跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宗勤
研究生(外文):Tsung-Chin Chen
論文名稱:利用超臨界二氧化碳進行聚碸薄膜表面接枝之研究
論文名稱(外文):Surface Grafting of Polysulfone Membrane Using Supercritical Carbon Dioxide
指導教授:陳延平陳延平引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:77
中文關鍵詞:聚碸超臨界二氧化碳自由基接枝聚合丙烯酸甲基丙烯酸羥乙酯
外文關鍵詞:polysulfoneacrylic acidHEMAgraftingSCCO2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚碸高分子薄膜(polysulfone membrane)是一種被廣泛使用的血液透析薄膜,然而PSf薄膜卻具有疏水性的表面,導致其生物相容性不佳,限制了PSf在血液透析中的應用。本實驗利用超臨界二氧化碳(SCCO2)取代傳統有機溶劑,以2,2’-azobisisobutyronitrile(AIBN)做為起始劑,利用自由基接枝聚合法將丙烯酸(AAc)及甲基丙烯酸羥乙酯(HEMA)等親水性單體接枝在PSf薄膜上,使疏水性表面改質成為親水性。
  實驗中我們藉由調整反應溫度、操作壓力、反應時間及反應物濃度等操作參數來控制接枝的程度。接枝HEMA單體時,當反應溫度為80℃、壓力為17.5 MPa、AIBN及HEMA濃度分別為0.04 M及0.12 M,在反應時間5小時的操作條件下,可以得到最大的接枝重量百分比 36.0 wt%。而PSf薄膜的親水性可隨著接枝程度的增加而增加,表面接觸角可從原來的88.6o ± 1.1降至43.0o ± 2.4(n=10)。
  然而在接枝AAc的系統中,當反應溫度為85℃、壓力為17.5 MPa、AIBN及AAc濃度分別為0.04 M及0.12 M,反應時間則僅需3小時,可以得到最大的接枝重量百分比 20.4 wt%。而其表面接觸角則可以從88.6o ± 1.1降至43.2o± 3.0(n=10)。
  薄膜改質後可由Fourier transform infrared spectroscopy (FTIR)分析薄膜表面的化學性質,scanning electron microscopy(SEM)觀察表面型態上的改變,differential scanning calorimetry (DSC)分析熱性質的變化,以及X-ray Induced Photoelectron Spectroscop(XPS)分析表面蛋白質吸附的情形。由以上諸多分析實驗結果,可證明我們可以利用超臨界二氧化碳做為溶劑,成功的將HEMA及AAc接枝於PSf薄膜表面上,並能有效的將疏水性的薄膜表面改質成為親水性。
Polysulfone (PSf) is a widely used material in membrane for hemodialysis. However, the hydrophobic nature of PSf limit its application in hemodialysis. Graft acrylic acid (AAc) and 2-Hydroxyethyl methacrylate (HEMA) monomer onto PSf membrane by free-radical polymerization using supercritical carbon dioxide (SCCO2) as a solvent and swelling agent. The PSf membrane was first impregnated with the monomer and initiator AIBN with SCCO2, and the monomer molecules were grafted onto the PSf membrane at a higher temperature. By this method, the grafting level can be controlled by temperature, pressure, reaction time, and concentration of reaction agents. When temperature is 80℃, pressure is 17.5 MPa, the concentration of HEMA and AIBN are 0.12M and 0.04M. At reaction time 5h, the grafting percentage of PSf-g-HEMA is 36.0 wt%. Further, at the optimal condition of grafting AAc, the grafting percentage is 20.4 wt%.
The modified surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), contact angle and X-ray induced photoelectron spectroscop (XPS). The hydrophilicity of the membranes is increased after grafting. The contact angle of modified PSf membranes are reduced from 88.6o ± 1.1 to 43.0o ± 2.4 (n=10).
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 IV

表目錄 VII

圖目錄 IX

第一章 緒論 1
 1-1 高分子生物醫學材料 2
   1-1.1 高分子與血液之間的相互作用 2
   1-1.2 聚碸高分子(polysulfone, PSf)的性質與應用 3
   1-1.3 血液透析 4
 1-2 高分子薄膜 5
   1-2.1 薄膜的簡介 5
   1-2.2 薄膜的結構 5
   1-2.3 薄膜的製備 6
 1-3 表面接枝改質與方法 8
   1-3.1 輻射接枝(Radiation grafting) 9
   1-3.2 臭氧接枝(Ozone-induced grafting) 9
   1-3.3 電漿接枝 ( Plasma grafting ) 10
   1-3.4 化學接枝 (Solution grafting) 11
1-4 超臨界流體 12
1-4.1 超臨界流體的應用 12
1-4.2 超臨界接枝(Supercritical fluid grafting) 13
 1-5 本研究之目的 15
第二章 實驗方法與步驟 16
 2-1 實驗藥品與儀器 16
 2-2 實驗分析儀器 17
 2-3 實驗裝置 19
 2-4 實驗步驟 20
   2-4.1 製備PSf高分子薄膜 20
   2-4.2 超臨界二氧化碳接枝實驗 21
   2-4.3 蛋白質吸附(protein adsorption)實驗 22
第三章 結果與討論 24
 3-1  PSf薄膜經超臨界二氧化碳程序後之結果與討論 24
   3-1.1 紅外線光譜儀分析(FTIR-ATR) 24
   3-1.2熱性質分析(Differential scanning calorimetry, DSC) 25
   3-1.3表面型態分析(scanning electron microscope, SEM) 26
 3-2 接枝HEMA於PSf薄膜表面上之實驗結果與討論 26
   3-2.1 溫度效應 26
   3-2.2 壓力效應 28
   3-2.3 HEMA 濃度效應 29
   3-2.4 AIBN 濃度效應 30
   3-2.5 反應時間 30
3-3 接枝AAc於PSf薄膜表面上之實驗結果與討論 31
 3-4 接枝HEMA及AAc於PSf薄膜表面之特性分析結果與討論 32
   3-4.1 紅外線光譜儀分析(FTIR-ATR) 33
   3-4.2 Contact angle測量 34
   3-4.3 熱性質分析(Differential scanning calorimetry, DSC) 35
   3-4.4 表面型態分析(scanning electron microscope, SEM) 36
   3-4.5  X-光電子能譜儀(XPS) 37
第四章 結論 38
參考文獻 72
附錄 實驗所使用高分子之化學結構式 77
參考文獻

Belanger, M. C. and Marois, Y. J., Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review, J. Biomed. Mater. Res. (Appl. Biomater), 58, 467-477 (2001)

Bernes, A. R., Huvard, G. S., Korsmeyer, R. W., Kkunig, F. W., Application of compressed carbon dioxide in the incorporation of additives into polymers, J. Appl. Polym. Sci., 46, 231-242 (1992)

Bowry, S.K., Dialysis membranes today. Intl. J. Artif. Organs, 25, 447-460. (2002)

Brash, J.L., Mechanism of adsorption of proteins to solid surfaces and its relationship to blood compatibility. In; Szycher M(ed)Biocompatible polymers,metals and composites. Technomic, Lancaste, p.35 (1983)

Chang, Y. W., Lee, D., Bae, S. Y., Preparation of polyethylene-octene elastromer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide, Polymer International, 55, 184-189 (2006)

Chen, S. H., Liou, R. M., Hsu, C. S., Chang, D. J., Yu, K. C., Chang, C. Y., Pervaporation separation water/ethanol mixture through lithiated polysulfone membrane, J. Membr. Sci., 193, 59-67 (2001)

Chen, S. H., Yu, K. C., Lin, S. S., Chang, D. J., Liou, R. M.,Pervaporation separation of water/ ethanol mixture by sulfonated polysulfone membrane, J. Membr. Sci., 183, 29-36 (2001)

Chuna, M. S., Choa, H. I., Song, I. K., Electrokinetic behavior of membrane zeta potential during the filtration of colloidal suspensions, Desalination, 148, 363–367 (2002)

Cooperes, H.and Gifkins, K. J. , Gas plasma treatment of polymer surfaces, J. Macromol. Sci., Chem., A17, 217-226 (1982)

Dong, Q. and Liu, Y., Free-radical grafting of acrylic acid onto isotactic polypropylene using styrene as a comonomer in supercritical carbon dioxide, J. Appl. Polym. Sci., 92, 2203–2210 (2004)

Fried, J.R., Li, W., High-pressure FTIR studies of gas-polymer interactions, J. Appl. Polym. Sci., 41, 1123-1131 (1990)

Galia, A., Gregorio, R. D., Spadaro, G., Scialdone, O. and Filardo, G., Grafting of maleic anhydride onto isotactic polypropylene in the presence of supercritical carbon dioxide as a solvent and swelling fluid, Macromolecules, 37, 4580-4589 (2004)

Guan, Z., Combes, J. R., Menceloglu, Y. Z. and DeSimone, J. M., Homogeneous free radical polymerizations in supercritical carbon dioxide: 2. Thermal decomposition of 2,2''-azobis(isobutyronitri1e), Macromolecules, 26, 2663-2669 (1993)

Hayes, H. J. and McCarthy, T. J., Maleation of poly(4-methyl-1-pentene) using supercritical carbon dioxide, Macromolecules, 31, 4813-4819 (1998)

John J. A., Showan, N., Felicity R. A. J., Atticus, H., Colin, A., Steven M., Supercritical carbon dioxide foaming of elastomer/heterocyclic methacrylate blends as scaffolds for tissue engineering, J. Mater. Chem., 15, 4881-4888 (2005)

Jung, J., Perrut, M., Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids, 20, 179-219 (2001)

Kho, Y. W., Kalika, D. S., Kuntson, B.L., Precipitation of Nylon 6 membranes using compressed carbon dioxide, Polymer, 42, 6119-6127 (2001)

Ko, Y.G., Kim, Y.H., Park, K.D., Lee, H.J., Lee, W.K., Park, H.D., Kim, S.H., Lee, G.S. and Ahn, D.J., Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation, Biomaterials, 22 2115-2123 (2001)

Koegler, W. S., Patrick, C., Cima, M. J., Griffith, L. G., Carbon dioxide extraction of residual chloroform from biodegradable polymers, J. Biomed. Mater. Res., 63, 567-576 (2002)

Lai, J. Y., Chen, R. Y. and Lee, K. R., Pervaporation of ethanol-water mixture by Co60 γ-ray irradiation modified Nylon 4 membrane, J. Appl. Polym. Sci., 47, 1849-1857 (1993)

Lai, J. Y., Chen, R. Y. and Lee, K. R., Polyvinyl alcohol γ-ray grafted Nylon 4 membrane for pervaporation and evapomeation, Separ. Sci. Technol., 28, 1437-1452 (1993)

Li, D., Han, B. and Liu, Z., Grafting of 2-hydroxyethyl methacrylate onto isotactic poly(propylene) using supercritical CO2 as a solvent and swelling agent, Macromol. Chem. Phys., 202, 2187-2194 (2001)

Lin, F. C., Wang, D. M. and Lai, J. Y., Asymmetric TPX membranes with high gas flux, J. Membr. Sci., 110, 25-36 (1996)

Lipp, P., Witte, M., Baldauf, G., Povorov, A, Treatment of reservoir water with a backwashable MF/UF spiral wound membrane, Desalination, 179, 83-94 (2005)

Mathieu, L. M., Bourban, P. E., Pioletti, D. P., Manson, J. A. E., Bioresorbable composites prepared by supercritical fluid foaming, J. Biomed. Materi. Res., 75, 89-97 (2005)

Mullee, W. H., Leeuwe, M. d., Roberson, G. A.,Removal of CMP residue from semiconductors using supercritical carbon dioxide process, Jr-US Patent 6,277,753 (2001)

Nho, Y. C., Kwon, O. H., Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film, Radiation Physics and Chemistry, 66, 299-307 (2003)

Park, J. Y., Acar, M. H., Akthakul, A., Kuhlman, W., Mayes, A. M., Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes, Biomaterials, 27, 856–865 (2006)

Persson, J. C., Josefsson, K., Jannasch, P., Polysulfones tethered with benzimidazole, Polymer, 47, 991–998 (2006)

Ratner, B. D., Hoffman, A. S., Hanson, S. R., Harker, L. A., Whiffen, J. D., Blood-compatibility-water-content relationships for radiation-grafted hydrogels, J. Polym. Sci., Polym. Symp., 66, P.363-376 (1979)

Reverchon, E., Adami, R., Nanomaterials and supercritical fluids, J. supercrit. fluids, 37, 1-22 (2006)

Shieh, Y. T., Liu, K. H., The effect of carbonyl group on sorption of CO2 in glassy polymers, J. of Supercritical Fluids, 25, 261-268 (2003)

Sivakumar, M., Mohan, D. R., Rangarajan, R., Tsujita, Y., Studies on cellulose acetate-polysulfone ultrafiltration membranes: I. Effect of polymer composition, Polymer International, 54, 956-962 (2005)

Steen, M. L., Jordan, A. C., Fisher, E. R., Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment, J. Membr. Sci., 204, 341-357 (2002)

Stevens, P. V., Nystrom, M., Ehsani, N., Modification of ultrafiltration membrane with gelatin protein, Biotechnology and Bioengineering, 57, 26-34 (1998)

TRIVEDI, A. H., Swak, S. and LEE, S., Grafting of poly(viny1 chloride) and polypropylene with styrene in a supercritical C02 solvent medium: synthesis and characterization, Polymer Engineering and Science, 41, 1923-1937 (2001)

Ulbricht, M. and Belfort, G., Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone, J. Membr. Sci., 111, 193-215 (1996)

Wang, Y., Liu, Z., Han, B., Dong, Z., Wang, J., Sun, D., Huang, Y., Chen, G., pH Sensitive polypropylene porous membrane prepared by grafting acrylic acid in supercritical carbon dioxide, Polymer, 45, 855–860 (2004)

Wavhal, D. S., Fisher, E. R., Modification of polysulfone ultrafiltration membranes by CO 2 plasma treatment, Desalination, 172, 189-205 (2005)

Yamagishi, H., Crivello, J. V.and Belfort G.., Development of a novel photochemical technique for modifying poly (arylsulfone) ultrafiltration membranes, J. Membr. Sci., 105, 237-247 (1995)

Yoshikawa, M., Tsubouchi, K., Guiver, M. D., Robertson, G. P., Modified polysulfone membrane lll. Pervaporation separation of benzene- cyclohexan mixtures through carboxlated polysulfone membranes,
J. Appl. Polym. Sci., 74, 407-412 (1999)

You, H. S., Tseng, C. C., Peng, M. J., Chang, S. H., Chen, Y. C., Peng, S. H., A novel application of an anaerobic membrane process in wastewater treatment, Water science and technology, 51, 45-50 (2005)

袁振邦,利用超臨界二氧化碳進行聚丙烯腈薄膜表面改質研究,國立台灣大學化學工程學研究所碩士論文,(2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top