跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周宏其
研究生(外文):Hung-Chi Chou
論文名稱:溶凝膠法製備InTaO4之鍍膜特性與光催化活性
論文名稱(外文):Characteristics and photocatalysis of sol-gel prepared InTaO4 thin films
指導教授:吳紀聖
指導教授(外文):Chi-Sheng Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:111
中文關鍵詞:氧化銦鉭溶凝膠法光催化二氧化碳
外文關鍵詞:InTaO4sol-gel methodphotocatalysisCO2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
InTaO4是一種光觸媒用於水分解,過去InTaO4都是利用固態高溫熔融法,必須在1100℃以上高溫鍛燒,無法用於覆膜而且不易均勻。故本研究主要是以In(NO3)3和Ta(OC4H9)5當作初始材料,使用熱水解法和酯化式溶凝膠法製備InTaO4光觸媒材料,藉由在溶液中的攪拌均勻,解決固態高溫熔融法的不均勻和降低鍛燒溫度;且藉由浸漬覆膜於石英玻片和光纖,SEM之觀測,光纖表面的觸媒層具有許多奈米級孔隙,觸媒顆粒略呈圓形,粒徑約為20 nm,觸媒層厚約40~45 nm。鍛燒後的粉末進行水溶液中二氧化碳催化還原反應,測試光催化活性,以GC-FID測得主要產物為甲醇,鎳金屬的添加皆有效地提高甲醇的產率。酯化式溶凝膠法鍛燒後的粉末,經XRD繞射圖譜分析觸媒在1100℃為InTaO4晶相,在850℃~950℃結晶性不完全,由紫外-可見光吸收波長約在500nm處。實驗發現,負載1.0wt%-NiO/InTaO4觸媒,能提升的觸媒活性,甲醇產量分別如下:鍛燒溫度850℃為16.1μmole/g-cat、900℃為23.7μmole/g-cat、950℃為27.2μmole/g-cat、1100℃為28.0μmole/g-cat,以及固態融熔法製備1.0wt%-NiO/InTaO4為20.5μmole/g-cat。
InTaO4 is a photocatalyst used for water splitting. In the past, InTaO4 was prepared using the solid-state fusion method. By this method, catalysts are calcinated above 1100℃ and the component of InTaO4 is not uniformed. In this study, InTaO4 photocatalysts are prepared from In(NO3)3 and Ta(OC4H9)5 precursors using the thermal hydrolysis and sol-gel methods. This method solves the problems of high calcination temperature and non-uniform distribution, via mixing in the liquid phase. The prepared sol can be coated on quartz plates as well as optical fibers. From SEM analysis, the catalyst surface consists of spherical particles with nano-pores. Particle sizes are about 20nm and film thickness is ranges in 40~45nm. The calcinated catalyst powder was used in the liquid-phase photoreduction of CO2 to examine its photocatalytic activity. GC-analysis shows that methanol is the major products. XRD analysis indicates that at 1100℃, InTaO4 crystalline is formed, however at 850℃~950℃ the crystallization is incompleted. From UV-Vis spectroscoy, the photocatalyst starts to absorb light at 500nm. Experiments show that the 1.0wt%-NiO/InTaO4 has a higher photoactivity. The amount of methanol productions by catalysts calcined at various temperatures are as follows: 16.1μmole/g-cat at 850℃, 23.7μmole/g-cat at 900℃, 27.2μmole/g-cat at 950℃ and 28.0μmole/g-cat at 1100℃ respectively. The catalyst prepared by the solid state reaction method produces 20.5μmole/g-cat of methanol.
摘 要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
第二章 文獻回顧 2
2-1 銦、鉭、鈮水分解光觸媒簡介 2
2-1-1水分解 2
2-1-2光觸媒反應之基本理論 3
2-1-3光觸媒反應過程 5
2-1-4可見光之光觸媒 7
2-2 銦、鉭光觸媒覆膜液的製備方法 17
2-2-1溶凝膠法(Sol-Gel method) 17
2-2-2 熱水解法(Thermal Hydrolysis method) 22
2-3 薄膜塗佈技術 22
2-3-1 浸漬覆膜法(Dip-coating method) 23
2-3-2 旋轉覆膜法(Spin-coating method) 26
2-3-3 噴霧覆膜法(Spray-coating method) 28
2-3-4 電泳沉積法(Electrophoretic deposition method) 28
2-4 二氧化碳的簡介 29
2-5 二氧化碳的固定 30
2-6 二氧化碳的光催化還原 33
第三章 實驗方法 37
3-1 實驗藥品與儀器設備 37
3-1-1 藥品 37
3-1-2 器材 38
3-2 觸媒之製備及鍍膜 39
3-2-1熱水解法 (Thermal Hydrolysis Method) 39
3-2-2 酯化式溶凝膠法 (Esterification Sol-Gel Method) 40
3-2-3 固態熔融反應法 ( Solid State Reaction Method ) 40
3-2-4 NiO/InTaO4初濕含浸法 (Incipient Wetness Method) 41
3-2-5 基材清洗 41
3-2-6 浸漬覆膜法 42
3-3 觸媒特性分析原理與方法 47
3-3-1 儀器型號與規格 47
3-3-2 紫外光-可見光光譜儀 48
3-3-3場發射掃描式電子顯微鏡 50
3-3-3能量散佈分析儀 51
3-3-4 X光繞射儀 52
3-3-5 粒子表面電位量測 56
3-3-6 X光吸收光譜 59
3-3-7同步輻射光簡介 60
3-3-8 熱重分析儀 62
3-3-9 掃描熱分析儀 62
3-4 光催化活性檢測 64
3-4-1二氧化碳之光催化還原 64
3-4-2 訊華軟體—SISC色層分析數據處理系統 69
第四章 實驗結果 71
4-1 InTaO4覆膜液 71
4-1-1 熱水解式InTaO4覆膜液 71
4-1-2 酯化溶凝膠式InTaO4覆膜液 72
4-2觸媒檢測及特性分析 74
4-2-1 Zeta potential 74
4-2-2 熱重分析 (TGA) 76
4-2-3 掃描熱分析 (DSC) 77
4-2-4 XRD 79
4-2-5 UV-VIS 82
4-2-6 SEM 85
4-2-7 EDS 87
4-2-8 XAS 88
4-2-8-1 銦的X光吸收邊緣近結構 (XANES) 88
4-2-8-2 銦的延伸X光吸收精細結構 (FT-EXAFS) 89
4-3 觸媒光催化活性檢測 91
4-3-1 CO2光催化還原反應 91
第五章 結果討論 97
5-1 熱水解及酯化溶凝膠效應 97
5-2 InTaO4之價態與特性 98
5-3 影響二氧化碳光催化還原之因素 99
5-4 活性比較 101
5-5 量子效率比較 104
第六章 結論 106
第七章 參考文獻 107
附 錄 112
個人小傳 123
1.J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsusshita, T. Shishido, Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+), Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 79-83.
2.A. Kudo, H. Kato, I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting, Chemistry Letters, 33 (2004) 1534-1539.
3.A. Fujishima, T.N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviwe, 1 (2000) 1-21.
4.K. Honda, A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
5.A. Kudo, Photocatalyst material for water splitting, Catalysis Surveys from Asia, 7 (2003) 31-38.
6.H. Kato, A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2, Chemical Physics Letters, 295 (1998) 487-492.
7.K. Domen, J.N. Kondo, M. Hara, T. Takata, Photo-and mechano- catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts, The Chemical Society of Japan, 73 (2000) 1307-1331.
8.K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, H. Arakawa, Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system, Chemical Physics Letters, 277 (1997) 387-391.
9.Z. Zou, J. Ye, H. Arakawa, Structural properties of InNbO4 and InTaO4: correlation with photocatalystic and photophsical properties, Chemical Physics Letters, 332 (2000) 271-277.
10.Y. Takahara, J. N. Kondo, T. Takata, D. Lu, K. Domen, Mesoporous tantalum oxide. 1. characterization and photocatalytic activity for the overall water decomposition, Chemistry Mateials, 13 (2001) 1194-1199.
11.Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625-627.
12.Z. Zou, J. Ye, K. Sayama, H. Arakawa,Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu), Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 65-69.
13.Z. Zou, H. Arakawa, Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 158 (2003) 145-162.
14.H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts, Catalysis Today, 78 (2003) 561-569.
15.蔡金津, 奈米顆粒及薄膜之[溶膠-凝膠技術], 化工資訊, 11 (2000) 16-21.
16.C.J. Brinker, D.E. Clark, Better Ceramics through Chemistry(Ⅲ), in D.R. Ulrich (Editor), Matericals Research Society, Pittsburgh, Chapter 121, 1988, 717-729.
17.R. W. Matthews, Australian Patent Application, 18057 (1986).
18.L.D. Landau and B.G. Levich, Acta physiochim., Union of Soviet Socialist Republics, 17 (1942) 42-54.
19.D.E. Bornside, C.W. Macosko, L.E. Scriven, Modeling of spin coating, Journal of Imaging Technology, 13 (1987) 122-130.
20.藍啟仁, 二氧化碳的利用與相關化學處理技術發展的現況, 台電工程月刊572期 (1996), 第42-55頁。
21.陳誠亮, 化學品與化工製程之安全、衛生、環保。
22.N. Getoff, G. Scholes, and J. Weiss, Reduction of carbon dioxide in aqueous solutions under the influence of radiation, Tetrahedron Letters,1 (1960) 17-23.
23.B. Åkermark, U. Eklund-westlin, P. Baeckstrom., and R. Lof, Photochemical, metal-promoted reduction of carbon dioxide and formaldehyde in aqueous solution, Acta Chemica Scandinavica B: Organic Chemistry and Biochemistry, 34 (1980) 27-34.
24.P. G. Russel, N. Kovac, S. Sirinivasan, M. Steinberg, The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde. Journal of the Electrochemical Society, 124 (1977) 1329-1340.
25.R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. Journal of Physical Chemistry, 102 (1998) 974-980.
26.T. Sakata, T. Kawai, Photosynthesis and photocatalysis with semiconductor powders, in M. Gratzel (editor), Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 331 (1983).
27.V. Balzani, F. Scandola, Light-Induced and Thermal Electron- Transfer Reactions, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 2 (1983).
28.M. Halmann, Photochemical Fixation of Carbon Dioxide, in M. Gratzel (editor), Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 507 (1983).
29.B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed., Prentice-Hall (1999).
30.T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita, Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films. Applied Surface Science, 200 (2002) 21-26.
31.H. Yoneyama, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution, Catalysis Today, 39 (1997) 169-175.
32.A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chemical Reviews, 95 (1995) 735-758.
33.T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-638
34.K. Adachi, K.Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide, Solar Energy, 53, 2 (1994) 187-190.
35.S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno, A. Saji, Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, Journal of Photochemistry and Photobiology A: Chemistry, 109 (1997) 59-63
36.T. Mizuno, K. Adachi, K. Ohta, A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions, Journal of Photochemistry and Photobiology A: Chemistry, 98 (1996) 87-90
37.A. Henglein, M. Gutierez, C. Fisher, Berichte der Bunsen-Gesellschaft fur physikalische Chemie, 88 (1984) 1704
38.S. Ichikawa, Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis, Energy Conversion and Management, 36 (1995) 613-621
39.T. F. Xie, D. J. Wang, L. J. Zhu, T. J. Li, Y. J. Xu, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2, Materials Chemistry and Physics, 70 (2001) 103-106.
40.Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126 (1999) 117-123.
41.H. Haapala, The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source, Environmental Pollution, 99 (1998) 361-363.
42.D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band gap energies of sol-gel-derived SrTiO3 thin films, Applied Physics Letters 79, 23 (2001) 3767-3769.
43.M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96.
44.W. D. Callister, Jr., Materials Science and Engineering, 6th Edition, John Wiley & Sons, Inc. 1994, p.w-1.
45.Powder Diffraction File, Card No.25-0391, JCPDS--International Centre for Diffraction Data , Swarthmore (1997).
46.Powder Diffraction File, Card No.06-0416, JCPDS--International Centre for Diffraction Data , Swarthmore (1997).
47.Powder Diffraction File, Card No.25-0922, JCPDS--International Centre for Diffraction Data , Swarthmore (1997).
48.Robert J. Hunter, Zeta Potential in Colloid Science Principles and Applications, 1st ed., Academic Press, New York (1981).
49.G. Vlaic, D. Andreatta, P.E. Colavita, Charaterisation of heterogeneous catalysts by EXAFS, Catalysis Today, 41 (1998) 261-275.
50.J. C. Vickerman, Surface Analysis - The Principle Techniques, 1st ed., John Wiley & Sons, New York (1997).
51.J.-F. Lee, Application of X-ray absorption spectroscopy to catalyst characterization, The Chinese Chemistry Society , 53 (1995) 280-293.
52.陳建德, 同步輻射光源之應用, 真空科技, 9 (1996)。
53.康瑜容, 熱分析訓練課程, 博精儀器股份有限公司。
54.H. R. Allcock, F. W. Lampe, J. E. Mark, Contemporary polymer chemistry 3rd, Pearson Education, New Jersey, 2003, p.542-543.
55.I-H Tseng, W-C Chang, J. C. S. Wu, Photoreduction of CO2 using Sol-Gel-Derived Titania and Titania-Supported Copper Catalysts, Applied Catalysis B: Environmental , 37 (2002) 37-48.
56.SISC層析儀積分數據處理系統操作手冊(上),訊華股份有限公司(2005),第1-31-1-32頁,第2-2-2-3頁,第2-20-2-38頁。
57.C. J. Brinker, G. W. Scherer, Sol-gel Science : the physics and chemistry of sol-gel processing, 1st ed., Academic Press, Boston (1990).
58.D. William, JR. Callister, Materials science and engineering an introduction, John Wiley & Sons, Academic Press, Jazz (2001).
59.Z. Zou, J. Ye, H. Arakawa, Photophysical and photocatalytic properties of InMO4 (M= Nb5+, Ta5+) under visilble light irradiation, Materials Research Bulletin, 36 (2001) 1185-1193.
60.曾怡享,奈米金屬氧化鈦觸媒光催化還原二氧化碳,國立台灣大學博士論文,2003,第198頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top