Costa, R.H., 1999. Genesis, a Winged Helix transcriptional repressor, has embryonic expression limited to the neural crest, and stimulates proliferation in vitro in a neural development model. Cell and Tissue Research. 297, 371– 382.

Jen, W.C., Gawantka, V., Pollet, N., Niehrs, C., Kintner, C., 1999. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes and Development. 13, 1486–1499.

Jiang, Y-J., Aerne, B.L., Smithers, L., Haddon, C., Ish-Horowicz, D., Lewis, J., 2000. Notch signalling and the synchronization of the somite segmentation clock. Nature. 408, 475–479.

J?lich, D., Geisler, R., T?bingen 2000 Screen Consortium, Holley, S.A., 2005a. Integrin5α and Delta/Notch signaling have complementary spatiotemporal requirements during zebrafish somitogenesis. Developmental Cell. 8, 575–586.

J?lich, D., Hwee Lim, C., Round, J., Nicolaije, C., Schroeder, J., Davies, A., Geisler, R., Lewis, J., Jiang, Y.J., Holley, S.A.; T?bingen 2000 Screen Consortium, 2005b. beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation. Developmetal Biology. 286, 391–404.

Kaestner, K.H., Kn?chel, W., Mart?nez, D.E., 2000. Unified nomenclature for the winged helix/forkhead transcription factors. Genes and Development. 14, 142–146.





Kalinichenko, V.V., Lim, L., Stolz, D.B., Shin, B., Rausa, F.M., Clark, J., Whitsett, J.A., Watkins, S.C., Costa, R.H., 2001. Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor. Developmetal Biology. 235, 489–506.

Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, J., Taniguchi, T., Mochida, K., Hata, T., Matsuda, J., Aburatani, H., Nishino, I., Ezaki, O., 2004. Skeletal Muscle fOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. Journal of Biological Chemistry. 279, 41114–41123.

Kane, D.A., Kimmel, C.B., 1993. The zebrafish midblastula transition. Development. 119, 447–456.

Kaufmann,E., Kn?chel, W.,1996. Five years on the wings of fork head. Mechanisms of Development. 57, 3–20.

Kim, S.-H., Yamamoto, A., Bouwmeester, T., Agius, E., De Robertis, E. M., 1998. The role of Paraxial Protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development. 125, 4681–4691.

Kim, S.-H., Jen, W-.C., De Robertis, E.M., Kintner, C., 2000. The protocadherin PAPC establishes segmental boundaries during somitogenesis in Xenopus embryos. Current Biology. 10, 821–830.

Kimelman, D., 2003. Mesoderm induction: from caps to chips. Nature Reviews Genetics. 7, 360–372.

Kimmel, C.B., Ballard,W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics. 203, 253–310.




Kos, R., Reedy, M.V., Johnson, R.L., Erickson, C.A., 2001. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development. 128, 1467–1479.

Koshida, S., Kishimoto, Y., Ustumi, H., Shimizu, T., Furutani-Seiki, M., Kondoh, H., Takada, S., 2005. Integrin5α-dependent Fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Developmental Cell. 8, 587–598.

Kunwar, P.S., Zimmerman, S., Bennett, J.T., Chen, Y., Whitman, M., Schier, A.F., 2003. Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development. 130, 5589–5599.

Kume, T., Jiang, H., Topczewska, J.M., Hogan, B.L., 2001. The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes and Development. 15, 2470–2482.

Labosky, P.A., Winnier, G.E., Jetton, T.L., Hargett, L., Ryan, A.K., Rosenfeld, M.G., Parlow, A.F., Hogan, B.L., 1997. The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milkejection reflex. Development. 124, 1263–1274.

Lai, E., Clarkt, K.L., Burleyt, S.K., Darnell, J.E., 1993. Hepatocyte nuclear factor 3/fork head or "winged helix" proteins: A family of transcription factors of diverse biologic function. Proceedings of National Academy of Sciences of the U.S.A. 90, 10421–10423.

Lee, H.-C., Huang, H.-Y., Lin, C.-Y., Chen, Y.-H., Tsai, H.-J., 2006. Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Developmental Biology. 290, 359–372.

Lehmann,O.J., Sowden, J.C., Carlsson, P., Jordan, T., Bhattacharya, S.S., 2003. Fox’s in development and disease. Trends in Genetics. 19, 339–344.

Lin, C.-Y., Yung, R.-F., Lee, H.-C., Chen, W.-T., Chen, Y.-H., Tsai, H.-J., 2006. Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish. Developmental Biology. 299, 594–608.

Lister, J.A., Cooper, C., Nguyen, K., Modrell, M.,Grant, K., Raible, D.W., 2006. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Developmental Biology. 290, 92–104.

Mahlapuu, M., Enerb?ck, S., and Carlsson, P., 2001a. Haploinsufficiency of the forkhead gene Foxf1, a target for Sonic hedgehog signaling, causes lung and foregut malformations. Development. 128, 2397–2406.
Mahlapuu, M., Ormestad, M., Enerb?ck, S., and Carlsson, P., 2001b. The forkhead transcription factor FoxF1 is required for differentiation of extraembryonic and lateral plate mesoderm. Development. 128, 155–166.

Mariani, F.V., Harland, R.M., 1998. XBF-2 is a transcriptional repressor that converts ectoderm into neural tissue. Development. 125, 5019–5031.

Maroto, M., Pourqui?, O., 2001. A molecular clock involved in somite segmentation. Current Topics in Developmental Biology. 51, 221–248.

M?ller, M., v. Weizs?cker, E., Campos-Ortega, J.A., 1996. Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. Development. 122, 2071–2078.

Nakada, C., Satoh, S., Tabata, Y., Arai, K.-I., Watanabe, S., 2006. Transcriptional repressor foxl1 regulates central nervous system development by suppressing shh expression in zebrafish. Molecular and Cellular Biology. 26, 7246–7257.

Nasevicius, A., Ekker, S.C., 2000. Effective targeted gene ‘knockdown’ in zebrafish. Nature Genetics. 26, 216–220.




Nikaido, M., Kawakami, A., Sawada, A., Furutani-Seiki, M., Takeda, H., Araki, K., 2002. Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nature Genetics. 31,195– 199.

Oates, A.C., Ho, R.K., 2002. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development. 129, 2929–2946.

Odenthal, J., N?sslein-Volhard, C., fork head domain genes in zebrafish. 1998. Developmental Genes and Evolution. 208, 245–258.

Ott, M. O., Bober, E., Lyons, G., Arnold, H., Buckingham, M., 1991. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development. 111, 1097–1107.

Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourqui?, O., 1997. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell. 91, 639–648.

Pelegri, F., 2003. Maternal Factors in Zebrafish Development. Developmental Dynamics. 228, 535–554.

Perreault, N., Katz, J.P., Sackett, S.D., Kaestner, K.H., 2001. Foxl1 controls the Wnt/ β-catenin pathway by modulating the expression of proteoglycans in the gut. Journal of Biological Chemistry. 276, 43328–43333.

Picker, A., Brand, M., 2005. Fgf signals from a novel signaling center determine axial patterning of the prospective neural retina. Development. 132, 4951–4962.

Pogoda, H.M., Solnica-Krezel, L., Driever, W., Meyer, D., 2000. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of Nodal signaling required for organizer formation. Current Biology. 10, 1041–1049.
Pohl, B.S., Kn?chel, W., 2001. Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos. Mechanisms of Development. 103, 93–106.

Pohl, B.S., Kn?chel, W., 2005. Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. Gene. 344, 21–32.

Pourqui?, O., 2001. Vertebrate somitogenesis. Annual Review of Cell and Developmental Biology. 17,311–350.

Pourqui?, O. (2003). The segmentation clock: converting embryonic time into spatial pattern. Science. 301, 328–330.

Pourqui?, O., Tam, P.P.L., 2001. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Developmental Cell. 1, 619–620.

Pownall, M.E., Gustafsson, M.K., Emerson Jr., C.P., 2002. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annual Review of Cell and Developmental Biology. 18, 747–783.

Rhee, J., Takahashi, Y., Saga, Y., Wilson-Rawls, J., Rawls, A., 2003. The protocadherin papc is involved in the organization of the epithelium along the segmental border during mouse somitogenesis. Developmental Biology. 254, 248–261.

Rida, P.C.G., Minh, L.E., Jiang, Y-J., 2004. A Notch feeling of somite segmentation and beyond. Developmental Biology. 265, 2–22.

Ruiz i Altaba, A., Prezioso, V.R., Darnell, J.E., Jessell, T.M., 1993. Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mechanisms of Development. 44, 91–108.

Saga, Y., Takeda, H., 2001. The making of the somite: molecular events in vertebrate segmentation. Nature Reviews. 2, 835–845.

Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S.H., Goldberg, A.L., 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 117, 399–412.

Sawada, A., Fritz, A., Jiang, Y.-J., Yamamoto, A., Yamasu, K., Kuroiwa, A., Saga, Y., Takeda, H., 2000. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development. 127, 1691–1702.

Sawada, A., Shinya, M., Jiang, Y.J., Kawakami, A., Kuroiwa, A., Takeda, H., 2001. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development. 128, 4873–4880.
Schier, A.F., Talbot, W.S., 2005. Molecular genetics of axis formation in zebrafish. Annual Review of Genetics. 39, 561–613.

Shanmugalingam, S., Wilson, S.W., 1998. Isolation, expression and regulation of a zebrafish paraxis homologue. Mechanisms of Development. 78, 85–89.

Shi, X., Luo, Y., Howley, S., Dzialo, A., Foley, S., Hyde, D.R., Vihtelic, T.S., 2006. Zebrafish foxe3: Roles in ocular lens morphogenesis through interaction with pitx3. Mechanisms of Development. 23, 761–782.
Sirotkin, H.I., Gates, M.A., Kelly, P.D., Schier, A.F., Talbot, W.S., 2000. fast1 is required for the development of dorsal axial structures in zebrafish. Current Biology. 10, 1051–1054.

Smithers, L., Haddon, C., Jiang, Y., Lewis, J., 2000. Sequence and embryonic expression of deltaC in the zebrafish. Mechanisms of Development. 90, 119–123.

Solomon, K.S., Kudoh, T., Dawid, I.B., Fritz, A., 2003a. Zebrafish foxi1 mediates otic placode formation and jaw development. Development. 130, 929–940.



Solomon, K.S., Logsdon, J.M. Jr., Fritz, A., 2003b. Expression and phylogenetic analyses of three zebrafish FoxI class genes. Developmental Dynamics. 228, 301–307.

S?lter, M., K?ster, M., Hollemann, T., Brey, A., Pieler,T., Kn?chel, W., 1999. Characterization of a subfamily of related winged helix genes, XFD-12/12’/12” (XFLIP), during Xenopus embryogenesis. Mechanisms of Development. 89, 161–165.

Stewart, R.A., Arduini, B.L., Berghmans, S., George, R.E., Kanki, J.P., Henion, P.D., Thomas Look, A., 2006. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Developmental Biology. 292,174–188.

Stickney, H.L., Barresi, M.J.F., Devoto, S.H., 2000. Somite development in zebrafish. Developmental Dynamics. 219, 287–303.
Strahle, U., Blader, P., Henrique, D., Ingham, P.W., 1993. Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes and Development. 7,1436–1446.

Sullivan, S.A., Akers, L., Moody, S.A., 2001. foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain. Developmental Biology. 232, 439–457.

Suri, C., Haremaki, T., Weinstein, D.C., 2004. Inhibition of mesodermal fate by Xenopus HNF3beta/FoxA2. Developmerntal Biology. 265, 90–104.

Tajbakhsh, S., Rocancourt, D., Buckingham, M., 1996. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature. 384, 266–270.

Takahashi, Y., Koizumi, K., Takagi, A., Kitajima, S., Inoue, T., Koseki, H., Saga, Y. 2000. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nature Genetics. 25, 390–396.


Tam, P. P., Trainor, P. A., 1994. Specification and segmentation of the paraxial mesoderm. Anatomy and Embryology. 189, 275–305.

Tam, P.P.L., Goldman, D., Camus, A., Schoenwolf, G.C., 2000. Early events of somitogenesis in higher vertebrates: allocation of precursor cells during gastrulation and the organization of a meristic pattern in the paraxial mesoderm. Current Topics in Developmental Biology. 47, 1–32.

Topczewska, J.M., Topczewski, J., Solnica-Krezel, L., Hogan, B.L.M., 2001a. Sequence and expression of zebrafish foxc1a and foxc1b, encoding conserved forkhead/winged helix transcription factors. Mechanisms of Development. 100, 343–347.

Topczewska, J.M., Topczewski, J., Shostak, A., Kume, T., Solnica-Krezel, L., Hogan, B.L.M., 2001b. The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes and Development. 15, 2483–2493.

Toresson, H., Martinez-Barbera, J.P., Bardsley, A., Caubit, X., Krauss, S., 1998. Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon. Development genes and evolution. 208, 431–439.

van Eeden, F.J.M., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.-P., Jiang, Y.-J., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., Warga, R.M., Allende, M.L., Weinberg, E.S., Nu?sslein-Volhard, C., 1996. Mutations affecting somite formation and patterning in the zebrafish Danio rerio. Development. 123, 153–164.

Weigel, D., Jurgens, G., Kuttner, F., Seifert, E., Jackle, H., 1989. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 57, 645–658.




Weinberg, E.S., Allende, M.L., Kelly, C.S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O.G., Grunwald, D.J., Riggleman, B., 1996. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development. 122, 271–280.

Weng, C.-W., 2004. The onset transcriptional regulatory network of zebrafish Myf5 gene during somitogenesis. 國立台灣大學生命科學院分子與細胞生物學研究所碩士論文.

Westerfield, M. 1995. The zebrafish book, 3rd edition. University of Oregon Press, Eugene, OR.

Wijchers, P.J.E.C., Burbach, J.P.H., Smidt, M.P., 2006. In control of biology: of mice, men and Foxes. Biochemical Journal. 397, 233–246.

Wilm, B., James, R.G., Schultheiss, T.M., Hogan, B.L.M., 2004. The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Developmental Biology. 271, 176–189.

Yamamoto, A., Amacher, S.L., Kim, S.-H., Geissert, D., Kimmel, C.B., De Robertis, E. M., 1998. Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development. 125, 3389–3397.

Yamaguchi, T.P., Conlon, R.A., Rossant, J., 1992. Expression of the fibroblast growth factor receptor FGFR-1/flg during gastrulation and segmentation in the mouse embryo. Developmental Biology. 152, 75–88.

Yamaguchi, T.P., Harpal, K., Henkemeyer, M., Rossant, J., 1994. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes and Development. 8, 3032–3044.

Yu, J., Holland, N.D., Holland, L.Z., 2002. An Amphioxus Winged Helix/Forkhead Gene, AmphiFoxD: Insights Into Vertebrate Neural Crest Evolution. Developmental Dynamics. 225, 289–297.



Yu, J., Holland, N.D., Holland, L.Z., 2004. Tissue-specific expression of FoxD reporter constructs in amphioxus embryos. Developmental Biology. 274, 452–461.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊