跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 14:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳維捷
研究生(外文):Wei-Chieh Chen
論文名稱:貝塔類澱粉蛋白質對內皮細胞去氧核醣核酸甲基化之影響
論文名稱(外文):The Effect of β-amyloid protein on DNA Methylation in Endothelial Cells
指導教授:王勝仕
指導教授(外文):Sheng-Shih Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:107
中文關鍵詞:DNA甲基化內皮細胞貝塔類澱粉蛋白質
外文關鍵詞:DNA mehtylationEndothelial Cellsβ-amyloid protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
DNA 甲基化之異常與許多疾病的病因息息相關,其中包括阿茲海默症(Alzheimer’s disease,AD) 。在阿茲海默症的發病機制中,類澱粉β蛋白質(β-amyloid,Aβ)是十分重要的因素;研究顯示,類澱粉β蛋白質在發病過程中會轉換成富含β-sheet的構形,並形成纖維狀(fibril)的結構,進而聚集成大量的糾結體(aggregate) 並造成細胞死亡。
文獻顯示,阿茲海默症與DNA甲基化有一定程度的關係,例如,阿茲海默症的病人其總體甲基化程度偏低、同型半胱氨酸(homocysteine,HCY)的濃度偏高等;此外,早衰性蛋白-1基因(presenilin-1,PS1)的去甲基化(demethylation)會造成類澱粉β蛋白質的加速產生。此些研究都指出甲基化之異常與阿茲海默症間有一定程度之關聯,然而其二者間真正之作用機制為何,至目前仍無定論。
本研究假設:類澱粉β纖維的毒性機制會對細胞DNA的甲基化產生影響。為測試此假設,我們使老鼠內皮細胞與不同濃度之類澱粉β纖維培養48小時後抽取細胞之DNA,將DNA以酵素水解後使用高效能液相層析儀(High performance liquid chromatography,HPLC)測量2''-脫氧胞2‘-脫氣胞普( 5-Methyl-2 ’-deoxycytidine)的濃度,進而得到總體甲基化程度的情況。在實驗結果中我們發現,添加類澱粉β纖維會使總體甲基化程度下降,我們推測此可能由於類澱粉β蛋白質會造成細胞膜外的流動性下降,進而使甲基化轉移酶的活性下降;然而,此一推測還需進一步的實驗來證實。儘管如此,我們證實了類澱粉β纖維的確會對DNA甲基化機制產生影響並能造成甲基化程度下降的現象,我們希望此一成果相信對於類澱粉β纖維毒性機制的研究,以及類澱粉β蛋白質在阿茲海默症所扮演角色方面能有更進一步的認識。
The abnormality of DNA methylation has been found to be highly associated with many diseases including Alzheimer’s disease. β-amyloid peptide in Alzheimer’s disease plays a pivotal role in the pathogenesis of the disease. Researches showed that β-amyloid peptide self-assembles into stable fibrils with a characteristic cross β-pleated sheet secondary structure during the development of Alzheimer’s disease. Moreover, extensive protein fibrillogenesis or aggregation often occurs resulting in an accumulation of the abnormally folded proteins that damages cells.
Results from previous studies suggested that there exists a certain link between Alzheimer’s disease and DNA methylation. A lower level of total DNA methylation but a higher concentration of homocysteine was found in the patients with Alzheimer’s disease. In addition, the demthylation of presenilin-1 would induce a rapid production in β-amyloid peptides. While a correlation between the aberration of DNA methylation and Alzheimer’s disease pathology has been widely recognized, the detailed interaction mechanism remains rather elusive.
In the study presented here, we propose a hypothesis that β-amyloid peptide in an aggregation state would impact the DNA methylation. In order to test this hypothesis, the murine cerebral endothelial cells (MCEC) were first incubated with various concentrations of aggregated β-amyloid species for 48 hours and the extraction and enzymatic digestion of DNA from these cells were then performed. Via high performance liquid chromatography, the level of total DNA methylation was evaluated by the analysis of the concentrations of 2’-deoxycytidine and 5-methyl-2’-deoxycytidine. Our experimental results indicated that β-amyloid fibrils led to a reduction in the level of total DNA methylation in a concentration dependent manner. A possible explanation for the reduction in the level of DNA methylation is due to the β-amyloid-induced decline in the cell membrane fluidity which leads to a drop in the activity of methylatransferase, and therefore, a decrease in the level of total DNA methylation. However, further investigation is warranted to examine the underlying mechanism(s) of the interaction between
目錄

第一章 緒論 1
第二章 文獻回顧 2
2-1DNA甲基化(DNA METHYLATION) 2
2-1-1 DNA 甲基化簡介 2
2-1-2 DNA甲基化之機制 3
2-1-3 甲基化抑制基因表達之機制 5
2-1-4 DNA甲基化之重要性 7
2-1-5 年齡與DNA甲基化 7
2-1-6 造成DNA甲基化隨年齡改變可能之機制 8
2-2阿茲海默症 8
2-2-1阿茲海默症之成因機制 10
2-2-2類澱粉前驅蛋白(amyloid precursor protein) 11
2-2-3 類澱粉β蛋白質 15
2-2-4 類澱粉β蛋白質毒性機制 17
2-3阿茲海默症與DNA甲基化 22
2-3-1 S-腺核苷甲硫胺酸(S-adenosylmethionine, SAM)……………………………………..22
2-3-2 同型半胱氨酸(homocysteine, HCY)…………………………………….23.
2-3-3葉酸(folate)……………………………………………………………………25
1.Ahmad, I. & Rao, D. N. Chemistry and biology of DNA methyltransferases. Critical Reviews in Biochemistry and Molecular Biology 31, 361-380 (1996).
2.Razin, A. & Riggs, A. D. DNA Methylation and Gene-Function. Science 210, 604-610 (1980).
3.Freitag, M. & Selker, E. U. Controlling DNA methylation: many roads to one modification. Current Opinion in Genetics & Development 15, 191-199 (2005).
4.Chakrabarty, D., Yu, K. W. & Paek, K. Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Science 165, 61-68 (2003).
5.Antequera, F. & Bird, A. Number of Cpg Islands and Genes in Human and Mouse. Proceedings of the National Academy of Sciences of the United States of America 90, 11995-11999 (1993).
6.Richardson, B. Impact of aging on DNA methylation. Ageing Research Reviews 2, 245-261 (2003).
7.Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. Cloning and Sequencing of a Cdna-Encoding DNA Methyltransferase of Mouse Cells - the Carboxyl-Terminal Domain of the Mammalian Enzymes Is Related to Bacterial Restriction Methyltransferases. Journal of Molecular Biology 203, 971-983 (1988).
8.Bird, A. DNA methylation patterns and epigenetic memory. Genes & Development 16, 6-21 (2002).
9.Lorincz, M. C., Schubeler, D., Hutchinson, S. R., Dickerson, D. R. & Groudine, M. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b - Independent de novo methylation. Molecular and Cellular Biology 22, 7572-7580 (2002).
10.Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 (1999).
11.Chen, T. P., Ueda, Y., Dodge, J. E., Wang, Z. J. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Molecular and Cellular Biology 23, 5594-5605 (2003).
12.Kunert, N., Marhold, J., Stanke, J., Stach, D. & Lyko, F. A Dnmt2-1ike protein mediates DNA methylation in Drosophila. Development 130, 5083-5090 (2003).
13.Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry 74, 481-514 (2005).
14.Jones, P. A. & Takai, D. The role of DNA methylation in mammalian epigenetics. Science 293, 1068-1070 (2001).
15.Bird, A. The Essentials of DNA Methylation. Cell 70, 5-8 (1992).
16.Comb, M. & Goodman, H. M. Cpg Methylation Inhibits Proenkephalin Gene-Expression and Binding of the Transcription Factor Ap-2. Nucleic Acids Research 18, 3975-3982 (1990).
17.Iguchiariga, S. M. M. & Schaffner, W. Cpg Methylation of the Camp-Responsive Enhancer Promoter Sequence Tgacgtca Abolishes Specific Factor Binding as Well as Transcriptional Activation. Genes & Development 3, 612-619 (1989).
18.Bird, A. P. & Wolffe, A. P. Methylation-induced repression - Belts, braces, and chromatin. Cell 99, 451-454 (1999).
19.Nan, X. S. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386-389 (1998).
20.Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D. & Riggs, A. D. Invivo Footprint and Methylation Analysis by Pcr-Aided Genomic Sequencing - Comparison of Active and Inactive X-Chromosomal DNA at the Cpg Island and Promoter of Human Pgk-1. Genes & Development 4, 1277-1287 (1990).
21.Richardson, B. DNA methylation and autoirnmune disease. Clinical Immunology 109, 72-79 (2003).
22.Hassan, K. M. A., Norwood, T., Gimelli, G., Gartler, S. M. & Hansen, R. S. Satellite 2 methylation patterns in normal and ICF syndrome cells and association of hypomethylation with advanced replication. Human Genetics 109, 452-462 (2001).
23.Kriaucionis, S. & Bird, A. DNA methylation and Rett syndrome. Human Molecular Genetics 12, R221-R227 (2003).
24.Mulvihill, D. J., Edamura, K. N., Hagerman, K. A., Pearson, C. E. & Wang, Y. H. Effect of CAT or AGG interruptions and CpG methylation on nucleosome assembly upon trinucleotide repeats on spinocerebellar ataxia, type 1 and fragile X syndrome. Journal of Biological Chemistry 280, 4498-4503 (2005).
25.Szyf, M. DNA methylation and cancer therapy. Drug Resistance Updates 6, 341-353 (2003).
26.Vanyushi.Bf, Tkacheva, S. G. & Belozers.An. Rare Bases in Animal DNA. Nature 225, 948-& (1970).
27.Vanyushi.Bf, Nemirovs.Le, Klimenko, V. V., Vasiliev, V. K. & Belozers.An. 5-Methylcytosine in DNA of Rats - Tissue and Age Specificity and Changes Induced by Hydrocortisone and Other Agents. Gerontologia 19, 138-152 (1973).
28.Zhang, Z. Y., Deng, C., Lu, Q. J. & Richardson, B. Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mechanisms of Ageing and Development 123, 1257-1268 (2002).
29.Xu, J. Age-related changes in Usp9x protein expression and DNA methylation in mouse brain. Molecular Brain Research 140, 17-24 (2005).
30.Morrison, L. D., Smith, D. D. & Kish, S. J. Brain S-Adenosylmethionine levels are severely decreased in Alzheimer''s disease. Journal of Neurochemistry 67, 1328-1331 (1996).
31.Counts, J. L. et al. Cell proliferation and global methylation status changes in mouse liver after phenobarbital and/or choline-devoid, methionine-deficient diet administration. Carcinogenesis 17, 1251-1257 (1996).
32.Kruman, II et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer''s disease. Journal of Neuroscience 22, 1752-1762 (2002).
33.劉冠男. 類澱粉蛋白質與細胞膜間交互作用之探討. 台灣大學化學工程學研究所碩士論文 (2005).
34.Terry, R. D. & Katzman, R. Senile dementia of the Alzheimer type. Ann Neurol 14, 497-506. (1983).
35.Selkoe, D. J. Biochemistry of altered brain proteins in Alzheimer''s disease. Annu Rev Neurosci 12, 463-90 (1989).
36.Kelly, J. W. The alternative conformations of amyloidogenic proteins and their multi- step assembly pathways. Curr Opin Struct Biol 8, 101-6. (1998).
37.Kelly, J. W. Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol 6, 11-7. (1996).
38.Kelly, J. W. The environmental dependency of protein folding best explains prion and amyloid diseases. Proc Natl Acad Sci U S A 95, 930-2. (1998).
39.Lansbury, P. T., Jr. Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A 96, 3342-4. (1999).
40.Carrell, R. W. & Gooptu, B. Conformational changes and disease--serpins, prions and Alzheimer''s. Curr Opin Struct Biol 8, 799-809 (1998).
41.Carrell, R. W. & Lomas, D. A. Conformational disease. Lancet 350, 134-8. (1997).
42.Soto, C. Alzheimer''s and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches. J Mol Med 77, 412-8 (1999).
43.Taubes, G. Misfolding the way to disease. Science 271, 1493-5. (1996).
44.Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimers disease. Nature 349, 704-706 (1991).
45.Shoji, M. et al. Alpha 1-antichymotrypsin is present in diffuse senile plaques. A comparative study of beta-protein and alpha 1-antichymotrypsin immunostaining in the Alzheimer brain. American Journal of Pathology 138, 247-257 (1991).
46.Rebeck, G., Harr, S., Strickland, D. & Hyman, B. Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. Annals of Neurology 37, 211-217 (1995).
47.Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer''s disease in late onset families. Science 261, 921-3. (1993).
48.Schellenberg, G. D. Genetic dissection of Alzheimer disease, a heterogeneous disorder. Proc Natl Acad Sci U S A 92, 8552-9. (1995).
49.Selkoe, D. J. Amyloid beta-protein and the genetics of Alzheimer''s disease. J Biol Chem 271, 18295-8. (1996).
50.Selkoe, D. J. Alzheimer''s disease: genotypes, phenotypes, and treatments. Science 275, 630-1. (1997).
51.Hyman, B. T., Van Horsen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer''s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168-70. (1984).
52.LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C. & Jay, G. The Alzheimer''s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9, 21-30. (1995).
53.Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373, 523-7. (1995).
54.Johnson-Wood, K. et al. Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A 94, 1550-5. (1997).
55.Masliah, E. et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer''s disease. J Neurosci 16, 5795-811. (1996).
56.Cummings, B. J., Pike, C. J., Shankle, R. & Cotman, C. W. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer''s disease. Neurobiol Aging 17, 921-33. (1996).
57.Weldon, D. T. et al. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 18, 2161-73. (1998).
58.Hartley, D. M. et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876-84 (1999).
59.Howlett, D. R. et al. Aggregation state and neurotoxic properties of Alzheimer beta-amyloid peptide. Neurodegeneration 4, 23-32 (1995).
60.Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G. & Cotman, C. W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13, 1676-87 (1993).
61.Seilheimer, B. et al. The toxicity of the Alzheimer''s beta-amyloid peptide correlates with a distinct fiber morphology. J. Struct. Biol. 119, 59-71 (1997).
62.Haass, C. et al. Normal cellular processing of the beta-amyloid precursor protein results in the secretion of the amyloid beta peptide and related molecules. Ann N Y Acad Sci 695, 109-16. (1993).
63.Park, H. J. et al. beta-amyloid precursor protein is a direct cleavage target of HtrA2 serine protease - Implications for the physiological function of HtrA2 in the mitochondria. Journal of Biological Chemistry 281, 34277-34287 (2006).
64.Shivers, B. D. et al. Alzheimers-Disease Amyloidogenic Glycoprotein - Expression Pattern in Rat-Brain Suggests a Role in Cell Contact. Embo Journal 7, 1365-1370 (1988).
65.Collin, R. W. J. & Martens, G. J. M. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element. Brain Research 1087, 41-51 (2006).
66.Busciglio, J., Gabuzda, D., Matsudaira, P. & Yankner, B. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proceedings of the National Academy of Sciences of the United States of America 90, 2092-2096 (1993).
67.Martins, R. N., Robinson, P. J., Chleboun, J. O., Beyreuther, K. & Masters, C. L. The molecular pathology of amyloid deposition in Alzheimer''s disease. Mol Neurobiol 5, 389-98 (1991).
68.Games, D. et al. Lack of Alzheimer pathology after beta-amyloid protein injections in rat brain. Neurobiol Aging 13, 569-76. (1992).
69.Stein-Behrens, B., Adams, K., Yeh, M. & Sapolsky, R. Failure of beta-amyloid protein fragment 25-35 to cause hippocampal damage in the rat. Neurobiol Aging 13, 577-9. (1992).
70.Giordano, T. et al. Similarities between beta amyloid peptides 1-40 and 40-1: effects on aggregation, toxicity in vitro, and injection in young and aged rats. Exp Neurol 125, 175-82. (1994).
71.Tomiyama, T. et al. Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 204, 76-83. (1994).
72.Gorevic, P. D., Castano, E. M., Sarma, R. & Frangione, B. Ten to fourteen residue peptides of Alzheimer''s disease protein are sufficient for amyloid fibril formation and its characteristic x-ray diffraction pattern. Biochem Biophys Res Commun 147, 854-62. (1987).
73.Whitson, J. S. et al. Attenuation of the neurotoxic effect of A beta amyloid peptide by apolipoprotein E. Biochem Biophys Res Commun 199, 163-70. (1994).
74.Kilsdonk, E. P. et al. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250-6 (1995).
75.Neufeld, E. B. et al. Intracellular trafficking of cholesterol monitored with a cyclodextrin. J. Biol. Chem. 271, 21604-13 (1996).
76.Ohtani, Y., Irie, T., Uekama, K., Fukunaga, K. & Pitha, J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem. 186, 17-22 (1989).
77.Arispe, N., Pollard, H. B. & Rojas, E. The ability of amyloid beta-protein [A beta P (1-40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer''s disease. Ann. N. Y. Acad. Sci. 747, 256-66 (1994).
78.Arispe, N., Pollard, H. B. & Rojas, E. beta-Amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol. Cell. Biochem. 140, 119-25 (1994).
79.Arispe, N., Pollard, H. B. & Rojas, E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc. Natl. Acad. Sci. U. S. A. 90, 10573-7 (1993).
80.Arispe, N., Rojas, E. & Pollard, H. B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc. Natl. Acad. Sci. U. S. A. 90, 567-71 (1993).
81.Butterfield, D. A. Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer''s disease grain: Mechanisms and consequences. Current Medicinal Chemistry 10, 2651-2659 (2003).
82.Varadarajan, S., Yatin, S., Aksenova, M. & Butterfield, D. A. Review: Alzheimer''s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity [In Process Citation]. J. Struct. Biol. 130, 184-208 (2000).
83.Avdulov, N. A. et al. Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J Neurochem 68, 2086-91. (1997).
84.Mason, R. P. et al. Distribution and fluidizing action of soluble and aggregated amyloid beta-peptide in rat synaptic plasma membranes. J Biol Chem 274, 18801-7. (1999).
85.Muller, W. E., Koch, S., Eckert, A., Hartmann, H. & Scheuer, K. beta-Amyloid peptide decreases membrane fluidity. Brain Res 674, 133-6. (1995).
86.Weiss, J. H., Pike, C. J. & Cotman, C. W. Ca2+ channel blockers attenuate beta-amyloid peptide toxicity to cortical neurons in culture. J. Neurochem. 62, 372-5 (1994).
87.Kruman, II et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. Journal of Neuroscience 20, 6920-6926 (2000).
88.Davis, J. B. Oxidative mechanisms in beta-amyloid cytotoxicity. Neurodegeneration 5, 441-4. (1996).
89.Pereira, C., Santos, M. S. & Oliveira, C. Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: protection by antioxidants. Neurobiol Dis 6, 209-19. (1999).
90.Pappolla, M. A. et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer''s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152, 871-7. (1998).
91.Retz, W., Gsell, W., Munch, G., Rosler, M. & Riederer, P. Free radicals in Alzheimer''s disease. J Neural Transm Suppl 54, 221-36 (1998).
92.Yatin, S. M., Aksenov, M. & Butterfield, D. A. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer''s disease. Neurochem Res 24, 427-35. (1999).
93.Yatin, S. M., Varadarajan, S., Link, C. D. & Butterfield, D. A. In vitro and in vivo oxidative stress associated with Alzheimer''s amyloid beta-peptide (1-42). Neurobiol Aging 20, 325-30; discussion 339-42. (1999).
94.Carr, D. B., Goate, A., Phil, D. & Morris, J. C. Current concepts in the pathogenesis of Alzheimer''s disease. Am J Med 103, 3S-10S. (1997).
95.Holscher, C. Possible causes of Alzheimer''s disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis 5, 129-41. (1998).
96.Markesbery, W. R. Oxidative stress hypothesis in Alzheimer''s disease. Free Radic Biol Med 23, 134-47 (1997).
97.Berry, F., Gancedo, R., Marco, J. & Thied, R. Mossbauer spectroscopic investigations of metal incoporation within nascion-related NBTIP3O12. Journal of the Chemical Society-Dalton Transactions, 1703-1710 (1994).
98.Chen, K., Morse, P. & Swartz, H. Effects of oxygen on the metabolism of nitroxide spin labels in cells. Biophysical Journal 53, A213-A213 (1988).
99.Liochev, S. & Fridovich, I. The role of O-2-center-dot- in the production of ho-center-dot - in-vitro and in-vivo. Free Radical Biology and Medicine 16, 29-33 (1994).
100.Hensley, K. et al. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Nat. Acad. Sc. U. S. A. 91, 3270-4 (1994).
101.Khachaturian, Z. S. Calcium hypothesis of Alzheimer''s disease and brain aging. Ann N Y Acad Sci 747, 1-11. (1994).
102.Lockhart, B. P., Benicourt, C., Junien, J. L. & Privat, A. Inhibitors of free radical formation fail to attenuate direct beta- amyloid25-35 peptide-mediated neurotoxicity in rat hippocampal cultures. J Neurosci Res 39, 494-505. (1994).
103.Mark, R. J., Hensley, K., Butterfield, D. A. & Mattson, M. P. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 15, 6239-49. (1995).
104.Christensen, R., Shtifman, A., Allen, P., Lopez, J. & Querfurth, H. Calcium dyshomeostasis in beta-amyloid and Tau-bearing skeletal myotubes. JOURNAL OF BIOLOGICAL CHEMISTRY 279, 53524-53532 (2004).
105.Mellem, J. et al. Penetrance of a new mutant allele of the voltage gated calcium channel gene CACNA1A is dependent on amyloid precursor protein (APP) concentration. NEUROBIOLOGY OF AGING 25, S228-S228 (2004).
106.Moncaster, J., Walsh, D. & Gentleman, S. Regulation of amyloid precursor protein (APP) processing by ion channel activity in an in vivo rat retinal system. NEUROBIOLOGY OF AGING 25, S227-S227 (2004).
107.Behl, C., Widmann, M., Trapp, T. & Holsboer, F. 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun 216, 473-82. (1995).
108.Goodman, Y. & Mattson, M. P. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 128, 1-12. (1994).
109.Goodman, Y. & Mattson, M. P. Staurosporine and K-252 compounds protect hippocampal neurons against amyloid beta-peptide toxicity and oxidative injury. Brain Res 650, 170-4. (1994).
110.Shinitzky, M. Membrane fluidity and cellular functions (ed. Shinitzky, M.) (CRC Press, Boca Raton, FL, 1984).
111.Muller, W. E. et al. Effects of beta-amyloid peptides on the fluidity of membranes from frontal and parietal lobes of human brain. High potencies of A beta 1- 42 and A beta 1-43. Amyloid 5, 10-5. (1998).
112.Kremer, J. J., Pallitto, M. M., Sklansky, D. J. & Murphy, R. M. Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39, 10309-18. (2000).
113.Muller, W. E., Kirsch, C. & Eckert, G. P. Membrane-disordering effects of beta-amyloid peptides. Biochem Soc Trans 29, 617-23. (2001).
114.Pollard, H. B., Arispe, N. & Rojas, E. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 15, 513-26. (1995).
115.Hirakura, Y., Lin, M. C. & Kagan, B. L. Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo Red. J Neurosci Res 57, 458-66. (1999).
116.Mirzabekov, T. et al. Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem Biophys Res Commun 202, 1142-8. (1994).
117.Fraser, S. P., Suh, Y. H. & Djamgoz, M. B. Ionic effects of the Alzheimer''s disease beta-amyloid precursor protein and its metabolic fragments. Trends Neurosci 20, 67-72. (1997).
118.Bottiglieri, T. & Hyland, K. S-Adenosylmethionine Levels in Psychiatric and Neurological Disorders - a Review. Acta Neurologica Scandinavica 89, 19-26 (1994).
119.Seshadri, S. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer''s disease. New England Journal of Medicine 346, 476-483 (2002).
120.Clarke, R. et al. Folate, vitamin B-12, and serum total homocysteine levels in confirmed Alzheimer disease. Archives of Neurology 55, 1449-1455 (1998).
121.Gottfries, C. G., Lehmann, W. & Regland, B. Early diagnosis of cognitive impairment in the elderly with the focus on Alzheimer''s disease. Journal of Neural Transmission 105, 773-786 (1998).
122.Chawla, R. K. & Watson, W. H. Apoptosis induced by tumor necrosis factor is enhanced by S-adenosylmethionine deficiency. Faseb Journal 11, 2942-2942 (1997).
123.Fuso, A., Seminara, L., Cavallaro, R. A., D''Anselmi, F. & Scarpa, S. DNA methylation and HCY/SAM cycle alterations modulate PS1, BACE and beta-amyloid levels in Alzheimer''s disease. Neurobiology of Aging 25, S586-S586 (2004).
124.Scarpa, S., Fuso, A., D''Anselmi, F. & Cavallaro, R. A. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? Febs Letters 541, 145-148 (2003).
125.Fuso, A., Seminara, L., Cavallaro, R. A., D''Anselmi, F. & Scarpa, S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Molecular and Cellular Neuroscience 28, 195-204 (2005).
126.Vafai, S. B. & Stock, J. B. Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer''s Disease. Febs Letters 518, 1-4 (2002).
127.Satterfield, M. et al. Development of a new standard reference material: SRM 1955 (homocysteine and folate in human serum). Analytical and Bioanalytical Chemistry (2006).
128.Tyagi, N. et al. Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia. Journal of Cellular Biochemistry 96, 665-671 (2005).
129.Ho, P. I., Ortiz, D., Rogers, E. & Shea, T. B. Multiple aspects of homocysteine neurotoxicity: Glutamate excitotoxicity, kinase hyperactivation and DNA damage. Journal of Neuroscience Research 70, 694-702 (2002).
130.Zoccali, C. & Mallamaci, F. Homocysteine and risk in end-stage renal disease: a matter of context. Kidney International 69, 204-206 (2006).
131.Hankey, G. J. Is plasma homocysteine a modifiable risk factor for stroke? Nature Clinical Practice Neurology 2, 26-33 (2006).
132.Hankey, G. J. & Eikelboom, J. W. Homocysteine and stroke. Lancet 365, 194-196 (2004).
133.Hankey, G. J. & Eikelboom, J. W. Homocysteine and stroke. Current Opinion in Neurology 14, 95-102 (2001).
134.Blandini, F. et al. Plasma homocysteine and L-DOPA metabolism in patients with Parkinson disease. Clinical Chemistry 47, 1102-1104 (2001).
135.Yasui, K., Kowa, H., Nakaso, K., Takeshima, T. & Nakashima, K. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 55, 437-440 (2000).
136.Ulrey, C. L., Liu, L., Andrews, L. G. & Tollefsbol, T. O. The impact of metabolism on DNA methylation. Human Molecular Genetics 14, R139-R147 (2005).
137.Ho, P. I. et al. Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. Journal of Neurochemistry 78, 249-253 (2001).
138.Eichholzer, M., Tonz, T. & Zimmermann, R. Folic acid: a public-health challenge. Lancet 367, 1352-1361 (2006).
139.Munoz de la Pena, A., Duran Meras, I. & Jimenez Giron, A. Four-way calibration applied to the simultaneous determination of folic acid and methotrexate in urine samples. Analytical and Bioanalytical Chemistry (2006).
140.Kim, Y. I. Folate and DNA methylation: A mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiology Biomarkers & Prevention 13, 511-519 (2004).
141.Kuo, K. C., McCune, R. A., Gehrke, C. W., Midgett, R. & Ehrlich, M. Quantitative Reversed-Phase High-Performance Liquid-Chromatographic Determination of Major and Modified Deoxyribonucleosides in DNA. Nucleic Acids Research 8, 4763-4776 (1980).
142.Trinh, B. N., Long, T. I. & Laird, P. W. DNA methylation analysis by MethyLight technology. Methods 25, 456-462 (2001).
143.Liu, Z. J. & Maekawa, M. Polymerase chain reaction-based methods of DNA methylation analysis. Analytical Biochemistry 317, 259-265 (2003).
144.Ramsahoye, B. H. Measurement of genome wide DNA methylation by reversed-phase high-performance liquid chromatography. Methods 27, 156-161 (2002).
145.C. Fuke*, M. S., A. Petronis, J. Sugimoto, T. Oda, K. Miura, T. Miyazaki, C. Ogura, Okazaki and Y. Jinno*. Age Related Changes in 5-methylcytosine Content in Human Peripheral Leukocytes and Placentas : an HPLC-based Study. Annals of Human Genetics 68, 196-204 (2004).
146.Hatherly Laboratories, U. o. E., Prince of Wales Road, Exeter EX4 4PS, UK. DNA methylation analysis: a review of current methodologies. Pharmacology & Therapeutics 84, 389-400 (1999).
147.Riichi Tawa*, T. O., Akihiro Kurishita, Shigefumi Okada, and Shingo Hirose. Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation 45, 44-48 (1990).
148.Cui, X. et al. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Human Pathology 37, 298-311 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top