跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志毅
研究生(外文):Chih-Yi CHang
論文名稱:旋轉反應器在光觸媒的應用之製程特性與規模放大
論文名稱(外文):Process Characteristics and Scale-Up of Rotating-Disk-Reactor for Photocatalysis
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:135
中文關鍵詞:二氧化鈦旋轉反應器甲基橙光降解反應高級氧化程序
外文關鍵詞:TiO2Rotating-disk-reactorMethyl orangePhotocatalysisAdcanced Oxidation Process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
旋轉反應器 (RDR) 在光觸媒降解之應用近年來受到極高的重視,其不僅可避免懸浮型光觸媒反應器需在操作後需分離光觸媒粉體的問題,並藉由旋轉盤旋轉,使有機污染物可高度均勻混合並產生極薄的液膜,因此光穿透率可顯著提升而大幅極高光反應速率,避免塗佈型光觸媒反應器的常見之質傳限制問題,甚至效能可超越懸浮型光觸媒反應器。

本研究主要分成三部分。首先,將結合旋轉盤流體力學與動力學模式,利用甲基橙在紫外光下之降解速率觀察旋轉反應器之製程特性。實驗結果顯示,在僅有1.6秒之轉盤滯留時間下,甲基澄之光降解轉化率高達55%。此外,藉由轉盤旋轉,不僅可同時增加光反應速率及質傳速率,並能使整體光降解反應速率位於光反應限制區,不受質傳限制之影響。第二,本研究進一步提出旋轉反應器對有機染料的光降解機制,與質傳之機制進行比較,並成功使用軟體模擬轉盤上濃度之變化。結果顯示,模擬之反應機制進一步證明在轉速提升之後能避免質傳的影響。最後,本研究提出旋轉反應器在製程放大的便利性與可能性,其可藉由轉盤之放大而大幅提升光降解之轉化率。
Rotating-disk-reactor (RDR) has been received much attention in photocatalysis, which not only avoids the difficult separated process between TiO2 and solution, but would be expected to possess better performance even than the suspension photocatalytic reactors.

Three main objectives of this work are to be noted. Firstly, we investigated the process characteristics of RDR on degrading methyl orange (MO) by combining the kinetics model and fluid dynamics model we proposed. The results show that the conversion of MO was up to 55% within 1.6s of retention time. With disk rotating: (1) The photocatalytic reaction rate was greatly improved by light penetration only through the micro-scale liquid film. (2) The mass transfer rate was increased significantly and the reaction is shifted to the photocatalytic reaction rate limitation region. Secondly, the intrinsic mechanism of photocatalytic reaction have been presented and simulated. Last but not least, the possibility of scale-up is discussed in our research. Based on our model, the optimal condition of photocatalytic process could be simply attained by calibrating several parameters, including flow rate, rotating speed, disk size and light intensity.
摘要 I
Abstract II
Table of Contents III
List of Figures VI
List of Tables X
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivations and Objectives 1
Chapter 2 Literature Review 4
2-1 Introduction of Titanium Oxide, TiO2 4
2-1-1 Fundamental Properties 4
2-1-2 Principles of Photocatalysis 10
2-1-3 Mechanisms for Photocatalysis 14
2-1-4 Applications of TiO2 on Photocatalysis 17
2-2 Introduction of Photocatalytic Reactors 20
2-2-1 Classification of Photocatalytic Reactors 20
2-2-2 TiO2 Slurry Photocatalytic Reactors 21
2-2-3 Immobilized TiO2 Photocatalytic Reactors 22
2-2-4 Configuration of Photocatalytic Reactors 26
2-2-5 Rotating-Disk-Reactor 36
2-3 Introduction of Advanced Oxidation Process 39
2-3-1 Cavitation 40
2-3-2 Fenton Chemistry 41
2-3-3 H2O2/UV, O3/UV, and H2O2/O3/UV Procedures 43
2-3-4 Photocatalytic Oxidation 45
Chapter 3 Experimental 49
3-1 Chemical Reagents and Experimental Instruments 49
3-1-1 Chemical Reagents 49
3-1-2 Experimental Instruments 50
3-2 Rotating Disc Reactor 51
3-2-1 Schema 51
3-2-2 Preparation of TiO2-Coated Discs 53
3-2-3 Fundamental Experiments 55
3-2-4 Comparison with Batch Reactor 56
3-3 Analysis and Characterization 58
3-3-1 Microstructure Characterization 58
3-3-2 Kinetics Analyses 59
Chapter 4 Results and Discussion 62
4-1 Characterization of TiO2-Coated Disk 62
4-2 Characterization of Rotating-Disk-Reactor 65
4-2-1 Flow Pattern 65
4-2-2 Amount of TiO2 Coated on the Disk 65
4-2-3 Temperature Effect 66
4-3 Free Film Model of Rotating-Disk-Reactor 71
4-3-1 Reviews of Free Film Model of Rotating Disk 71
4-3-2 Liquid Film Thickness 72
4-3-3 Average Residence Time 79
4-3-4 Flow Regime of Rotating-Disk-Reactor 81
4-3-5 Kinetics Model of Rotating-Disk-Reactor 83
4-4 Investigation of Mechanisms on Rotating-Disk-Reactor 86
4-4-1 Explanation of Experimental Results 86
4-4-2 Model of Photocatalytic Reaction Limitations 92
4-4-3 Model of Mass Transfer Limitations 95
4-4-4 Initial Concentration of Methyl Orange 96
4-4-5 Comparison of the Experimental Value with Simulation Data 99
4-5 Discussion of Commercial Potential of Rotating-Disk Reactor 105
4-5-1 Comparison of Rotating-Disk-Reactor with Batch Reactor 105
4-5-2 Evaluation of Disc Size for Rotating-Disk-Reactor 106
4-5-3 Scale-up of Rotating Disc Reactor for Commercialization 107
Chapter 5 Conclusion 112
Reference 114
Appendix A 133
1.Y. Parent, D. Blake, K. MagriniBair, C. Lyons, C. Turchi, A. Watt, E. Wolfrum, M. Prairie, "Solar photocatalytic processes for the purification of water: State of development and barriers to commercialization", Solar Energy; 56, 429-437 (1996).
2.S. M. Rodriguez, C. Richter, J. B. Galvez, M. Vincent, "Photocatalytic degradation of industrial residual waters", Solar Energy; 56, 401-410 (1996).
3.M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis", Chemical Reviews; 95, 69-96 (1995).
4.P. Wyness, J. F. Klausner, D. Y. Goswami, K. S. Schanze, "Performance of nonconcentrating solar photocatalytic oxidation reactors .1. Flat-plate configuration", Journal of Solar Energy Engineering-Transactions of the Asme; 116, 2-7 (1994).
5.M. A. Fox, M. T. Dulay, "Heterogeneous photocatalysis", Chemical Reviews; 93, 341-357 (1993).
6.O. Legrini, E. Oliveros, A. M. Braun, "Photochemical processes for water-treatment", Chemical Reviews; 93, 671-698 (1993).
7.R. W. Matthews, S. R. McEvoy, "Photocatalytic degradation of phenol in the presence of near-uv illuminated titanium-dioxide", Journal of Photochemistry and Photobiology a-Chemistry; 64, 231-246 (1992).
8.H. Alekabi, N. Serpone, E. Pelizzetti, C. Minero, M. A. Fox, R. B. Draper, "Kinetic-studies in heterogeneous photocatalysis .2. Tio2-mediated degradation of 4-chlorophenol alone and in a 3-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous-media", Langmuir; 5, 250-255 (1989).
9.H. Alekabi, N. Serpone, "Kinetic-studies in heterogeneous photocatalysis .1. Photocatalytic degradation of chlorinated phenols in aerated aqueous-solutions over tio2 supported on a glass matrix", Journal of Physical Chemistry; 92, 5726-5731 (1988).
10.D. F. Ollis, "Contaminant degradation in water", Environmental Science & Technology; 19, 480-484 (1985).
11.L. Zou, Y. C. Li, E. Hu, "Photocatalytic decolorization of lanasol blue ce dye solution using a flat-plate reactor", Journal of Environmental Engineering-Asce; 131, 102-107 (2005).
12.J. G. Sczechowski, C. A. Koval, R. D. Noble, "A taylor vortex reactor for heterogeneous photocatalysis", Chemical Engineering Science; 50, 3163-3173 (1995).
13.T. A. McMurray, J. A. Byrne, P. S. M. Dunlop, J. G. M. Winkelman, B. R. Eggins, E. T. McAdams, "Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised tio2 films", Applied Catalysis a-General; 262, 105-110 (2004).
14.G. B. Raupp, J. A. Nico, S. Annangi, R. Changrani, R. Annapragada, "Two-flux radiation-field model for an annular packed-bed photocatalytic oxidation reactor", Aiche Journal; 43, 792-801 (1997).
15.A. Haarstrick, O. M. Kut, E. Heinzle, "Tio2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor", Environmental Science & Technology; 30, 817-824 (1996).
16.N. J. Peill, M. R. Hoffmann, "Development and optimization of a tio2 coated fiberoptic cable reactor - photocatalytic degradation of 4-chlorophenol", Environmental Science & Technology; 29, 2974-2981 (1995).
17.D. D. Dionysiou, M. T. Suidan, I. Baudin, J. M. Laine, "Oxidation of organic contaminants in a rotating disk photocatalytic reactor: Reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless damkohler number", Applied Catalysis B-Environmental; 38, 1-16 (2002).
18.H. C. Yatmaz, C. Wallis, C. R. Howarth, "The spinning disc reactor - studies on a novel tio2 photocatalytic reactor", Chemosphere; 42, 397-403 (2001).
19.L. F. Zhang, T. Kanki, N. Sano, A. Toyoda, "Photocatalytic degradation of organic compounds in aqueous solution by a tio2-coated rotating-drum reactor using solar light", Solar Energy; 70, 331-337 (2001).
20.N. A. Hamill, L. R. Weatherley, C. Hardacre, "Use of a batch rotating photocatalytic contactor for the degradation of organic pollutants in wastewater", Applied Catalysis B-Environmental; 30, 49-60 (2001).
21.A. Toyoda, L. F. Zhang, T. Kanki, N. Sano, "Degradation of phenol in aqueous solution by tio2 photocatalyst coated rotating-drum reactor", Journal of Chemical Engineering of Japan; 33, 188-191 (2000).
22.D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, M. Laine, "Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water", Water Research; 34, 2927-2940 (2000).
23.K. J. Buechler, C. H. Nam, T. M. Zawistowski, R. D. Noble, C. A. Koval, "Design and evaluation of a novel-controlled periodic illumination reactor to study photocatalysis", Industrial & Engineering Chemistry Research; 38, 1258-1263 (1999).
24.Fujishim.A, K. Honda, "Electrochemical photolysis of water at a semiconductor electrode", Nature; 238, 37-& (1972).
25.A. G. Agrios, P. Pichat, "State of the art and perspectives on materials and applications of photocatalysis over tio2", Journal of Applied Electrochemistry; 35, 655-663 (2005).
26.O. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert, R. Goslich, "Photocatalysis in water environments using artificial and solar light", Catalysis Today; 58, 199-230 (2000).
27.A. L. Linsebigler, G. Q. Lu, J. T. Yates, "Photocatalysis on tio2 surfaces - principles, mechanisms, and selected results", Chemical Reviews; 95, 735-758 (1995).
28.A. Fujishima, K. Hashimoto, T. Watanabe, "Tio2 photocatalysis fundamentals and application", BKC, Inc. (1999)
29."Phase diagram for ceramists figure", The American Ceramic Society, Inc. 4150-4999 (1975)
30.U. Diebold, "The surface science of titanium dioxide", Surface Science Reports; 48, 53-229 (2003).
31.A. Mills, S. LeHunte, "An overview of semiconductor photocatalysis", Journal of Photochemistry and Photobiology a-Chemistry; 108, 1-35 (1997).
32.Y. Nosaka, M. A. Fox, "Kinetics for electron-transfer from laser-pulse-irradiated colloidal semiconductors to adsorbed methylviologen - dependence of the quantum yield on incident pulse width", Journal of Physical Chemistry; 92, 1893-1897 (1988).
33.A. Hagfeldt, M. Gratzel, "Light-induced redox reactions in nanocrystalline systems", Chemical Reviews; 95, 49-68 (1995).
34.H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, S. Ehara, K. Kikui, L. Palmisano, A. Sclafani, M. Schiavello, M. A. Fox, "Photocatalytic reduction of co2 with h2o on tio2 and cu/tio2 catalysts", Research on Chemical Intermediates; 20, 815-823 (1994).
35.E. Pelizzetti, C. Minero, V. Maurino, H. Hidaka, N. Serpone, R. Terzian, "Photocatalytic degradation of dodecane and of some dodecyl derivatives", Annali Di Chimica; 80, 81-87 (1990).
36.V. Augugliaro, M. Litter, L. Palmisano, J. Soria, "The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance", Journal of Photochemistry and Photobiology C-Photochemistry Reviews; 7, 127-144 (2006).
37.P. R. Gogate, A. B. Pandit, "A review of imperative technologies for wastewater treatment i: Oxidation technologies at ambient conditions", Advances in Environmental Research; 8, 501-551 (2004).
38.D. S. Bhatkhande, V. G. Pangarkar, Aacm Beenackers, "Photocatalytic degradation for environmental applications - a review", Journal of Chemical Technology and Biotechnology; 77, 102-116 (2002).
39.D.M. Blake. "Bibliography of work on the photocatalytic removal of hazardous compounds from water and air", NREL/TP-510-31319, National Renewable Energy Laboratory, Golden (2001).
40.J. M. Herrmann, "Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants", Catalysis Today; 53, 115-129 (1999).
41.N. K. V. Leitner, E. LeBras, E. Foucault, J. L. Bousgarbies, "A new photochemical reactor design for the treatment of absorbing solutions", Water Science and Technology; 35, 215-222 (1997).
42.N. Serpone, R. F. Khairutdinov. Application of nanoparticles in the photocatalytic degradation of water pollutants. Semiconductor nanoclusters- physical, chemical, and catalytic aspects. Volume 103, Studies in surface science and catalysis. Amsterdam: Elsevier Science Publ B V; 1997. p 417-444.
43.H. Einaga, S. Futamura, T. Ibusuki, "Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: Comparison of decomposition behavior on photoirradiated tio2 catalyst", Applied Catalysis B-Environmental; 38, 215-225 (2002).
44.H. Einaga, S. Futamura, T. Ibusuki, "Photocatalytic decomposition of benzene over tio2 in a humidified airstream", Physical Chemistry Chemical Physics; 1, 4903-4908 (1999).
45.N. N. Lichtin, M. Sadeghi, "Oxidative photocatalytic degradation of benzene vapor over tio2", Journal of Photochemistry and Photobiology a-Chemistry; 113, 81-88 (1998).
46.I. Izumi, F. R. F. Fan, A. J. Bard, "Heterogeneous photocatalytic decomposition of benzoic-acid and adipic acid on platinized tio2 powder - the photo-kolbe decarboxylative route to the breakdown of the benzene-ring and to the production of butane", Journal of Physical Chemistry; 85, 218-223 (1981).
47.V. B. Manilal, A. Haridas, R. Alexander, G. D. Surender, "Photocatalytic treatment of toxic organics in waste-water - toxicity of photodegradation products", Water Research; 26, 1035-1038 (1992).
48.M. Muneer, S. Das, V. B. Manilal, A. Haridas, "Photocatalytic degradation of waste-water pollutants - titanium dioxide-mediated oxidation of methyl vinyl ketone", Journal of Photochemistry and Photobiology a-Chemistry; 63, 107-114 (1992).
49.T. Kanki, S. Hamasaki, N. Sano, A. Toyoda, K. Hirano, "Water purification in a fluidized bed photocatalytic reactor using tio2-coated ceramic particles", Chemical Engineering Journal; 108, 155-160 (2005).
50.M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, "Preparation of nanosize anatase and rutile tio2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol", Journal of Physical Chemistry B; 106, 10674-10679 (2002).
51.D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjines, F. Levy, V. I. Parvulescu, "Photocatalytic degradation of phenol by tio2 thin films prepared by sputtering", Applied Catalysis B-Environmental; 25, 83-92 (2000).
52.A. A. Yawalkar, D. S. Bhatkhande, V. G. Pangarkar, Aacm Beenackers, "Solar-assisted photochemical and photocatalytic degradation of phenol", Journal of Chemical Technology and Biotechnology; 76, 363-370 (2001).
53.D. Dionysiou, A. P. Khodadoust, A. M. Kern, M. T. Suidan, I. Baudin, J. M. Laine, "Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale tio2 rotating disk reactor", Applied Catalysis B-Environmental; 24, 139-155 (2000).
54.D. W. Chen, A. K. Ray, "Photocatalytic kinetics of phenol and its derivatives over uv irradiated tio2", Applied Catalysis B-Environmental; 23, 143-157 (1999).
55.K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, "Heterogeneous photocatalytic decomposition of phenol over tio2 powder", Bulletin of the Chemical Society of Japan; 58, 2015-2022 (1985).
56.Cooper, Gerald, Ratcliff, Matthew A, "Photocatalytic treatment of water ", Photo-Catalytics, Inc., USA, assignee. United States Patent, 5118422 (1990).
57.K. Hashimoto, H. Irie, A. Fujishima, "Tio2 photocatalysis: A historical overview and future prospects", Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers; 44, 8269-8285 (2005).
58.L. Bousselmi, S. U. Geissen, H. Schroeder, "Textile wastewater treatment and reuse by solar catalysis: Results from a pilot plant in tunisia", Water Science and Technology; 49, 331-337 (2004).
59.P. R. Gogate, A. B. Pandit, "Sonophotocatalytic reactors for wastewater treatment: A critical review", Aiche Journal; 50, 1051-1079 (2004).
60.A. E. Cassano, C. A. Martin, R. J. Brandi, O. M. Alfano, "Photoreactor analysis and design - fundamentals and applications", Industrial & Engineering Chemistry Research; 34, 2155-2201 (1995).
61.J. C. Crittenden, J. B. Liu, D. W. Hand, D. L. Perram, "Photocatalytic oxidation of chlorinated hydrocarbons in water", Water Research; 31, 429-438 (1997).
62.R. F. P. Nogueira, W. F. Jardim, "Tio2-fixed-bed reactor for water decontamination using solar light", Solar Energy; 56, 471-477 (1996).
63.H. de Lasa, B. Serrano, M. Salaices, "Novel photocatalytic reactors for water and air treatment", Photocatalytic reaction engineering, Springer US. Chap 2 (2005)
64.P. S. Mukherjee, A. K. Ray, "Major challenges in the design of a large-scale photocatalytic reactor for water treatment", Chemical Engineering & Technology; 22, 253-260 (1999).
65.R. L. Pozzo, M. A. Baltanas, A. E. Cassano, "Towards a precise assessment of the performance of supported photocatalysts for water detoxification processes", Catalysis Today; 54, 143-157 (1999).
66.R. W. Matthews, S. R. McEvoy, "Destruction of phenol in water with sun, sand, and photocatalysis", Solar Energy; 49, 507-513 (1992).
67.K. Sopajaree, S. A. Qasim, S. Basak, K. Rajeshwar, "An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part ii: Experiments on the ultrafiltration unit and combined operation", Journal of Applied Electrochemistry; 29, 1111-1118 (1999).
68.K. Sopajaree, S. A. Qasim, S. Basak, K. Rajeshwar, "An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part i: Experiments and modelling of a batch-recirculated photoreactor", Journal of Applied Electrochemistry; 29, 533-539 (1999).
69.S. Kagaya, K. Shimizu, R. Arai, K. Hasegawa, "Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride", Water Research; 33, 1753-1755 (1999).
70.R. J. Watts, S. H. Kong, W. Lee, "Sedimentation and reuse of titanium-dioxide - application to suspended-photocatalyst reactors", Journal of Environmental Engineering-Asce; 121, 730-735 (1995).
71.M. I. Cabrera, O. M. Alfano, A. E. Cassano, "Novel reactor for photocatalytic kinetic-studies", Industrial & Engineering Chemistry Research; 33, 3031-3042 (1994).
72.R. Borello, C. Minero, E. Pramauro, E. Pelizzetti, N. Serpone, H. Hidaka, "Photocatalytic degradation of ddt mediated in aqueous semiconductor slurries by simulated sunlight", Environmental Toxicology and Chemistry; 8, 997-1002 (1989).
73.D. F. Ollis, "Solar assisted photocatalysis for water purification, issues, data, questions", Photochemical conversion and storage of solar energy. E. Pelizzetti, M. Schiavello, editors, Kluwer Acadmic,. 593-622 (1991)
74.T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, "Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide", Environmental Science & Technology; 30, 1275-1281 (1996).
75.H. Uchida, S. Itoh, H. Yoneyama, "Photocatalytic decomposition of propyzamide using tio2 supported on activated carbon", Chemistry Letters; 1995-1998 (1993).
76.C. F. Lo, J. C. S. Wu, "Preparation and characterization of tio2-coated optical-fiber in a photo reactor", Journal of the Chinese Institute of Chemical Engineers; 36, 119-126 (2005).
77.N. J. Peill, M. R. Hoffmann, "Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation", Journal of Solar Energy Engineering-Transactions of the Asme; 119, 229-236 (1997).
78.B. Serrano, H. deLasa, "Photocatalytic degradation of water organic pollutants. Kinetic modeling and energy efficiency", Industrial & Engineering Chemistry Research; 36, 4705-4711 (1997).
79.R. W. Matthews, "Solar-electric water-purification using photocatalytic oxidation with tio2 as a stationary phase", Solar Energy; 38, 405-413 (1987).
80.A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. GonzalezElipe, J. M. Herrmann, H. Tahiri, Y. AitIchou, "Preparation and characterization of tio2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification", Applied Catalysis B-Environmental; 7, 49-63 (1995).
81.N. Serpone, E. Borgarello, R. Harris, P. Cahill, M. Borgarello, E. Pelizzetti, "Photocatalysis over tio2 supported on a glass substrate", Solar Energy Materials; 14, 121-127 (1986).
82.P. Reeves, R. Ohlhausen, D. Sloan, K. Pamplin, T. Scoggins, C. Clark, B. Hutchinson, D. Green, "Photocatalytic destruction of organic-dyes in aqueous tio2 suspensions using concentrated simulated and natural solar-energy", Solar Energy; 48, 413-420 (1992).
83.Y. Zhang, J. C. Crittenden, D. W. Hand, D. L. Perram, "Fixed-bed photocatalysts for solar decontamination of water", Environmental Science & Technology; 28, 435-442 (1994).
84.F. Gianturco, L. Vianelli, L. Tatti, F. Rota, P. Bruzzi, L. Rivas, I. R. Bellobono, M. Bianchi, H. Muntau, "Pilot-plant photomineralization of dichloromethane and tetrachloroethene in aqueous solution, by photocatalytic membranes immobilizing titanium dioxide and photopromoters", Chemosphere; 33, 1531-1542 (1996).
85.I. R. Bellobono, A. Carrara, B. Barni, A. Gazzotti, "Laboratory-scale and pilot-plant-scale photodegradation of chloroaliphatics in aqueous-solution by photocatalytic membranes immobilizing titanium-dioxide", Journal of Photochemistry and Photobiology a-Chemistry; 84, 83-90 (1994).
86.M. Anpo, M. Takeuchi, "The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation", Journal of Catalysis; 216, 505-516 (2003).
87.J. C. Crittenden, Y. Zhang, D. W. Hand, D. L. Perram, E. G. Marchand, "Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts", Water Environment Research; 68, 270-278 (1996).
88.J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, M. Rouse, "Immobilisation of tio2 powder for the treatment of polluted water", Applied Catalysis B-Environmental; 17, 25-36 (1998).
89.H. Y. Ha, M. A. Anderson, "Photocatalytic degradation of formic acid via metal-supported titania", Journal of Environmental Engineering-Asce; 122, 217-221 (1996).
90.G. K. C. Low, R. W. Matthews, "Flow-injection determination of organic contaminants in water using an ultraviolet-mediated titanium-dioxide film reactor", Analytica Chimica Acta; 231, 13-20 (1990).
91.L. F. Zhang, T. Kanki, N. Sano, A. Toyoda, "Development of tio2 photocatalyst reaction for water purification", Separation and Purification Technology; 31, 105-110 (2003).
92.R. Andreozzi, V. Caprio, A. Insola, G. Longo, V. Tufano, "Photocatalytic oxidation of 4-nitrophenol in aqueous tio2 slurries: An experimental validation of literature kinetic models", Journal of Chemical Technology and Biotechnology; 75, 131-136 (2000).
93.L. Davydov, S. E. Pratsinis, P. G. Smirniotis, "The intrinsic catalytic activity in photoreactors", Environmental Science & Technology; 34, 3435-3442 (2000).
94.L. Davydov, P. G. Smirniotis, S. E. Pratsinis, "Novel differential reactor for the measurement of overall quantum yields", Industrial & Engineering Chemistry Research; 38, 1376-1383 (1999).
95.R. M. Alberici, W. F. Jardim, "Photocatalytic degradation of phenol and chlorinated phenols using ag-tio2 in a slurry reactor", Water Research; 28, 1845-1849 (1994).
96.D. W. Chen, A. K. Ray, "Photodegradation kinetics of 4-nitrophenol in tio2 suspension", Water Research; 32, 3223-3234 (1998).
97.A. K. Ray, Aacm Beenackers, "Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis", Aiche Journal; 43, 2571-2578 (1997).
98.M. F. Kabir, A. K. Ray, "Performance enhancement of a chemical reactor utilizing flow instability", Journal of Chemical Technology and Biotechnology; 78, 314-320 (2003).
99.G. L. Puma, P. L. Yue, "Comparison of the effectiveness of photon-based oxidation processes in a pilot falling film photoreactor", Environmental Science & Technology; 33, 3210-3216 (1999).
100.G. L. Puma, P. L. Yue, "Modelling and design of thin-film slurry photocatalytic reactors for water purification", Chemical Engineering Science; 58, 2269-2281 (2003).
101.G. L. Puma, P. L. Yue, "Enhanced photocatalysis in a pilot laminar falling film slurry reactor", Industrial & Engineering Chemistry Research; 38, 3246-3254 (1999).
102.G. L. Puma, P. L. Yue, "A laminar falling film slurry photocatalytic reactor. Part i - model development", Chemical Engineering Science; 53, 2993-3006 (1998).
103.G. L. Puma, P. L. Yue, "A laminar falling film slurry photocatalytic reactor. Part ii - experimental validation of the model", Chemical Engineering Science; 53, 3007-3021 (1998).
104.G. L. Puma, P. L. Yue, "A novel fountain photocatalytic reactor: Model development and experimental validation", Chemical Engineering Science; 56, 2733-2744 (2001).
105.N. J. Peill, M. R. Hoffmann, "Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis", Environmental Science & Technology; 32, 398-404 (1998).
106.H. F. Lin, K. T. Valsaraj, "Development of an optical fiber monolith reactor for photocatalytic wastewater treatment", Journal of Applied Electrochemistry; 35, 699-708 (2005).
107.A. K. Ray, Aacm Beenackers, "Development of a new photocatalytic reactor for water purification", Catalysis Today; 40, 73-83 (1998).
108.A. K. Ray, Aacm Beenackers, "Novel photocatalytic reactor for water purification", Aiche Journal; 44, 477-483 (1998).
109.D. D. Dionysiou, M. T. Suidan, I. Baudin, J. M. Laine, "Effect of hydrogen peroxide on the destruction of organic contaminants-synergism and inhibition in a continuous-mode photocatalytic reactor", Applied Catalysis B-Environmental; 50, 259-269 (2004).
110.D. D. Dionysiou, A. A. Burbano, M. T. Suidan, I. Baudin, J. M. Laine, "Effect of oxygen in a thin-film rotating disk photocatalytic reactor", Environmental Science & Technology; 36, 3834-3843 (2002).
111.K. J. Buechler, T. M. Zawistowski, R. D. Noble, C. A. Koval, "Investigation of the mechanism for the controlled periodic illumination effect in tio2 photocatalysis", Industrial & Engineering Chemistry Research; 40, 1097-1102 (2001).
112.P. R. Gogate, "Cavitation: An auxiliary technique in wastewater treatment schemes", Advances in Environmental Research; 6, 335-358 (2002).
113.Y. G. Adewuyi, "Sonochemistry: Environmental science and engineering applications", Industrial & Engineering Chemistry Research; 40, 4681-4715 (2001).
114.F. J. Keil, K. M. Swamy, "Reactors for sonochemical engineering - present status", Reviews in Chemical Engineering; 15, 85-155 (1999).
115.F. K. Nesheiwat, A. G. Swanson, "Clean contaminated sites using fenton''s reagent", Chemical Engineering Progress; 96, 61-66 (2000).
116.R. J. Bigda, "Consider fenton''s chemistry for wastewater treatment", Chemical Engineering Progress; 91, 62-66 (1995).
117.R. Venkatadri, R. W. Peters, "Chemical oxidation technologies - ultraviolet-light hydrogen-peroxide, fenton reagent, and titanium dioxide-assisted photocatalysis", Hazardous Waste & Hazardous Materials; 10, 107-149 (1993).
118.N. M. Ram, R. F. Christman, K. P. Cantor, "Oxidative treatment methods for removal of organic compounds from drinking water supplies", Significance and treatment of volatile organic compounds in water supplies. G. R. Peyton, editor, CRC (1990)
119.E. Neyens, J. Baeyens, "A review of classic fenton''s peroxidation as an advanced oxidation technique", Journal of Hazardous Materials; 98, 33-50 (2003).
120.J. Yoon, Y. Lee, S. Kim, "Investigation of the reaction pathway of oh radicals produced by fenton oxidation in the conditions of wastewater treatment", Water Science and Technology; 44, 15-21 (2001).
121.S. Al-Quadawi, S. R. Salman, "Photocatalytic degradation of methyl orange as a model compound", Journal of Photochemistry and Photobiology a-Chemistry; 148, 161-168 (2002).
122.E. Momoniat, T. G. Myers, "A new solution for the rotation-driven spreading of a thin fluid film", International Journal of Non-Linear Mechanics; 41, 192-199 (2006).
123.M. L. Forcada, C. M. Mate, "The flow of thin viscous-liquid films on rotating-disks", Journal of Colloid and Interface Science; 160, 218-225 (1993).
124.B. Reisfeld, S. G. Bankoff, S. H. Davis, "The dynamics and stability of thin liquid-films during spin coating .1. Films with constant rates of evaporation or absorption", Journal of Applied Physics; 70, 5258-5266 (1991).
125.B. Reisfeld, S. G. Bankoff, S. H. Davis, "The dynamics and stability of thin liquid-films during spin coating .2. Films with unit-order and large peclet numbers", Journal of Applied Physics; 70, 5267-5277 (1991).
126.D. E. Bornside, C. W. Macosko, L. E. Scriven, "On the modeling of spin coating", Journal of Imaging Technology; 13, 122-130 (1987).
127.A. G. Emslie, F. T. Bonner, L. G. Peck, "Flow of a viscous liquid on a rotating disk", Journal of Applied Physics; 29, 858-862 (1958).
128.P. Leveson, W. A. E. Dunk, R. J. Jachuck, "Numerical investigation of kinetics of free-radical polymerization on spinning disk reactor", Journal of Applied Polymer Science; 90, 693-699 (2003).
129.K. V. K. Boodhoo, W. A. E. Dunk, R. J. Jachuck, "Influence of centrifugal field on free-radical polymerization kinetics", Journal of Applied Polymer Science; 85, 2283-2286 (2002).
130.K. V. K. Boodhoo, R. J. Jachuck, "Process intensification: Spinning disc reactor for condensation polymerisation", Green Chemistry; 2, 235-244 (2000).
131.M. Vicevic, R. J. J. Jachuck, K. Scott, J. H. Clark, K. Wilson, "Rearrangement of alpha-pinene oxide using a surface catalysed spinning disc reactor (sdr)", Green Chemistry; 6, 533-537 (2004).
132.E. Momoniat, T. G. Myers, S. Abelman, "New solutions for surface tension driven spreading of a thin film", International Journal of Non-Linear Mechanics; 40, 523-529 (2005).
133.T. G. Myers, J. P. F. Charpin, "The effect of the coriolis force on axisymmetric rotating thin film flows", International Journal of Non-Linear Mechanics; 36, 629-635 (2001).
134.J. Rice, A. Faghri, B. Cetegen, "Analysis of a free surface film from a controlled liquid impinging jet over a rotating disk including conjugate effects, with and without evaporation", International Journal of Heat and Mass Transfer; 48, 5192-5204 (2005).
135.D. P. Birnie, M. Manley, "Combined flow and evaporation of fluid on a spinning disk", Physics of Fluids; 9, 870-875 (1997).
136.S. A. Jenekhe, S. B. Schuldt, "Coating flow of non-newtonian fluids on a flat rotating-disk", Industrial & Engineering Chemistry Fundamentals; 23, 432-436 (1984).
137.A. Acrivos, M. J. Shah, E. E. Petersen, "On the flow of a non-newtonian liquid on a rotating disk", Journal of Applied Physics; 31, 963-968 (1960).
138.M. Yanagisawa, "Slip effect for thin liquid-film on a rotating-disk", Journal of Applied Physics; 61, 1034-1037 (1987).
139.S. Middleman, "The effect of induced air-flow on the spin coating of viscous-liquids", Journal of Applied Physics; 62, 2530-2532 (1987).
140.J. S. Kim, S. Kim, F. Ma, "Topographic effect of surface-roughness on thin-film flow", Journal of Applied Physics; 73, 422-428 (1993).
141.N. Saniei, X. J. Yan, "An experimental study of heat transfer from a disk rotating in an infinite environment including heat transfer enhancement by jet impingement cooling", Journal of Enhanced Heat Transfer; 7, 231-245 (2000).
142.G. Evans, R. Greif, "A numerical-model of the flow and heat-transfer in a rotating-disk chemical vapor-deposition reactor", Journal of Heat Transfer-Transactions of the Asme; 109, 928-935 (1987).
143.E. C. Cobb, O. A. Saunders, "Heat transfer from a rotating disk", Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences; 236, 343-351 (1956).
144.T. G. Myers, M. Lombe, "The importance of the coriolis force on axisymmetric horizontal rotating thin film flows", Chemical Engineering and Processing; 45, 90-98 (2006).
145.I. Leshev, G. Peev, "Film flow on a horizontal rotating disk", Chemical Engineering and Processing; 42, 925-929 (2003).
146.E. Momoniat, D. P. Mason, "Investigation of the effect of the coriolis force on a thin fluid film on a rotating disk", International Journal of Non-Linear Mechanics; 33, 1069-1088 (1998).
147.R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot. "Transport phenomena". 2nd ed: Wiley; 2002. p 46.
148.D. F. Ollis, E. Pelizzetti, N. Serpone, "Photocatalyzed ... Destruction ... Of water ... Contaminants", Environmental Science & Technology; 25, 1522-1529 (1991).
149.S. Sakka, T. Yoko, "Sol gel-derived coating films and applications", Structure and Bonding; 77, 89-118 (1992).
150.L. Landau, B. Levich, "Dragging of a liquid by a moving plate", Acta Physicochimica Urss; 17, 42-54 (1942).
151.C. F. Lo. "Nano thin film of tio2 coating and tio2-coated optical-fiber reactor design" Thesis. Taipei, Taiwan: National Taiwan University (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top