跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張琮瑤
研究生(外文):Tsung-Yao Chang
論文名稱:製備具微米構形之聚電解質多層膜及探討細胞貼附的影響
論文名稱(外文):Fabrication of micropatterned polyelectrolyte multilayers for controlling cell adhesion
指導教授:蔡偉博
指導教授(外文):Wei-Bor Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:75
中文關鍵詞:細胞貼附聚電解質多層膜層接層微構形聚丙烯酸聚丙烯醯胺
外文關鍵詞:cell adhesionpolyelectrolyte multilayerslayer by layermicropatternpolyacrylic acidpolyacrylamide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具微米構形之聚電解質多層膜能控制表面地形尺寸至分子級,非常適合體外培養細胞及生醫材料的研究上。
聚丙烯酸(polyacrylic acid,PAA)與聚丙烯醯胺(poly acrylamide,PAAm)在低酸鹼值時,可由氫鍵形成聚電解質多層膜,而且可被鹼性水洗去。配合上疊氮化物(azide)可在紫外光照射下與聚合物交聯的特性,來製備具微米構形之聚電解質多層膜。
首先將4-疊氮苯胺鹽酸鹽(4-azidoaniline hydrochloride)與聚丙烯酸接枝形成PAAz。接著,在載玻片上製作PAA/PAAm多層膜至4個雙層,再吸附PAAz/PAAm多層膜1個雙層後,繼續堆疊PAA/PAAm。將不同雙層數的此多層膜在等尺寸線寬、間距,週期分別為20 μm、50 μm之平行直線光罩下照射紫外光後,用pH 10.0的二次水洗去未交聯的區域,就形成具微米構形之聚電解質多層膜。
進行細胞實驗前,先在此表面上吸附一層聚離胺酸(poly-L-lysine,PLL),我們發現MG63、L929細胞會選擇在避光的區域貼附、排列,PC12細胞則是照光、避光區域皆會排列,但其突觸會沿著平行線的方向延伸。本研究結果觀察到細胞在週期50 μm的微米構形多層膜表面上排列情況較週期20 μm佳。
本研究成功地利用光刻法製備可調控細胞貼附的具微米構形之聚電解質多層膜。
The topography of micropatterned polyelectrolyte multilayers can be controlled in molecule scale and is extremely versatile and useful for in vitro studies of cell behavior or biomedical devices.
Polyacrylamide (PAAm) and poly(acrylic acid) (PAA) can be assembled to form polyelectrolyte multilayers via hydrogen-bonding interactions at low pH. The PAA/PAAm films can be rinsed away with alkaline water. Azides, a photo-reactive molecule, can crosslink neighbor hydrocarbon chains under UV irradiation.
First, 4-azidoaniline hydrochloride was grafted on PAA to form PAAz. Then, PAA/PAAm films were fabricated on glass slide for 4 bilayers, followed by deposition of one PAAz/PAAm bilayer before further build-up of PAA/PAAm films. Micropatterned polyelectrolyte multilayers with different numbers of bilayers were fabricated by UV exposure of the multilayers films through photomasks with 20 μm or 50 μm periods of parallel lanes.
Poly-L-lysine was adsorbed on micropatterned films before in vitro cell experiments. We found MG63 and L929 cells adhered to ditch region and regularly arranged along the direction of ditch. On the other hand, PC12 cells extended neurites parallel to the striped pattern, but adhered on both ditch and ridge regions. Cell alignment on the micropatterned films with 50 μm periods was better than 20μm periods.
These works successfully developed a technique utilizing polyelectrolyte multilayers and photolithography technology to prepare micropatterned substrata with controlled surface chemistry for modulation of cell adhesion.
誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 聚電解質多層膜簡介 3
1.3 具表面微圖案聚電解質多層膜之製備 5
1.4 芳香基疊氮化物(Aryl azide)簡介 8
1.5 細胞株簡介 9
1.6 研究動機 10
1.7 研究架構 10
第二章 實驗藥品、儀器與方法 21
2.1 實驗藥品 21
2.1-1 製備聚電解質多層膜 21
2.1-2 聚丙烯酸接枝疊氮化物 21
2.1-3 聚電解質多層膜染色 21
2.1-4 細胞培養 22
2.2 實驗儀器及耗材 23
2.2-1 實驗儀器 23
2.2-2 實驗耗材 24
2.3 溶液配置 24
2.4 實驗方法 27
2.4-1 PAAz合成與分析 27
2.4-2 聚電解質多層膜製備與分析 28
2.4-3 細胞培養 32
2.4-4 細胞解凍與冷凍 33
2.4-5 多層膜表面上之細胞計數 34
第三章 實驗結果與討論 35
3.1 PAAz的製備與接枝比例分析 35
3.2 探討光可交聯之多層膜的製備起因 37
3.3 H[(A/m)4(z/m)]n多層膜之接觸角分析 38
3.4 H[(A/m)4(z/m)]n多層膜之吸附質量分析 39
3.5 H[(A/m)4(z/m)]n多層膜表面微圖案以甲基藍染色結果
分析 41
3.6 於具表面微圖案之H[(A/m)4(z/m)]n多層膜上培養MG63
細胞並觀察細胞排列情形 42
3.7 於具表面微圖案之H[(A/m)4(z/m)]n多層膜上培養L929
細胞並觀察細胞排列情形 43
3.8 於具表面微圖案之H[(A/m)4(z/m)]n多層膜上培養PC12
細胞並觀察細胞排列情形 43
第四章 結論與未來展望 69
參考文獻 73
附錄 75
1. Clark, P., P. Connolly, and G.R. Moores, Cell Guidance By Micropatterned Adhesiveness Invitro. Journal of Cell Science, 1992. 103: p. 287-292.

2. McDevitt, T.C., et al., In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. Journal of Biomedical Materials Research, 2002. 60(3): p. 472-479.

3. Berg, M.C., et al., Controlling mammalian cell interactions on patterned polyelectrolyte multilayer surfaces. Langmuir, 2004. 20(4): p. 1362-1368.

4. Mendelsohn, J.D., et al., Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules, 2003. 4(1): p. 96-106.

5. Decher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997. 277(5330): p. 1232-1237.

6. Dahne, L., et al., Fabrication of micro reaction cages with tailored properties. Journal of the American Chemical Society, 2001. 123(23): p. 5431-5436.

7. Li, M.Y., et al., Cellular response to gelatin- and fibronectin-coated multilayer polyelectrolyte nanofilms. Ieee Transactions on Nanobioscience, 2005. 4(2): p. 170-179.

8. Decher, G. and J.D. Hong, Buildup Of Ultrathin Multilayer Films By A Self-assembly Process .1. Consecutive Adsorption Of Anionic And Cationic Bipolar Amphiphiles On Charged Surfaces. Makromolekulare Chemie-Macromolecular Symposia, 1991. 46: p. 321-327.

9. Richert, L., et al., pH dependent growth of poly(L-lysine)/poly(L-glutamic) acid multilayer films and their cell adhesion properties. Surface Science, 2004. 570(1-2): p. 13-29.

10. Shiratori, S.S. and M.F. Rubner, pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000. 33(11): p. 4213-4219.

11. McAloney, R.A., et al., Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir, 2001. 17(21): p. 6655-6663.

12. Yang, S.Y., J.D. Mendelsohn, and M.F. Rubner, New class of ultrathin, highly cell-adhesion-resistant polyelectrolyte multilayers with micropatterning capabilities. Biomacromolecules, 2003. 4(4): p. 987-994.

13. Yang, S.G., et al., Composite thin film by hydrogen-bonding assembly of polymer brush and poly(vinylpyrrolidone). Langmuir, 2006. 22(1): p. 338-343.

14. Wang, L.Y., et al., Investigation into an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Langmuir, 1999. 15(4): p. 1360-1363.

15. Yang, S.Y. and M.F. Rubner, Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers. Journal of the American Chemical Society, 2002. 124(10): p. 2100-2101.

16. Such, G.K., et al., Assembly of ultrathin polymer multilayer films by click chemistry. Journal of the American Chemical Society, 2006. 128(29): p. 9318-9319.

17. Kidambi, S., I. Lee, and C. Chan, Controlling primary hepatocyte adhesion and spreading on protein-free polyelectrolyte multilayer films. Journal of the American Chemical Society, 2004. 126(50): p. 16286-16287.

18. Reyes, D.R., et al., Micropatterning neuronal cells on polyelectrolyte multilayers. Langmuir, 2004. 20(20): p. 8805-8811.

19. Park, J. and P.T. Hammond, Multilayer transfer printing for polyelectrolyte multilayer patterning: Direct transfer of layer-by-layer assembled micropatterned thin films. Advanced Materials, 2004. 16(6): p. 520-+.

20. Hermanson, G.T., Bioconjugate Techniques. 1996, San Diego: Academic Press.

21. Rodan, G.A. and M. Noda, Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr, 1991. 1(2): p. 85-98.

22. Muir, I.F.K., Control of fibroblast activity in scars: a review. European Journal of Plastic Surgery, 1998. 21(1): p. 1-7.

23. Gero Decher, J.B.S., Multilayer Thin Films., J.B.S. Gero Decher, Editor. 2003, Wiley-VCH Verlag GmbH & Co.

24. Kato, N. and F. Caruso, Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. Journal of Physical Chemistry B, 2005. 109(42): p. 19604-19612.

25. Sauerbrey, G., Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Physik, 1959. 155(2): p. 206-222.

26. Liu, H.C. and Y. Ito, Cell attachment and detachment on micropattern-immobilized poly(N-isopropylacrylamide) with gelatin. Lab on a Chip, 2002. 2(3): p. 175-178.

27. Chen, G.P., et al., Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity. Bioconjugate Chemistry, 1997. 8(5): p. 730-734.

28. Chen, G.P., Y. Ito, and Y. Imanishi, Micropattern immobilization of a pH-sensitive polymer. Macromolecules, 1997. 30(22): p. 7001-7003.

29. Shi, F., et al., Layer-by-layer self-assembly of reactive polyelectrolytes for robust multilayer patterning. Advanced Materials, 2002. 14(11): p. 805-809.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top