1.J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsusshita, T. Shishido, Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+), Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 79-83.
2.A. Kudo, H. Kato, I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting, Chemistry Letters, 33 (2004) 1534-1539.
3.A. Fujishima, T.N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviwe, 1 (2000) 1-21.
4.K. Honda, A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
5.A. Kudo, Photocatalyst material for water splitting, Catalysis Surveys from Asia, 7 (2003) 31-38.
6.H. Kato, A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2, Chemical Physics Letters, 295 (1998) 487-492.
7.K. Domen, J.N. Kondo, M. Hara, T. Takata, Photo-and mechano- catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts, The Chemical Society of Japan, 73 (2000) 1307-1331.
8.K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, H. Arakawa, Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system, Chemical Physics Letters, 277 (1997) 387-391.
9.Z. Zou, J. Ye, H. Arakawa, Structural properties of InNbO4 and InTaO4: correlation with photocatalystic and photophsical properties, Chemical Physics Letters, 332 (2000) 271-277.
10.Y. Takahara, J. N. Kondo, T. Takata, D. Lu, K. Domen, Mesoporous tantalum oxide. 1. characterization and photocatalytic activity for the overall water decomposition, Chemistry Mateials, 13 (2001) 1194-1199.
11.Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625-627.
12.Z. Zou, J. Ye, K. Sayama, H. Arakawa,Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu), Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 65-69.
13.Z. Zou, H. Arakawa, Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 158 (2003) 145-162.
14.H. Kato, A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts, Catalysis Today, 78 (2003) 561-569.
15.蔡金津, 奈米顆粒及薄膜之[溶膠-凝膠技術], 化工資訊, 11 (2000) 16-21.
16.C.J. Brinker, D.E. Clark, Better Ceramics through Chemistry(Ⅲ), in D.R. Ulrich (Editor), Matericals Research Society, Pittsburgh, Chapter 121, 1988, 717-729.
17.R. W. Matthews, Australian Patent Application, 18057 (1986).
18.L.D. Landau and B.G. Levich, Acta physiochim., Union of Soviet Socialist Republics, 17 (1942) 42-54.
19.D.E. Bornside, C.W. Macosko, L.E. Scriven, Modeling of spin coating, Journal of Imaging Technology, 13 (1987) 122-130.
20.藍啟仁, 二氧化碳的利用與相關化學處理技術發展的現況, 台電工程月刊572期 (1996), 第42-55頁。21.陳誠亮, 化學品與化工製程之安全、衛生、環保。
22.N. Getoff, G. Scholes, and J. Weiss, Reduction of carbon dioxide in aqueous solutions under the influence of radiation, Tetrahedron Letters,1 (1960) 17-23.
23.B. Åkermark, U. Eklund-westlin, P. Baeckstrom., and R. Lof, Photochemical, metal-promoted reduction of carbon dioxide and formaldehyde in aqueous solution, Acta Chemica Scandinavica B: Organic Chemistry and Biochemistry, 34 (1980) 27-34.
24.P. G. Russel, N. Kovac, S. Sirinivasan, M. Steinberg, The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde. Journal of the Electrochemical Society, 124 (1977) 1329-1340.
25.R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. Journal of Physical Chemistry, 102 (1998) 974-980.
26.T. Sakata, T. Kawai, Photosynthesis and photocatalysis with semiconductor powders, in M. Gratzel (editor), Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 331 (1983).
27.V. Balzani, F. Scandola, Light-Induced and Thermal Electron- Transfer Reactions, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 2 (1983).
28.M. Halmann, Photochemical Fixation of Carbon Dioxide, in M. Gratzel (editor), Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 507 (1983).
29.B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed., Prentice-Hall (1999).
30.T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita, Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films. Applied Surface Science, 200 (2002) 21-26.
31.H. Yoneyama, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution, Catalysis Today, 39 (1997) 169-175.
32.A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chemical Reviews, 95 (1995) 735-758.
33.T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-638
34.K. Adachi, K.Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide, Solar Energy, 53, 2 (1994) 187-190.
35.S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno, A. Saji, Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, Journal of Photochemistry and Photobiology A: Chemistry, 109 (1997) 59-63
36.T. Mizuno, K. Adachi, K. Ohta, A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions, Journal of Photochemistry and Photobiology A: Chemistry, 98 (1996) 87-90
37.A. Henglein, M. Gutierez, C. Fisher, Berichte der Bunsen-Gesellschaft fur physikalische Chemie, 88 (1984) 1704
38.S. Ichikawa, Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis, Energy Conversion and Management, 36 (1995) 613-621
39.T. F. Xie, D. J. Wang, L. J. Zhu, T. J. Li, Y. J. Xu, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2, Materials Chemistry and Physics, 70 (2001) 103-106.
40.Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126 (1999) 117-123.
41.H. Haapala, The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source, Environmental Pollution, 99 (1998) 361-363.
42.D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band gap energies of sol-gel-derived SrTiO3 thin films, Applied Physics Letters 79, 23 (2001) 3767-3769.
43.M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96.
44.W. D. Callister, Jr., Materials Science and Engineering, 6th Edition, John Wiley & Sons, Inc. 1994, p.w-1.
45.Powder Diffraction File, Card No.25-0391, JCPDS--International Centre for Diffraction Data , Swarthmore (1997).
46.Powder Diffraction File, Card No.06-0416, JCPDS--International Centre for Diffraction Data , Swarthmore (1997).
47.Powder Diffraction File, Card No.25-0922, JCPDS--International Centre for Diffraction Data , Swarthmore (1997).
48.Robert J. Hunter, Zeta Potential in Colloid Science Principles and Applications, 1st ed., Academic Press, New York (1981).
49.G. Vlaic, D. Andreatta, P.E. Colavita, Charaterisation of heterogeneous catalysts by EXAFS, Catalysis Today, 41 (1998) 261-275.
50.J. C. Vickerman, Surface Analysis - The Principle Techniques, 1st ed., John Wiley & Sons, New York (1997).
51.J.-F. Lee, Application of X-ray absorption spectroscopy to catalyst characterization, The Chinese Chemistry Society , 53 (1995) 280-293.
52.陳建德, 同步輻射光源之應用, 真空科技, 9 (1996)。53.康瑜容, 熱分析訓練課程, 博精儀器股份有限公司。
54.H. R. Allcock, F. W. Lampe, J. E. Mark, Contemporary polymer chemistry 3rd, Pearson Education, New Jersey, 2003, p.542-543.
55.I-H Tseng, W-C Chang, J. C. S. Wu, Photoreduction of CO2 using Sol-Gel-Derived Titania and Titania-Supported Copper Catalysts, Applied Catalysis B: Environmental , 37 (2002) 37-48.
56.SISC層析儀積分數據處理系統操作手冊(上),訊華股份有限公司(2005),第1-31-1-32頁,第2-2-2-3頁,第2-20-2-38頁。
57.C. J. Brinker, G. W. Scherer, Sol-gel Science : the physics and chemistry of sol-gel processing, 1st ed., Academic Press, Boston (1990).
58.D. William, JR. Callister, Materials science and engineering an introduction, John Wiley & Sons, Academic Press, Jazz (2001).
59.Z. Zou, J. Ye, H. Arakawa, Photophysical and photocatalytic properties of InMO4 (M= Nb5+, Ta5+) under visilble light irradiation, Materials Research Bulletin, 36 (2001) 1185-1193.
60.曾怡享,奈米金屬氧化鈦觸媒光催化還原二氧化碳,國立台灣大學博士論文,2003,第198頁。