[1] A.F. Ghenciu, Curr. Opin. Solid State Mater. Sci. 6 (2002) 389–399.
[2] K. Weissermel and H.-J. Arpe, “Industrial organic chemistry,” 3rd edition, VCH publishers, New York, 1997.
[3] L. Mo, X. Zheng and C.-T. Yeh, Chem. Commun., (2004) 1426.
[4] L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, A. Samokhin, R. Ramprasad and S. Tamhankar, Int. J. Hydrogen Energy, 25 (2000) 1157.
[5] B. M. H. Rei, K. D. Yeh and C. W. Pan, IPCAT-3 & TSCRE-2003, (2003) IL-C-04
[6] C. Rhodes, G.J. Hutchings and A.M. Ward, “Water gas shift reaction:finding the mechanistic boundary”, Catalysis Today, 23 (1995) 43-58.
[7] C.T. Campbell, “A surface science investigation of the Water gas shift reaction on Cu(111)”, J.Catal.,104 (1987) 109.
[8] 游文岳,“以金/二氧化鈦觸媒催化富氫氣體中一氧化碳的選擇性氧化”, 國立台灣大學化學工程學研究所碩士學位論文(2004).[9] C. R. F. Lund, “Water gas shift kinetics over Iron Oxide catalysts at membrane reactor conditions ”,Final Report to the U.S Department of Energy;GrantDE-FG26-99FT40590,Aug (2002).
[10] Y. Tanaka, “Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels ”,Applied Catalysis A:General, 242 (2003) 287.
[11] D.L. Trimm and Z.I. Önsan. “Onboard fuel Conversion for hydrogen-fuel-cell- driven vehicles.” Catal. Rev.-Sci. Eng. 43 (2001) 31-84.
[12] A.F. Ghenciu. “Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems.” Curr. Opin. Solid State Mater. Sci. 6 (2002) 389-399.
[13] D. Andreeva, Gold Bulletin, 35(2002) 82-88.
[14] D.Andreeva, Catalysis Today 72 (2002) 51–57.
[15] Japanese Patent 02,153,801 A2 13. (1990)
[16] Japanese Patent 08,295,502 A2 12. (1996)
[17] M. Haruta, A. Ueda, S. Tsubota and R.M.T. Sanchez. “Low-temperature catalytic combustion methanol its decomposed derivates over supported gold catalysts.” Catal. Today 29 (1996) 443-447.
[18] R.M.T. Sanchez, A. Ueda, K. Tanaka and M. Haruta. “Selective oxidation of CO in hydrogen over gold supported on manganese oxides.” J. Catal. 168 (1997) 125- 127.
[19] R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal. 199 (2001) 48.
[20] R.J.H. Grisel, C.J. Weststrate, A. Goossens, M.W.J. Craje, A.M.van der Kraan, B.E. Nieuwenhuys, Catal. Today 72 (2002) 123.
[21] A. Luengnaruemitchai, S. Osuwan, E. Gulari, Int. J. Hydrogen Energy. 29 (2004) 429.
[22] N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J.Hutchings, Q.A. Pankhurst, F.E. Wangner, R.R. Rajaram, S.E.Golunski, Catal. Today 72 (2002)133.
[23] T.V. Choudhary, C. Sivadinarayana, C.C. Chusuei, A. K. Datye, J.P. Fackler Jr., and D.W. Goodman. “CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex.” J. Catal. 207 (2002) 247–255.
[24] M. Haruta, T. Kobayashi, H. Sano and N. Yamada. “Novel gold catalysts for the oxidation of carbon monoxide at temperature far below 0 oC.” Chem. Lett. (1987) 405 -408.
[25] M. Haruta. “When gold is not noble: catalysis by nanoparticles.” Chem. Record 3 (2003) 75-87.
[26] G.C. Bond and D.T. Thompson. “Catalysis by gold.” Catal. Rev. Sci. Eng. 41 (1999) 319-388.
[27] V. Ponec and G. C. Bond, Catalysis by Metals and Alloys, Elsevier, Amster- dam, 1996.
[28] M. Okumura, K. Tanaka, A. Ueda and M. Haruta. “The reactivities of dimethy- lgold(III)beta-diketone on the surface of TiO2 - A novel preparation method for Au catalysts.” Solid State Ionics 95 (1997) 143-149.
[29] M. Haruta. “Catalysis of gold nanoparticles deposited on metal oxides.” CATTECH 6 (2002) 102-115.
[30] M.M. Schubert, V. Plzak, J. Garche and R.J. Behm. “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the prefer- ential CO oxidation in H2-rich gas.” Catal. Lett. 76 (2001) 143-150.
[31] B. Schumacher, V. Plzak, M. Kinne and R.J. Behm. “Highly active Au/TiO2 cat- alysts for low-temperature CO oxidation: preparation, conditioning and stability.” Catal. Lett. 89 (2003) 109-114.
[32] M.M. Schubert, A. Venugopal, M.J. Kahlich, V. Plzak and R.J. Behm. “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3.” J. Catal. 222 (2004) 32-40.
[33] J.-N. Lin and B.-Z. Wan. “Effects of preparation conditions on gold/Y-type zeolite for CO oxidation.” Appl. Catal. B 41 (2003) 83-95.
[34] S. Lin, M. Bollinger and M.A. Vannice. “Low temperature CO oxidation over Au /TiO2 and Au/SiO2 catalysts.” Catal. Lett. 17 (1993) 245-262.
[35] M. Bollinger and M.A. Vannice. “A kinetic and DRIFTS study of low-temper- ature carbon monoxide oxidation over Au-TiO2.” Appl. Catal. B 8 (1996) 417-443.
[36] Y.M. Kang and B.-Z. Wan. “Preparation of gold in Y-type zeolite for carbon mo- noxide oxidation.” Appl. Catal. A 128 (1995) 53-60.
[37] Y.M. Kang and B.-Z. Wan. “Pretreatment effect of gold/iron/zeolite-Y on car- bon monoxide oxidation.” Catal. Today 26 (1995) 59-69.
[38] Y.M. Kang and B.-Z. Wan. “Gold and iron supported on Y-type zeolite for car- bon monoxide oxidation.” Catal. Today 35 (1997) 379-392.
[39] J.-N. Lin, J.H. Chen, C.Y. Hsiao, Y.M. Kang and B.-Z. Wan. “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation.” Appl. Catal. B 36 (2002) 19-29.
[40] C.D. Wagner, W.M. Riggs, L.E. Davis, J.M. Moulder, G.E. Muilenberg. Hand- book of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie (1979).
[41] 楊建邦, “稻作殘體發電之經濟評估及金觸媒富氫選擇性一氧化碳氧化反應”, 國立台灣大學化學工程學研究所碩士學位論文(2003).[42] Y.-S. Su, M.-Y. Lee and S.D. Lin. “XPS and DRS of Au/TiO2 catalysts: effect of pretreatment.” Catal. Lett. 57 (1999) 49-53.
[43] X.Z. Li and F.B. Li. “Study of Au/Au3+-TiO2 Photocatalysts toward visible pho- tooxidation for water and wastewater treatment.” Environ. Sci. Technol. 35 (2001) 2381-2387.
[44] F.B. Li and X.Z. Li. “Photocatalytic properties of gold/gold ion-modified tita- nium dioxide for wastewater treatment.” Appl. Catal. A 228 (2002) 15–27.
[45] T. Kobayashi, M. Haruta, S. Tsubota and H,Sano, Sensors and Actuators, 131, 222(1990).
[46] H.-S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung and M. C. Kung. “Selective Catalytic Oxidation of CO: Effect of chloride on supported Au catalysts.” J. Catal. 210 (2002) 375-386.