跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇育正
研究生(外文):Yu-cheng Su
論文名稱:Au/TiO2觸媒應用於水煤氣轉移反應與富氫氣體中選擇性氧化一氧化碳
論文名稱(外文):Water Gas Shift Reaction and Preferential Oxidation of CO in H2-rich Stream over Au/TiO2 Catalyst
指導教授:萬本儒
指導教授(外文):Ben-Zu Wan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:77
中文關鍵詞:水煤氣轉移反應富氫氣體中一氧化碳的選擇性氧化奈米金顆粒金/二氧化鈦擔體的效應製備方式穩定性
外文關鍵詞:Water gas shift reactionPreferential oxidation of CO in H2-rich streamnano-gold particleAu/TiO2support effectpreparation methodstability test
相關次數:
  • 被引用被引用:4
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目標是尋找出能應用在水煤氣轉移反應與選擇性氧化反應上的金觸媒,期望以簡單方便的程序製備具有良好穩定性與催化表現的觸媒(在水煤氣轉移反應中,反應氣體組成為CO/H2O/N2 = 2.6/41.2/56.2,流速為33.33 mL/min,觸媒取量為0.0024 g的金,與反應溫度為200 ℃的條件下,CO轉化率能接近平衡轉化率;在選擇性氧化反應中,反應氣體組成為CO/O2/H2/N2 = 1/1/50/48,流速為110 mL/min,觸媒取量為0.0012 g金的反應條件下,CO轉化率能在0℃達到85%以上,或在25℃達到100%以上)。本研究以沈澱沈積法(deposition-precipitation)製備金觸媒,分別探討奈米金顆粒載負在不同的擔體上與金/二氧化鈦以不同製備方式對應用在水煤氣轉移反應與選擇性氧化反應上催化活性的影響。
研究中首先比較擔體的效應,分別製備了Au/TiO2、Au/Y、Au/γ-Al2O3三種觸媒應用在水煤氣轉移反應上,由實驗結果發現Au/TiO2的活性表現都明顯優於其他兩種觸媒,且Au/TiO2的活性已達到熱力學平衡的極限,即一氧化碳幾乎完全轉化為二氧化碳(殘留量低於可分析濃度的最低下限)。
第二部分探討的是以不同製備方式製備Au/TiO2並分別應用在選擇性氧化反應與水煤氣轉移反應上對催化表現的影響。其中分別探討了溶液溫度、滴定時間與方式和氯之取代率等製備變因,研究結果發現溶液溫度需控溫在攝氏30度才能有較穩定的催化表現。如果以持續添加NaOH滴定方式調整金溶液pH值至6,所需調控時間至少需要6小時才能達到穩定,亦在水煤氣轉移反應上才能達到良好催化表現的標準,若以一次添加NaOH滴定方式調整金溶液pH值至6時,所需調控時間以2.5小時為最佳,即在選擇性氧化反應上的催化表現為最好。氯的殘留對Au/TiO2的催化活性確實具有負面的影響,氯之取代率高的觸媒在水煤氣轉移反應上能有佳的催化表現。
最後一部份研究為不同製備方式的Au/TiO2觸媒在長時間行水煤氣轉移反應下之穩定性的探討,測試的結果顯示出觸媒在剛開始操作皆會有一段衰退期,但其衰退的時間並不會很長,且衰退的比例約20%左右。過了這段衰退期之後,觸媒會達穩定狀態(即不再會明顯衰退)。
摘要 I
Abstract III
目錄 V
圖索引 VII
表索引 XI
常用縮寫與符號 XII

第一章 緒論 1
1.1 前言 1
1.2 水煤氣轉移反應(water gas shift reaction 或WGSR)與富氫氣體中一氧化碳的選擇性氧化(preferential oxidation of CO in H2-rich stream或PROX)之介紹 3
1.2-1 水煤氣轉移反應(water gas shift reaction 或WGSR) 3
1.2-2 富氫氣體中一氧化碳的選擇性氧化(preferential oxidation of CO in H2-rich stream或PROX) 6
1.3 金觸媒在WGSR與PROX上的催化表現 7
1.3-1 金觸媒在WGSR上的催化表現 7
1.3-2 金觸媒在PROX上的催化表現 10
1.4 研究目標 12

第二章 奈米金觸媒之文獻回顧 13
2.1 奈米金觸媒 13
2.2 影響金觸媒活性表現因素的討論 14

第三章 實驗方法 18
3.1 金觸媒製備 18
3.1.1 實驗藥品 18
3.1.2 實驗儀器 18
3.1.3 製備程序 19
3.2 金觸媒鑑定 22
3.2.1 原子吸收光譜 (AA) 22
3.2.2 高解析穿透式電子顯微鏡 (HRTEM) 22
3.2.3 X射線光電子光譜 (XPS) 22
3.2.4 紫外光可見光光譜儀 (UV-Vis) 24
3.3 金觸媒反應測試 25
3.3.1 氣體 25
3.3.2 反應裝置 26
3.4 金觸媒貯存 29
3.5 定義與理論計算 31
3.5.1 定義 31
3.5.2 理論計算
33
第四章 結果與討論 38
4.1 擔體對金觸媒應用在WGSR上催化表現的影響 38
4.2 不同製備方式對金/二氧化鈦分別應用在PROX與WGSR上催化表現的影響 42
4.2.1 有無調控溫度對金/二氧化鈦在PROX上催化表現的影響 43
4.2.2-1 以標準滴定方式添加NaOH探討調pH的時間對金/二氧化鈦在WGSR上催化表現的影響 46
4.2.2-2 以一次加入NaOH的滴定方式調pH值探討放置的時間對金/二氧化鈦在PROX上催化表現的影響 50
4.2.3 NaOH滴定方式的不同對金/二氧化鈦在WGSR上催化表現的影響 53
4.2.4 氯取代率的不同對金/二氧化鈦在WGSR上催化表現的影響 56
4.3 金/二氧化鈦長時間行水媒氣轉移反應之穩定性研究 59
4.4 金觸媒長時間貯存穩定性研究 61
4.4.1 為何探討要金觸媒貯存方式及其所應用之鑑定方式 61
4.4.2 探討金觸媒儲存方式分別針對Au/TiO2,Au/Y,Au/γ-Al2O3 66

第五章 結論 73

參考文獻
75
[1] A.F. Ghenciu, Curr. Opin. Solid State Mater. Sci. 6 (2002) 389–399.
[2] K. Weissermel and H.-J. Arpe, “Industrial organic chemistry,” 3rd edition, VCH publishers, New York, 1997.
[3] L. Mo, X. Zheng and C.-T. Yeh, Chem. Commun., (2004) 1426.
[4] L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, A. Samokhin, R. Ramprasad and S. Tamhankar, Int. J. Hydrogen Energy, 25 (2000) 1157.
[5] B. M. H. Rei, K. D. Yeh and C. W. Pan, IPCAT-3 & TSCRE-2003, (2003) IL-C-04
[6] C. Rhodes, G.J. Hutchings and A.M. Ward, “Water gas shift reaction:finding the mechanistic boundary”, Catalysis Today, 23 (1995) 43-58.
[7] C.T. Campbell, “A surface science investigation of the Water gas shift reaction on Cu(111)”, J.Catal.,104 (1987) 109.
[8] 游文岳,“以金/二氧化鈦觸媒催化富氫氣體中一氧化碳的選擇性氧化”, 國立台灣大學化學工程學研究所碩士學位論文(2004).
[9] C. R. F. Lund, “Water gas shift kinetics over Iron Oxide catalysts at membrane reactor conditions ”,Final Report to the U.S Department of Energy;GrantDE-FG26-99FT40590,Aug (2002).
[10] Y. Tanaka, “Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels ”,Applied Catalysis A:General, 242 (2003) 287.
[11] D.L. Trimm and Z.I. Önsan. “Onboard fuel Conversion for hydrogen-fuel-cell- driven vehicles.” Catal. Rev.-Sci. Eng. 43 (2001) 31-84.
[12] A.F. Ghenciu. “Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems.” Curr. Opin. Solid State Mater. Sci. 6 (2002) 389-399.
[13] D. Andreeva, Gold Bulletin, 35(2002) 82-88.
[14] D.Andreeva, Catalysis Today 72 (2002) 51–57.
[15] Japanese Patent 02,153,801 A2 13. (1990)
[16] Japanese Patent 08,295,502 A2 12. (1996)
[17] M. Haruta, A. Ueda, S. Tsubota and R.M.T. Sanchez. “Low-temperature catalytic combustion methanol its decomposed derivates over supported gold catalysts.” Catal. Today 29 (1996) 443-447.
[18] R.M.T. Sanchez, A. Ueda, K. Tanaka and M. Haruta. “Selective oxidation of CO in hydrogen over gold supported on manganese oxides.” J. Catal. 168 (1997) 125- 127.
[19] R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal. 199 (2001) 48.
[20] R.J.H. Grisel, C.J. Weststrate, A. Goossens, M.W.J. Craje, A.M.van der Kraan, B.E. Nieuwenhuys, Catal. Today 72 (2002) 123.
[21] A. Luengnaruemitchai, S. Osuwan, E. Gulari, Int. J. Hydrogen Energy. 29 (2004) 429.
[22] N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J.Hutchings, Q.A. Pankhurst, F.E. Wangner, R.R. Rajaram, S.E.Golunski, Catal. Today 72 (2002)133.
[23] T.V. Choudhary, C. Sivadinarayana, C.C. Chusuei, A. K. Datye, J.P. Fackler Jr., and D.W. Goodman. “CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex.” J. Catal. 207 (2002) 247–255.
[24] M. Haruta, T. Kobayashi, H. Sano and N. Yamada. “Novel gold catalysts for the oxidation of carbon monoxide at temperature far below 0 oC.” Chem. Lett. (1987) 405 -408.
[25] M. Haruta. “When gold is not noble: catalysis by nanoparticles.” Chem. Record 3 (2003) 75-87.
[26] G.C. Bond and D.T. Thompson. “Catalysis by gold.” Catal. Rev. Sci. Eng. 41 (1999) 319-388.
[27] V. Ponec and G. C. Bond, Catalysis by Metals and Alloys, Elsevier, Amster- dam, 1996.
[28] M. Okumura, K. Tanaka, A. Ueda and M. Haruta. “The reactivities of dimethy- lgold(III)beta-diketone on the surface of TiO2 - A novel preparation method for Au catalysts.” Solid State Ionics 95 (1997) 143-149.
[29] M. Haruta. “Catalysis of gold nanoparticles deposited on metal oxides.” CATTECH 6 (2002) 102-115.
[30] M.M. Schubert, V. Plzak, J. Garche and R.J. Behm. “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the prefer- ential CO oxidation in H2-rich gas.” Catal. Lett. 76 (2001) 143-150.
[31] B. Schumacher, V. Plzak, M. Kinne and R.J. Behm. “Highly active Au/TiO2 cat- alysts for low-temperature CO oxidation: preparation, conditioning and stability.” Catal. Lett. 89 (2003) 109-114.
[32] M.M. Schubert, A. Venugopal, M.J. Kahlich, V. Plzak and R.J. Behm. “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3.” J. Catal. 222 (2004) 32-40.
[33] J.-N. Lin and B.-Z. Wan. “Effects of preparation conditions on gold/Y-type zeolite for CO oxidation.” Appl. Catal. B 41 (2003) 83-95.
[34] S. Lin, M. Bollinger and M.A. Vannice. “Low temperature CO oxidation over Au /TiO2 and Au/SiO2 catalysts.” Catal. Lett. 17 (1993) 245-262.
[35] M. Bollinger and M.A. Vannice. “A kinetic and DRIFTS study of low-temper- ature carbon monoxide oxidation over Au-TiO2.” Appl. Catal. B 8 (1996) 417-443.
[36] Y.M. Kang and B.-Z. Wan. “Preparation of gold in Y-type zeolite for carbon mo- noxide oxidation.” Appl. Catal. A 128 (1995) 53-60.
[37] Y.M. Kang and B.-Z. Wan. “Pretreatment effect of gold/iron/zeolite-Y on car- bon monoxide oxidation.” Catal. Today 26 (1995) 59-69.
[38] Y.M. Kang and B.-Z. Wan. “Gold and iron supported on Y-type zeolite for car- bon monoxide oxidation.” Catal. Today 35 (1997) 379-392.
[39] J.-N. Lin, J.H. Chen, C.Y. Hsiao, Y.M. Kang and B.-Z. Wan. “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation.” Appl. Catal. B 36 (2002) 19-29.
[40] C.D. Wagner, W.M. Riggs, L.E. Davis, J.M. Moulder, G.E. Muilenberg. Hand- book of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie (1979).
[41] 楊建邦, “稻作殘體發電之經濟評估及金觸媒富氫選擇性一氧化碳氧化反應”, 國立台灣大學化學工程學研究所碩士學位論文(2003).
[42] Y.-S. Su, M.-Y. Lee and S.D. Lin. “XPS and DRS of Au/TiO2 catalysts: effect of pretreatment.” Catal. Lett. 57 (1999) 49-53.
[43] X.Z. Li and F.B. Li. “Study of Au/Au3+-TiO2 Photocatalysts toward visible pho- tooxidation for water and wastewater treatment.” Environ. Sci. Technol. 35 (2001) 2381-2387.
[44] F.B. Li and X.Z. Li. “Photocatalytic properties of gold/gold ion-modified tita- nium dioxide for wastewater treatment.” Appl. Catal. A 228 (2002) 15–27.
[45] T. Kobayashi, M. Haruta, S. Tsubota and H,Sano, Sensors and Actuators, 131, 222(1990).
[46] H.-S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung and M. C. Kung. “Selective Catalytic Oxidation of CO: Effect of chloride on supported Au catalysts.” J. Catal. 210 (2002) 375-386.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top