跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張柏齡
研究生(外文):Po-Ling Chang
論文名稱:利用毛細管電泳檢測胺基酸、生物鹼及分枝桿菌
論文名稱(外文):Determinations of Amino Acids, Alkaloids, and Mycobacterium Species by Capillary Electrophoresis
指導教授:張煥宗張煥宗引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:263
中文關鍵詞:毛細管電泳雷射誘發螢光發光二極體誘發螢光電化學發光胺基酸生物鹼結核分枝桿菌
外文關鍵詞:Capillary electrophoresisLaser-induced fluorescenceLight-emitting-diode induced fluorescenceelectrochemiluminescenceamino acidalkaloidMycobacterium tuberculosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要著重於以毛細管電泳(capillary electrophoresis, CE)為分析工具針對胺基酸、生物鹼做檢測,並結合分子生物技術鑑定分枝桿菌及奴卡氏菌。本文之第一章主要介紹毛細管電泳基本原理和應用;以及分枝桿菌之重要性與臨床檢驗方法。第二章則敘述以發光二極體誘發螢光(light-emitting-diode induced fluorescence, LEDIF)、naphthalene-2,3-dicarboxaldehyde(NDA)作為衍生化試劑,針對胺基酸進行管柱內之衍生化、樣品堆積及分離。和傳統管柱外方法相較,此法呈現出較少的衍生化副產物效應。若以gamma-aminobutyric acid(GABA)為分析物,其可偵測濃度之線性範圍包含10–5到10–8 M,且偵測極限可達4 nM。第三章吾人則組裝發光二極體誘發螢光及電化學發光(electrochemiluminescence, ECL)之裝置並以此同時檢測胺基酸和生物鹼。在此雙重偵測器之毛細管電泳裝置中,ECL偵測器置於毛細管之出口端並與LEDIF差距12公分。一級胺基酸同樣以NDA作為衍生化試劑,二、三級胺則以Ru(bpy)32+作為ECL之電化學試劑。以此經濟裝置對標準樣品作分析時,胺基酸和生物鹼的偵測極限分別為49 nM–0.2 μM和0.66–4.7 μM。第四章的研究內容則著重於以LEDIF檢測肝病病人腹水樣品之分支鏈胺基酸(branched-chain amino acids, BCAAs)。經由聚環氧乙烯(poly(ethylene oxide), PEO)改善白胺酸及異白胺酸的分離效率,吾人間接證明聚環氧乙烯與胺基酸間厭水性作用力的存在。若對腹水之BCAAs作定量分析,其回收率為83.7%–134%。此外,一天之內的精準度為1.7%–5.8%、天與天之間的精準度則為2.2%–7.4%。第五章則是以聚合酶鏈鎖反應(polymerase chain reaction, PCR)及限制片段長度多型性(restriction fragment length polymorphism, RFLP)結合CE對分枝桿菌進行菌種的鑑定。在本章中,總共12個菌種(含52個菌株)皆可在只用一種限制酵素-Hae III的情況下達到鑑定的目的,而最小可測得之DNA片段為12 bp。另外,只要菌種之熱休克蛋白(65-kDa heat shock protein, hsp65)基因有額外的Hae III限制部位或一個Hae III限制部位的差異都可清楚呈現於電泳圖中。第六章則是以同樣方法鑑定少見之分枝桿菌菌種及奴卡氏菌。在此章中,一樣只用一種限制酵素的情況下,12種少見之分枝桿菌及7種奴卡氏菌都能清楚無誤地呈現出完整的RFLP圖譜於電泳圖上。且預估之DNA片段大小與實際之DNA定序結果完全吻合。在第七章中,吾人以蜂巢式聚合酶鏈鎖反應(nested PCR)進行分枝桿菌之鑑定,且證實nested PCR可達到單分子的偵測靈敏度。然而,DNA取樣時受限於波氏分佈(Poisson distribution)的影響,因此會有陽性率不如預期的情況發生。除了靈敏度的改善,吾人亦證實了nested PCR有助於減少非特異性引子-雙體的產生及樣品中PCR抑制物的負面影響。此外,本方法亦證實可以在不經過細菌培養的情況下直接對痰液中的分枝桿菌菌種進行檢測及鑑定。
In the dissertation, two major topics focus on amino acids and/or alkaloids determination and identification of Mycobacterium and Nocardia species by capillary electrophoresis (CE). Chapter 1 introduces the principles and applications of capillary electrophoresis along with the importance of Mycobacterium tuberculosis and relative clinical examinations. Chapter 2 states the in-column derivatization, stacking, and separation of amino acids (AA) by capillary electrophoresis in conjunction with light-emitting-diode induced fluorescence (LEDIF) using naphthalene-2,3-dicarboxaldehyde (NDA). In comparison with the off-column approach to the analysis of amino acids, our proposed method provides a lower degree of interference from polymeric NDA compounds and other side products. As a result, the plot of the peak height as a function of γ-aminobutyric acid (GABA) concentration is linear over the range from 10–5 to 10–8 M, with the limit of detection
being 4 nM. Chepter 3 describes the determination of alkaloids and amino acids using capillary electrophoresis in conjunction with sequential light-emitting-diode
induced fluorescence and electrochemiluminescence (ECL) detections. In the CE-LEDIF-ECL system, the ECL detector was located in the outlet of the capillary, while the LEDIF detector was positioned 12 cm from the outlet. NDA was used to form fluorescent AA–NDA derivatives from amino acids possessing primary amino groups, while Ru(bpy)32+ was used to obtain ECL signals for analytes having secondary and tertiary amino groups. This low-cost CE-LEDIF-ECL system allows the analysis of these AA–NDA derivatives and alkaloids at concentrations in the ranges 49 nM–0.2 μM and 0.66–4.7 μM, respectively. In chapter 4, we have
developed a convenient separation method of branched-chain amino acids (BCAAs) from ascites of patients suffer liver diseases. Amino acids was labeled by NDA with CN- as nucleophil, the derivatives were then introduced to capillary by hydrodynamic injection and separated by linear polymer under electroosmotic flow. The recovery data range from 83.7% to 134% over three amino acids and five different
concentrations. The within-day precisions of BCAAs were range from 1.7% to 5.8%, while between-day precisions were 2.2% to 7.4%. In part of identification of M. tuberculosis, we have demonstrated the separation of DNA or restriction fragments digested from the mycobacterial gene encoding for the 65-kDa heat shock protein (hsp65) by capillary electrophoresis as described in chapter 5. Using a pair of
unlabeled primers, Tb11 and Tb12, and only one restriction enzyme, HaeIII, a total of 52 reference and clinical strains encompassing 12 Mycobacterium species were investigated. The electrophoretic separation of high-resolution CE required less than 20 minutes and was capable of identifying fragments as small as 12 bp. A good agreement of measurement was observed between the sizes of restriction fragments resolved by CE and the real sizes deduced from the sequence analysis. Distinct differentiations were also well demonstrated between some species and subspecies by an extra HaeIII digestion site. Furthermore, in chapter 6, additional patterns of 12 less common Mycobacterium and 7 Nocardia species were analyzed and collected for the database of identification purpose. A good agreement of measurement was observed between the sizes of restriction fragments resolved by CE and the real sizes deduced from the sequence analysis. Some closely related species exhibiting similar biochemical characteristics could also be well discriminated by a different or extra HaeIII digestion site. Finally, chapter 7 focus on improve the sensitivity and differentiation in rapidly identifying a small amount of mycobacteria directly from sputum that has significant implications for reducing tuberculosis transmission. In the present study, PCR is replaced with nested PCR (nPCR) in which the primers and
other optimizations are redesigned. As the results shown, the implementation of nPCR in PCR-RFLP assay (PRA) with CE (PRACE) is not only able to detect the presence of mycobacterial DNA less than ten copies, but differentiate the species as well. Both Mycobacterium tuberculosis and mycobacteria other than tuberculosis could be identified even without DNA extraction or in the presence of inhibitors. The least interference of primer-dimers improved by nPCR also contributes to the excellent specificity of RFLP patterns.
Text contents
1 Introduction 1
1.1 Capillary electrophoresis 1
1.1.1 EOF and zeta potential 3
1.1.2 Electrophoretic mobility (μ) 4
1.1.3 Efficiency and resolution 5
1.1.4 Principle DNA separation by capillary electrophoresis 8
1.1.4.1 Ogston model 10
1.1.4.2 Reptation in a electric field: The biased reptation model 11
1.1.5 Detection systems 13
1.1.6 Applications 16
1.1.6.1 DNA analysis 16
1.1.6.2 Proteins analysis 19
1.1.6.3 Small molecules analysis 20
1.2 Polymerase chain reaction 22
1.2.1 History 22
1.2.2 Principle of PCR 23
1.2.3 Reagents involved in PCR 25
1.2.3.1 Polymerase 25
1.2.3.2 Magnesium and Nucleotides 25
1.2.3.3 Primer 26
1.3 Mycobacterium tuberculosis 28
1.3.1 Epidemiology 30
1.3.2 Pathogenesis 32
1.3.3 Laboratory Diagnosis 35
1.3.3.1 Traditional examinations 35
1.3.3.2 Nucleic acid-based amplification for identification of mycobacteria 37
1.4 References 40
2 Stacking, Derivatization, and Separation by Capillary Electrophoresis of Amino Acids from Cerebrospinal Fluids 71
2.1 Abstract 71
2.2 Introduction 73
2.3 Materials and Methods 77
2.3.1 Chemicals 77
2.3.2 CSF 77
2.3.3 CE-LEDIF 78
2.3.4 Off-column derivatization 79
8.1.5 Electrophoresis procedure 80
2.3.6 In-column derivatization, stacking, and separation procedure 81
2.4 Results and Discussion 83
2.4.1 Effect of polymer solution on resolution 83
2.4.2 In-column derivatization, stacking, and separation under discontinuous conditions 84
2.4.3 Reaction time 87
2.4.4 Analysis of standard samples 89
2.4.5 Analysis of CSF samples 91
2.5 References 94
3 Capillary Electrophoresis with Sequential LED-Induced Fluorescence and Electrochemiluminescence Detection for the Determination of Amino Acids and Alkaloids 110
3.1 Abstract 110
3.2 Introduction 112
3.3 Materials and Methods 115
3.3.1 Chemicals 115
3.3.2 Fabrication of ECL detection cell 115
3.3.3 ECL detection of alkaloids and proline 116
3.3.4 CE-LEDIF-ECL system 116
3.3.5 Sample preparation 118
3.3.6 Amino acid derivatization with NDA 118
3.3.7 Electrophoresis procedures 119
3.4 Results and Discussion 120
3.4.1 CE-LEDIF-ECL system 120
3.4.2 Separation of amino acids and alkaloids 122
3.4.3 Analysis of urine 125
3.4.4 Analysis of tobacco extracts 127
3.5 References 130
4 Determine the Branched-Chain Amino Acids of Ascites with Liver Diseases Patients by Capillary Electrophoresis with Light-Emitted-Diode Induced Fluorescence 142
4.1 Abstract 142
4.2 Introduction 144
4.3 Materials and Methods 147
4.3.1 Chemicals 147
4.3.2 Specimens collection 147
4.3.3 Instrumentation 148
4.3.4 Fluorescent-dye derivatization 149
4.3.5 Electrophoresis procedure 150
4.3.6 Linearity, limit of detection and limit of quantitative 150
4.3.7 Quantitative and calibration assay 151
4.3.8 Recovery and precision 151
4.4 Results and Discussion 153
4.4.1 Linearity, limit of detection and limit of quantitative 153
4.4.2 Matrix effect on separation performance 154
4.4.3 Calibration assay 154
4.4.4 Recovery and precision 155
4.5 References 157
5 Capillary Electrophoretic-Restriction Fragment Length Polymorphism Patterns of Mycobacterial hsp65 Gene 169
5.1 Abstract 169
5.2 Introduction 171
5.3 Materials and Methods 174
5.3.1 Mycobacterium strains 174
5.3.2 DNA extraction, amplification and restriction enzyme digestion 174
5.3.3 Capillary electrophoresis 175
5.3.4 Analysis of amplified hsp65 gene sequence 176
5.4 Results and Discussion 178
5.5 References 185
6 The hsp65 Gene Patterns of Less Common Mycobacterium and Nocardia Species by PCR-Restriction Fragment Length Polymorphism Analyses with Capillary Electrophoresis 196
6.1 Abstract 196
6.2 Introduction 198
6.3 Materials and methods 201
6.3.1 Study strains 201
6.3.2 DNA extraction, PCR amplification, and restriction enzyme digestion 201
6.3.3 Separation of restriction fragments by capillary electrophoresis 202
6.3.4 Analysis of amplified hsp65 gene sequences 204
6.4 Results and Discussion 205
6.5 References 214
7 Ultra-sensitive Rapid Identification of Mycobacteria by Nested PCR and High-resolution Capillary Electrophoresis 228
7.1 Abstract 228
7.2 Introduction 230
7.3 Materials and Methods 232
7.3.1 Specimens and DNA extraction 232
7.3.2 PCR amplification and enzymatic digestion 233
7.3.3 Separation of PCR products by slab gel electrophoresis 234
7.3.4 Separation of PCR products by capillary electrophoresis 235
7.4 Results and Discussion 236
7.5 References 244
8 Conclusions 258
9 Appendix 262

Figure and Table contents
Figure 1 1 (A) Structure of double layer and (B) ζ potential. 63
Figure 1 2 Comparison of (A) electroosmotic flow and (B) Laminar flow. 64
Figure 1 3 Schematic representation of flexible polymers in solution.. 65
Figure 1 4 Idealized representation of the different mechanism of migration of DNA in an array of fixed obstacles.. 66
Figure 1 5 DNA separation by using capillary gel electrophoresis under electroosmotic flow. 67
Figure 1 6 Schematic drawing of the PCR cycles. 68
Figure 1 7 Pathogenesis of tuberculosis in the early phase of infection. 69
Figure 2 1 Separation of six amino acids in the absence and presence of PEO. 102
Figure 2 2 A representative mechanism of the process of in-column derivatization, stacking, and separation of amino acids. 103
Figure 2 3 The impact of reaction time on in-column derivatization and separation of five amino acids by CE-LEDIF without a low-pH plug. 104
Figure 2 4 The impact of the GABA concentration on the formation of side products in off-column and in-column derivatization modes. 105
Figure 2 5 In-column derivatization, stacking, and separation of five amino acids by CE-LEDIF.. 106
Figure 2 6 Electropherograms of a CSF sample when conducting in-column and off-column derivatization.. 107
Figure 3 1 Schematic illustration of the CE-LEDIF-ECL system used for the analysis of AA–NDA derivatives, proline, nicotine, and anabasine. 137
Figure 3 2 Structures of proline and the alkaloids identified using ECL. 138
Figure 3 3 Electropherograms, obtained using the CE-LEFID-ECL system, of a mixture containing standard AA–NDA derivatives, proline, nicotine, and anabasine.. 139
Figure 3 4 Separation of urine samples using the CE-LEDIF-ECL system. 140
Figure 3 5 Separation of tobacco extracts using the CE-LEDIF-ECL system. 141
Figure 4 1 Structure, molecular weight and pI value of branched-chain amino acids. 161
Figure 4 2 Separation improvements of BCAAs with increase PEO concentration. 162
Figure 4 3 The matrix effect of ascites on separation efficiency.. 163
Figure 4 4 Linear plots constructed by standard addition for BCAAs quantification from ascites. 164
Figure 5 1 CE of 10-bp DNA ladder showing 33 10-bp repeats plus a fragment of 1,668 bp. 189
Figure 5 2 Relationship between the sizes of DNA ladders (10-200 bp) and corresponding electrophoretic migration time. 190
Figure 5 3 Electropherograms of mycobacterial hsp65 genes with HaeIII digestion.. 191
Figure 6 1 Electropherograms of mycobacterial hsp65 genes with HaeIII digestion. 222
Figure 6 2 Electropherograms of nocardial hsp65 genes with HaeIII digestion. 224
Figure 7 1 Capillary electrophoregrams of conventional PCR products using the primers reported by Telenti et al... 250
Figure 7 2 Capillary electrophoregrams of final products of nPCR using MTB DNA as initial templates 251
Figure 7 3 Probabilities of nPCR gene production are affected by the initial templates of MTB DNA 252
Figure 7 4 For capillary electrophoregrams of M. heckashorne and M. celatum 253
Figure 7 5 Agarose electrophoretic gels demonstrate hsp65 gene bands produced from traditional PCR and nPCR of mycobacteria from sputum. 254
Figure 7 6 For capillary electrophoregrams of sputum specimen #5 (A-D), traditional PCR products are exhibited in A. 255


Table 1 1 Examining and reporting acid-fast smears………………………………70
Table 2 1 Effect of hydrodynamic injection time on peak heights for the GABA-NDA derivative and side-products in the in-column derivatization mode. 108
Table 2 2 Comparison of the in-column and off-column CE approaches to the determination of GABA in CSF samples. 109
Table 4 1 Resolution and theoretical plate number of BCAAs with change of poly(ethylene oxide) concentration. 165
Table 4 2 LOD, LOQ and linearity. 166
Table 4 3 Recovery of the CE-LEDIF method for ascites BCAAs. 167
Table 4 4 Precision of the CE-LEDIF method for BCAAs quantitative. 168
Table 5 1 Mycobacterium strains studied for the RFLP pattern of hsp65 gene by capillary electrophoresis. 193
Table 5 2 Fragment sizes (bp) of hsp65 genes from 12 Mycobacterium species after HaeIII digestion and capillary electrophoresis in comparison with those deduced from sequence analysis. 194
Table 5 3 Mean and standard deviation of fragment length (bp) of mycobacterial hsp65 gene detected by capillary electrophoresis in comparison with those deduced from sequence analysis. 195
Table 6 1 Mycobacterium and Nocardia strains studied for the hsp65 gene patterns by the PCR-RFLP analysis with capillary electrophoresis. 225
Table 6 2 Fragment sizes (bp) of hsp65 genes from 12 Mycobacterium and 7 Nocardia species after HaeIII digestion and CE in comparison with those deduced from sequence analysis. 226
Table 6 3 Mean and standard deviation of hsp65 gene fragment sizes (bp) from the strains of three Mycobacterium species detected by the capillary electrophoresis in comparison with those deduced from the sequence analysis. 227
Table 7 1 Primers and thermocycles designed for traditional and nested PCR. 256
Table 7 2 Comparison of results between AFB smear, culture, PRACE, and sequence analysis for mycobacteria in sputum. 257
1.Jorgenson, J. W., and K. D. Lukacs. 1981. High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr. 218:209-216.
2.Jorgenson, J. W., and K. D. Lukacs. 1981. Free-zone electrophoresis in glass-capillaries. Clin. Chem. 27:1551-1553.
3.Jorgenson, J. W., and K. D. Lukacs. 1981. Zone electrophoresis in open-tubular glass-capillaries. Anal. Chem. 53:1298-1302.
4.Jorgenson, J. W., and K. D. Lukacs. 1983. Capillary zone electrophoresis. Science 222:266-272.
5.Sung, W. C., and S. H. Chen. 2006. Pharmacokinetic applications of capillary electrophoresis: a review on recent progress. Electrophoresis 27:257-265.
6.Klampfl, C. W. 2006. Recent advances in the application of capillary electrophoresis with mass spectrometric detection. Electrophoresis 27:3-34.
7.Szantai, E., Z. Ronai, A. Szilagyi, M. Sasvari-Szekely, and A. Guttman. 2005. Haplotyping by capillary electrophoresis. J. Chromatogr. A 1079:41-49.
8.Stroink, T., M. C. Ortiz, A. Bult, H. Lingeman, G. J. de Jong, and W. J. Underberg. 2005. On-line multidimensional liquid chromatography and capillary electrophoresis systems for peptides and proteins. J Chromatogr B Analyt Technol Biomed Life Sci 817:49-66.
9.Lloyd, D. K., A. M. Cypess, and I. W. Wainer. 1991. Determination of cytosine-beta-D-arabinoside in plasma using capillary electrophoresis. J. Chromatogr. 568:117-124.
10.Mazzeo, J. R., and I. S. Krull. 1991. Coated capillaries and additives for the separation of proteins by capillary zone electrophoresis and capillary isoelectric focusing. BioTechniques 10:638-645.
11.Lambert, W. J., and D. L. Middleton. 1990. pH hysteresis effect with silica capillaries in capillary zone electrophoresis. Anal. Chem. 62:1585-1587.
12.Issaq, H. J., I. Z. Atamna, G. M. Muschik, and G. M. Janini. 1991. The effect of electric-field strength, buffer type and concentration on separation parameters in capillary zone electrophoresis. Chromatographia 32:155-161.
13.Giddings, J. C. 1969. Generation of Variance, Theoretical Plates, Resolution, and Peak Capacity in Electrophoresis and Sedimentation. Separat. Sci. 4:181-189.
14.Giddings, J. C. 1969. Generation of Variance, Theoretical Plates, Resolution, and Peak Capacity in Electrophoresis and Sedimentation. Separation Science 4:181-189.
15.Albarghouthi, M. N., and A. E. Barron. 2000. Polymeric matrices for DNA sequencing by capillary electrophoresis. Electrophoresis 21:4096-4111.
16.Nataraj, A. J., I. Olivos-Glander, N. Kusukawa, and W. E. Highsmith, Jr. 1999. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 20:1177-1185.
17.Kurata, M., and Y. Tsunashima. 1989. Polymer handbook. John Wiley, New York.
18.Broseta, D., L. Leibler, A. Lapp, and C. Strazielle. 1986. Universal properties of semidilute polymer-solutions - a comparison between experiments and theory. Europhys. Lett. 2:733-737.
19.Viovy, J.-L., and C. Heller. 1996. Capillary electrophoresis: an analytical tool in biotechnology series. CRC Press, Boca Raton, FL.
20.Grossman, P. D., and D. S. Soane. 1991. Experimental and theoretical-studies of DNA separations by capillary electrophoresis in entangled polymer-solutions. Biopolymers 31:1221-1228.
21.Ogston, A. G. 1958. The spaces in a uniform random suspension of fibres. Trans. Faraday. Soc. 54:1754.
22.Slater, G. W., and H. L. Guo. 1996. An exactly solvable Ogston model of gel electrophoresis: I. The role of the symmetry and randomness of the gel structure. Electrophoresis 17:977-988.
23.Slater, G. W., and H. L. Guo. 1996. An exactly solvable Ogston model of gel electrophoresis. II. Sieving through periodic gels. Electrophoresis 17:1407-1415.
24.Labrie, J., J. F. Mercier, and G. W. Slater. 2000. An exactly solvable Ogston model of gel electrophoresis. V. Attractive gel-analyte interactions and their effects on the Ferguson plot. Electrophoresis 21:823-833.
25.Duke, T., J. L. Viovy, and A. N. Semenov. 1994. Electrophoretic mobility of DNA in gels. 1. new biased reptation theory including fluctuations. Biopolymers 34:239-247.
26.Slater, G. W., and J. Noolandi. 1986. On the reptation theory of gel-electrophoresis. Biopolymers 25:431-454.
27.Lumpkin, O. J., P. Dejardin, and B. H. Zimm. 1985. Theory of gel electrophoresis of DNA. Biopolymers 24:1573-1593.
28.Slater, G. W., and J. Noolandi. 1985. New biased-reptation model for charged polymers. Phys. Rev. Lett. 55:1579-1582.
29.Slater, G. W., J. Rousseau, J. Noolandi, C. Turmel, and M. Lalande. 1988. Quantitative analysis of the three regimes of DNA electrophoresis in agarose gels. Biopolymers 27:509-524.
30.De Gennes, P. G. 1979. Scaling concepts in polymer physics. Cornell University Press, Ithaca, New York.
31.Schurr, J. M., and K. S. Schmitz. 1986. Dynamic light-scattering-studies of bio-polymers - effects of charge, shape, and flexibility. Annu. Rev. Phys. Chem. 37:271-305.
32.Cottet, H., P. Gareil, and J. L. Viovy. 1998. The effect of blob size and network dynamics on the size-based separation of polystyrenesulfonates by capillary electrophoresis in the presence of entangled polymer solutions. Electrophoresis 19:2151-2162.
33.Mitnik, L., L. Salome, J. L. Viovy, and C. Heller. 1995. Systematic study of field and concentration effects in capillary electrophoresis of DNA in polymer solutions. J. Chromatogr. A 710:309-321.
34.Xue, Q. F., and E. S. Yeung. 1994. Indirect Fluorescence Determination of Lactate and Pyruvate in Single Erythrocytes by Capillary Electrophoresis. J. Chromatogr. A 661:287-295.
35.Lin, Y. W., C. C. Huang, and H. T. Chang. 2003. Capillary electrophoretic separation of dsDNA under nonuniform electric fields. Anal. Bioanal. Chem. 376:379-383.
36.Byassee, T. A., W. C. W. Chan, and S. Nie. 2000. Probing single molecules in single living cells. Anal. Chem. 72:5606-5611.
37.Tan, W., and E. S. Yeung. 1997. Monitoring the reactions of single enzyme molecules and single metal ions. Anal. Chem. 69:4242-4248.
38.Li, H. W., and E. S. Yeung. 2005. Direct observation of anomalous single-molecule enzyme kinetics. Anal. Chem. 77:4374-4377.
39.Hesse, J., M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Hoglinger, H. Schindler, and G. J. Schutz. 2004. Single-molecule reader for high-throughput bioanalysis. Anal. Chem. 76:5960-5964.
40.Yeung, E. S. 1999. Study of single cells by using capillary electrophoresis and native fluorescence detection. J. Chromatogr. A 830:243-262.
41.Ummadi, M., and B. C. Weimer. 2002. Use of capillary electrophoresis and laser-induced fluorescence for attomole detection of amino acids. J. Chromatogr. A 964:243-253.
42.Ye, M. L., S. Hu, W. W. C. Quigley, and N. J. Dovichi. 2004. Post-column fluorescence derivatization of proteins and peptides in capillary electrophoresis with a sheath flow reactor and 488 nm argon ion laser excitation. J. Chromatogr. A 1022:201-206.
43.Shigeyuki Oguri, M. H. M. M. 2004. Performance of throughout in-capillary derivatization capillary electrophoresis employing an on-line sample and run buffer loading device. Electrophoresis 25:1810-1816.
44.Roach, M. C., and M. D. Harmony. 1987. Determination of amino-acids at subfemtomole levels by high-performance liquid-chromatography with laser-induced fluorescence detection. Anal.Chem. 59:411-415.
45.Ueno, K., and E. S. Yeung. 1994. Simultaneous monitoring of DNA fragments separated by electrophoresis in a multiplexed array of 100 capillaries. Anal. Chem. 66:1424-1431.
46.Issaq, H. J., G. M. Janini, K. C. Chan, and T. D. Veenstra. 2004. Sheathless electrospray ionization interfaces for capillary electrophoresis-mass spectrometric detection advantages and limitations. J. Chromatogr. A 1053:37-42.
47.Chen, Y. R., M. C. Tseng, and G. R. Her. 2005. Design and performance of a low-flow capillary electrophoresis-electrospray-mass spectrometry interface using an emitter with dual beveled edge. Electrophoresis 26:1376-1382.
48.Tseng, M. C., Y. R. Chen, and G. R. Her. 2004. A beveled tip sheath liquid interface for capillary electrophoresis-electrospray ionization-mass spectrometry. Electrophoresis 25:2084-2089.
49.Trapp, O., E. W. Pearce, J. R. Kimmel, O. K. Yoon, I. A. Zuleta, and R. N. Zare. 2005. A soft on-column metal coating procedure for robust sheathless electrospray emitters used in capillary electrophoresis-mass spectrometry. Electrophoresis 26:1358-1365.
50.Page, J. S., S. S. Rubakhin, and J. V. Sweedler. 2000. Direct cellular assays using off-line capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 125:555-561.
51.Chakel, J. A., E. Pungor, W. S. Hancock, and S. A. Swedberg. 1997. Analysis of recombinant DNA-derived glycoproteins via highperformance capillary electrophoresis coupled with off-line matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Chromatogr. B 689:215-220.
52.Yeung, K. K., A. G. Kiceniuk, and L. Li. 2001. Capillary electrophoresis using a surfactant-treated capillary coupled with offline matrix-assisted laser desorption ionization mass spectrometry for high efficiency and sensitivity detection of proteins. J. Chromatogr. A 931:153-162.
53.Rubakhin, S. S., J. S. Page, B. R. Monroe, and J. V. Sweedler. 2001. Analysis of cellular release using capillary electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 22:3752-3758.
54.King, M., B. Paull, P. R. Haddad, and M. Macka. 2002. Performance of a simple UV LED light source in the capillary electrophoresis of inorganic anions with indirect detection using a chromate background electrolyte. Analyst 127:1564-1567.
55.Su, A.-K., and C.-H. Lin. 2003. Determination of riboflavin in urine by capillary electrophoresis-blue light emitting diode-induced fluorescence detection combined with a stacking technique. J. Chromatogr. B 785:39-46.
56.Chen, S.-J., M.-J. Chen, and H.-T. Chang. 2003. Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis. J. Chromatogr A.
57.Sluszny, C., Y. He, and E. S. Yeung. 2005. Light-emitting diode-induced fluorescence detection of native proteins in capillary electrophoresis. Electrophoresis 26:4197-4203.
58.Zhao, S., H. Yuan, and D. Xiao. 2006. Optical fiber light-emitting diode-induced fluorescence detection for capillary electrophoresis. Electrophoresis 27:461-467.
59.Wang, S. C., and M. D. Morris. 2000. Plastic microchip electrophoresis with analyte velocity modulation. application to fluorescence background rejection. Anal. Chem. 72:1448-1452.
60.Wang, S. L., X. J. Huang, Z. L. Fang, and P. K. Dasgupta. 2001. A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Anal. Chem. 73:4545-4549.
61.Hillebrand, S., J. R. Schoffen, M. Mandaji, C. Termignoni, H. P. H. Grieneisen, and T. B. L. Kist. 2002. Performance of an ultraviolet light-emitting diode-induced fluorescence detector in capillary electrophoresis. Electrophoresis 23:2445-2448.
62.Chiang, M. T., and C. W. Whang. 2001. Tris(2,2 ''-bipyridyl)ruthenium(III)-based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis. J. Chromatogr. A 934:59-66.
63.Cao, W., J. Liu, H. Qiu, X. Yang, and E. Wang. 2002. Simultaneous Determination of Tramadol and Lidocaine in Urine by End-column Capillary Electrophoresis with Electrochemiluminescence Detection. Electroanalysis 14:1571-1576.
64.Qiu, H., X.-B. Yin, J. Yan, X. Zhao, X. Yang, and E. Wang. 2005. Simultaneous electrochemical and electrochemiluminescence detection for microchip and conventional capillary electrophoresis. Electrophoresis 26:687-693.
65.Sreedhar, M., Y.-W. Lin, W.-L. Tseng, and H.-T. Chang. 2005. Determination of tertiary amines based on pH junctions and field amplification in capillary electrophoresis with electrochemiluminescence detection. Electrophoresis 26:2984-2990.
66.Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, and K. Dewar. 2001. Initial sequencing and analysis of the human genome. Nature 409:860-921.
67.Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, et al. 2001. The sequence of the human genome. Science 291:1304-1351.
68.Cohen, A. S., D. R. Najarian, and B. L. Karger. 1990. Separation and analysis of DNA sequence reaction products by capillary gel electrophoresis. J Chromatogr 516:49-60.
69.Chang, H. T., and E. S. Yeung. 1995. Poly(ethyleneoxide) for high-resolution and high-speed separation of DNA by capillary electrophoresis. J. Chromatogr. B 669:113-123.
70.Fung, E. N., and E. S. Yeung. 1995. High-speed DNA-sequencing by using mixed poly(ethylene oxide) solutions in uncoated capillary columns. Anal. Chem. 67:1913-1919.
71.Ruiz-Martinez, M. C., J. Berka, A. Belenkii, F. Foret, A. W. Miller, and B. L. Karger. 1993. DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection. Anal Chem 65:2851-2858.
72.Zhang, J., Y. Fang, J. Y. Hou, H. J. Ren, R. Jiang, P. Roos, and N. J. Dovichi. 1995. Use of non-cross-linked polyacrylamide for four-color DNA sequencing by capillary electrophoresis separation of fragments up to 640 bases in length in two hours. Anal Chem 67:4589-4593.
73.Madabhushi, R. S. 1998. Separation of 4-color DNA sequencing extension products in noncovalently coated capillaries using low viscosity polymer solutions. Electrophoresis 19:224-230.
74.Menchen, S., B. Johnson, M. A. Winnik, and B. Xu. 1996. Flowable networks as DNA sequencing media in capillary columns. Electrophoresis 17:1451-1459.
75.Bashkin, J., M. Marsh, D. Barker, and R. Johnston. 1996. DNA sequencing by capillary electrophoresis with a hydroxyethylcellulose sieving buffer. Appl Theor Electrophor 6:23-28.
76.Tseng, W. L., M. M. Hsieh, S. J. Wang, C. C. Huang, Y. C. Lin, P. L. Chang, and H. T. Chang. 2001. Analysis of large-volume DNA markers and polymerase chain reaction products by capillary electrophoresis in the presence of electroosmotic flow. J. Chromatogr. A 927:179-190.
77.Tseng, W. L., and H. T. Chang. 2001. A new strategy for optimizing sensitivity, speed, and resolution in capillary electrophoretic separation of DNA. Electrophoresis 22:763-770.
78.Huang, M. F., C. E. Hsu, W. L. Tseng, Y. C. Lin, and H. T. Chang. 2001. Separation of dsDNA in the presence of electroosmotic flow under discontinuous conditions. Electrophoresis 22:2281-2290.
79.Hsieh, M. M., W. L. Tseng, and H. T. Chang. 2000. On-column preconcentration and separation of DNA fragments using polymer solutions in the presence of electroosmotic flow. Electrophoresis 21:2904-2910.
80.Chen, H. S., and H. T. Chang. 1999. Electrophoretic separation of small DNA fragments in the presence of electroosmotic flow using poly(ethylene oxide) solutions. Anal. Chem. 71:2033-2036.
81.Chen, H. S., and H. T. Chang. 1999. Stepwise capillary electrophoretic separation of DNA fragments using poly(ethylene oxide) solutions in the presence of electroosmotic flow. J. Chromatogr. A 853:337-347.
82.Castilho, L., M. Rios, C. Bianco, J. Pellegrino, Jr., F. L. Alberto, S. T. Saad, and F. F. Costa. 2002. DNA-based typing of blood groups for the management of multiply-transfused sickle cell disease patients. Transfusion 42:232-238.
83.Bahrmand, A. R., T. G. Bakayeva, and V. V. Bakayev. 1998. Use of restriction enzyme analysis of amplified DNA coding for the hsp65 gene and polymerase chain reaction with universal primer for rapid differentiation of mycobacterium species in the clinical laboratory. Scand. J. Infect. Dis. 30:477-480.
84.Hernandez, S. M., G. P. Morlock, W. R. Butler, J. T. Crawford, and R. C. Cooksey. 1999. Identification of Mycobacterium species by PCR-restriction fragment length polymorphism analyses using fluorescence capillary electrophoresis. J. Clin. Microbiol. 37:3688-3692.
85.Taylor, T. B., C. Patterson, Y. Hale, and W. W. Safranek. 1997. Routine use of PCR-restriction fragment length polymorphism analysis for identification of mycobacteria growing in liquid media. J. Clin. Microbiol. 35:79-85.
86.Ho, H.-T., P.-L. Chang, C.-C. Hung, and H.-T. Chang. 2004. Capillary electrophoretic restriction fragment length polymorphism patterns for the mycobacterial hsp65 Gene. J. Clin. Microbiol. 42:3525-3531.
87.Persidis, A. 1998. Proteomics - An ambitious drug development platform attempts to link gene sequence to expressed phenotype under various physiological states. Nat. Biotechnol. 16:393-394.
88.Hood, L. 2002. A personal view of molecular technology and how it has changed biology. J. Prot. Res. 1:399-409.
89.Wan, Q. H., and X. C. Le. 2000. Studies of protein--DNA interactions by capillary electrophoresis/laser-induced fluorescence polarization. Anal. Chem. 72:5583-5589.
90.Wang, Q., G. Luo, J. Ou, and W. S. Yeung. 1999. Noncompetitive immunoassays using protein G affinity capillary chromatography and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A 848:139-148.
91.Zhou, W., K. B. Tomer, and M. G. Khaledi. 2000. Evaluation of the binding between potential anti-HIV DNA-based drugs and viral envelope glycoprotein gp120 by capillary electrophoresis with laser-induced fluorescence detection. Anal. Biochem. 284:334-341.
92.Zhang, C. X., F. Xiang, L. Pasa-Tolic, G. A. Anderson, T. D. Veenstra, and R. D. Smith. 2000. Stepwise mobilization of focused proteins in capillary isoelectric focusing mass spectrometry. Anal. Chem. 72:1462-1468.
93.Shen, Y., F. Xiang, T. D. Veenstra, E. N. Fung, and R. D. Smith. 1999. High-resolution capillary isoelectric focusing of complex protein mixtures from lysates of microorganisms. Anal. Chem. 71:5348-5353.
94.Jacek Bojarski, H. Y. A.-E. 1997. Application of capillary electrophoresis for the analysis of chiral drugs in biological fluids. Electrophoresis 18:965-969.
95.Zaugg, S., and W. Thormann. 2000. Enantioselective determination of drugs in body fluids by capillary electrophoresis. J. Chromatogr. A 875:27-41.
96.Hadley, M. R., P. Camilleri, and A. J. Hutt. 2000. Enantiospecific analysis by capillary electrophoresis: applications in drug metabolism and pharmacokinetics. Electrophoresis 21:1953-1976.
97.Heitmeier, S., and G. Blaschke. 1999. Direct determination of paracetamol and its metabolites in urine and serum by capillary electrophoresis with ultraviolet and mass spectrometric detection. J. Chromatogr. B 721:93-108.
98.Perez-Ruiz, T., C. Martinez-Lozano, A. Sanz, and E. Bravo. 2000. Sensitive method for the determination of ambroxol in body fluids by capillary electrophoresis and fluorescence detection. J. Chromatogr. B 742:205-210.
99.Spackman, D. H., W. H. Stein, and S. Moore. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30:1190.
100.Schuster, R. 1988. Determination of amino-acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid-chromatography. J. Chromatogr. 431:271-284.
101.Smith, J. T. 1999. Recent advancements in amino acid analysis using capillary electrophoresis. Electrophoresis 20:3078-3083.
102.Prata, C., P. Bonnafous, N. Fraysse, M. Treilhou, V. Poinsot, and F. Couderc. 2001. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 22:4129-4138.
103.Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350-1354.
104.Enarson, D. A., and J. Chretien. 1999. Epidemiology of respiratory infectious diseases. Curr. Opin. Pulm. Med. 5:128-135.
105.Galtung-Hansen, O. 1955. Tuberculosis mortality and morbidity and tuberculin sensitivity in Norway. World Health Organization EURO-84/15.
106.Horwitz, O. 1971. Tuberculosis risk and marital status. Am. Rev. Respir. Dis. 104:22-31.
107.Grzybowski, S., E. A. Allen, W. A. Black, C. W. Chao, D. A. Enarson, J. L. Isaac-Renton, S. H. Peck, and H. J. Xie. 1987. Inner-city survey for tuberculosis: evaluation of diagnostic methods. Am. Rev. Respir. Dis. 135:1311-1315.
108.De Cock, K. M., B. Soro, I. M. Coulibaly, and S. B. Lucas. 1992. Tuberculosis and HIV infection in sub-Saharan Africa. JAMA 268:1581-1587.
109.Beddall, A. C., F. G. Hill, and R. H. George. 1983. Haemophilia and tuberculosis. Lancet 1:1226.
110.Thorn, P., V. Brookes, and J. Waterhouse. 1956. Peptic ulcer, partial gastrectomy, and pulmonary tuberculosis. Br. Med. J. 1:603-608.
111.Kim, H. A., C. D. Yoo, H. J. Baek, E. B. Lee, C. Ahn, J. S. Han, S. Kim, J. S. Lee, K. W. Choe, and Y. W. Song. 1998. Mycobacterium tuberculosis infection in a corticosteroid-treated rheumatic disease patient population. Clin. Exp. Rheumatol. 16:9-13.
112.Pablos-Mendez, A., J. Blustein, and C. A. Knirsch. 1997. The role of diabetes mellitus in the higher prevalence of tuberculosis among Hispanics. Am. J. Public Health 87:574-579.
113.Westerholm, P., A. Ahlmark, R. Maasing, and I. Segelberg. 1986. Silicosis and risk of lung cancer or lung tuberculosis: a cohort study. Environ. Res. 41:339-350.
114.Barr, R. G., and R. Menzies. 1994. The effect of war on tuberculosis. Results of a tuberculin survey among displaced persons in El Salvador and a review of the literature. Tuber. Lung Dis. 75:251-259.
115.Schulzer, M., J. M. Fitzgerald, D. A. Enarson, and S. Grzybowski. 1992. An estimate of the future size of the tuberculosis problem in sub-Saharan Africa resulting from HIV infection. Tuber. Lung Dis. 73:52-58.
116.Choudhri, S., J. Manfreda, J. Wolfe, S. Parker, and R. Long. 1995. Clinical significance of nontuberculous mycobacteria isolates in a Canadian tertiary care center. Clin. Infect. Dis. 21:128-133.
117.Reichman, L. B., and E. S. Hershfield. 2000. Tuberculosis-A comprehensive international approach. Marcel Dekker, New York.
118.Chaisson, R. E., G. F. Schecter, C. P. Theuer, G. W. Rutherford, D. F. Echenberg, and P. C. Hopewell. 1987. Tuberculosis in patients with the acquired immunodeficiency syndrome. Clinical features, response to therapy, and survival. Am. Rev. Respir. Dis. 136:570-574.
119.Shafer, R. W., D. S. Kim, J. P. Weiss, and J. M. Quale. 1991. Extrapulmonary tuberculosis in patients with human immunodeficiency virus infection. Medicine (Baltimore). 70:384-397.
120.American, Thoracic, Society, and, Centers, for, Dissease, and Control. 2000. Diagnostic standards and classification of tuberculosis in adults and children. Am. J. Respir. Crit. Care Med. 161:1376-1395.
121.Ebdrup, L., M. Storgaard, S. Jensen-Fangel, and N. Obel. 2003. Ten years of extrapulmonary tuberculosis in a Danish university clinic. Scand. J. Infect. Dis. 35:244-246.
122.Seibert, A. F., J. Haynes, Jr., R. Middleton, and J. B. Bass, Jr. 1991. Tuberculous pleural effusion. Twenty-year experience. Chest 99:883-886.
123.Simon, H. B., A. J. Weinstein, M. S. Pasternak, M. N. Swartz, and L. J. Kunz. 1977. Genitourinary tuberculosis. Clinical features in a general hospital population. Am. J. Med. 63:410-420.
124.Christensen, W. I. 1974. Genitourinary tuberculosis: review of 102 cases. Medicine (Baltimore). 53:377-390.
125.Berney, S., M. Goldstein, and F. Bishko. 1972. Clinical and diagnostic features of tuberculous arthritis. Am. J. Med. 53:36-42.
126.Watts, H. G., and R. M. Lifeso. 1996. Tuberculosis of bones and joints. J. Bone Joint Surg. Am. 78:288-298.
127.Auerbach, O. 1951. Tuberculous meningitis: correlation of therapeutic results with the pathogenesis and pathologic changes. II. Pathologic changes in untreated and treated cases. Am. Rev. Tuberc. 64:419-429.
128.Bhansali, S. K. 1977. Abdominal tuberculosis. Experiences with 300 cases. Am. J. Gastroenterol. 67:324-337.
129.Saffinger, M. 1995. Role of the laboratory in evaluating patients with mycobacterial disease. Clin. Microbiol. Newslett. 17:108-111.
130.Hobby, G. L., A. P. Holman, M. D. Iseman, and J. M. Jones. 1973. Enumeration of tubercle bacilli in sputum of patients with pulmonary tuberculosis. Antimicrob. Agents Chemother. 4:94-104.
131.Yeager, H., Jr., J. Lacy, L. R. Smith, and C. A. LeMaistre. 1967. Quantitative studies of mycobacterial populations in sputum and saliva. Am. Rev. Respir. Dis. 95:998-1004.
132.Grzybowski, S., G. D. Barnett, and K. Styblo. 1975. Contacts of cases of active pulmonary tuberculosis. Bull. Int. Union Tuberc. 50:90-106.
133.Shaw, J. B., and N. Wynn-Williams. 1954. Infectivity of pulmonary tuberculosis in relation to sputum status. Am Rev Tuberc 69:724-732.
134.Behr, M. A., S. A. Warren, H. Salamon, P. C. Hopewell, A. Ponce de Leon, C. L. Daley, and P. M. Small. 1999. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 353:444-449.
135.Crampin, A. C., S. Floyd, F. Mwaungulu, G. Black, R. Ndhlovu, E. Mwaiyeghele, J. R. Glynn, D. K. Warndorff, and P. E. Fine. 2001. Comparison of two versus three smears in identifying culture-positive tuberculosis patients in a rural African setting with high HIV prevalence. Int. J. Tuberc. Lung Dis. 5:994-999.
136.Kubica, G., and K. Kent. 1985. Public health mycobacteriology: a guide for the level III laboratory. Atlanta: Department of Health and Human Services, Public Health Service, Centers for Disease Control:60-63.
137.Morgan, M. A., C. D. Horstmeier, D. R. DeYoung, and G. D. Roberts. 1983. Comparison of a radiometric method (BACTEC) and conventional culture media for recovery of mycobacteria from smear-negative specimens. J. Clin. Microbiol. 18:384-388.
138.Workshop, A. T. S. 1997. Rapid diagnostic tests for tuberculosis: what is the appropriate use? Am. J. Respir. Crit. Care Med. 155:1804-1814.
139.Barnes, P. F., and M. D. Cave. 2003. Molecular epidemiology of tuberculosis. N. Engl. J. Med. 349:1149-1156.
140.Martins, L. C., I. A. Paschoal, A. Von Nowakonski, S. A. Silva, F. F. Costa, and L. S. Ward. 2000. Nested-PCR using MPB64 fragment improves the diagnosis of pleural and meningeal tuberculosis. Rev. Soc. Bras. Med. Trop. 33:253-257.
141.Beige, J., J. Lokies, T. Schaberg, U. Finckh, M. Fischer, H. Mauch, H. Lode, B. Kohler, and A. Rolfs. 1995. Clinical evaluation of a Mycobacterium tuberculosis PCR assay. J. Clin. Microbiol. 33:90-95.
142.Mackay, I. M. 2004. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect 10:190-212.
143.Cockerill, F. R., 3rd. 2003. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory. Arch. Pathol. Lab. Med. 127:1112-1120.
144.Shrestha, N. K., M. J. Tuohy, G. S. Hall, U. Reischl, S. M. Gordon, and G. W. Procop. 2003. Detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacterial isolates by real-time PCR. J. Clin. Microbiol. 41:5121-5126.
145.Takahashi, T., and T. Nakayama. 2006. Novel technique of quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA. J. Clin. Microbiol. 44:1029-1039.
1.Hamase, K., A. Morikawa, and K. Zaitsu. 2002. γ-Amino acids in mammals and their diagnostic value. J. Chromatogr. B 781:73-91.
2.Larson, A. A., S. L. Giovengo, I. J. Russell, and J. E. Michalek. 2000. Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain 87:201-211.
3.Shah, A. J., F. Crespi, and C. Heidbreder. 2002. Amino acid neurotransmitters: separation approaches and diagnostic value. J. Chromatogr. B 781:151-163.
4.Sethuraman, R., T. L. Lee, and S. Tachibana. 2004. Simple quantitative HPLC method for measuring physiologic amino acids in cerebrospinal fluid without pretreatment. Clin. Chem. 50:665-669.
5.Owens, D. F., and A. R. Kriegstein. 2002. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3:715-727.
6.Smith, A., and P. Simpson. 2003. Methodological approaches for the study of GABAA receptor pharmacology and functional responses. Anal. Bioanal. Chem. 377:843-851.
7.Lee, I. H., D. Pinto, E. A. Arriaga, Z. Zhang, and N. J. Dovichi. 1998. Picomolar analysis of proteins using electrophoretically mediated microanalysis and capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 70:4546-4548.
8.Lin, Y.-W., T.-C. Chiu, and H.-T. Chang. 2003. Laser-induced fluorescence technique for DNA and proteins separated by capillary electrophoresis. J. Chromatogr. B 793:37-48.
9.Yinfa Ma, G. L. M. D. I. S. 2004. Recent developments in the determination of urinary cancer biomarkers by capillary electrophoresis. Electrophoresis 25:1473-1484.
10.Huck, C. W., G. Stecher, R. Bakry, and G. K. Bonn. 2003. Recent progress in high-performance capillary bioseparations. Electrophoresis 24:3977-3997.
11.Quigley, W. W. C., and N. J. Dovichi. 2004. Capillary Electrophoresis for the Analysis of Biopolymers. Anal. Chem. 76:4645-4658.
12.King, M., B. Paull, P. R. Haddad, and M. Macka. 2002. Performance of a simple UV LED light source in the capillary electrophoresis of inorganic anions with indirect detection using a chromate background electrolyte. Analyst 127:1564-1567.
13.Su, A.-K., and C.-H. Lin. 2003. Determination of riboflavin in urine by capillary electrophoresis-blue light emitting diode-induced fluorescence detection combined with a stacking technique. J. Chromatogr. B 785:39-46.
14.Chen, S.-J., M.-J. Chen, and H.-T. Chang. 2003. Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis. J. Chromatogr A.
15.Wang, S. C., and M. D. Morris. 2000. Plastic microchip electrophoresis with analyte velocity modulation. application to fluorescence background rejection. Anal. Chem. 72:1448-1452.
16.Wang, S. L., X. J. Huang, Z. L. Fang, and P. K. Dasgupta. 2001. A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Anal. Chem. 73:4545-4549.
17.Hillebrand, S., J. R. Schoffen, M. Mandaji, C. Termignoni, H. P. Grieneisen, and T. B. Kist. 2002. Performance of an ultraviolet light-emitting diode-induced fluorescence detector in capillary electrophoresis. Electrophoresis 23:2445-2448.
18.Ummadi, M., and B. C. Weimer. 2002. Use of capillary electrophoresis and laser-induced fluorescence for attomole detection of amino acids. J. Chromatogr. A 964:243-253.
19.Ye, M. L., S. Hu, W. W. C. Quigley, and N. J. Dovichi. 2004. Post-column fluorescence derivatization of proteins and peptides in capillary electrophoresis with a sheath flow reactor and 488 nm argon ion laser excitation. J. Chromatogr. A 1022:201-206.
20.Oguri, S., M. Hibino, and M. Mizunuma. 2004. Performance of throughout in-capillary derivatization capillary electrophoresis employing an on-line sample and run buffer loading device. Electrophoresis 25:1810-1816.
21.Kennedy, R. T., J. E. Thompson, and T. W. Vickroy. 2002. In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. J. Neurosci. Meth. 114:39-49.
22.Lu, M. J., T. C. Chiu, P. L. Chang, H. T. Ho, and H. T. Chang. 2005. Determination of glycine, glutamine, glutamate, and gamma-aminobutyric acid in cerebrospinal fluids by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Anal. Chim. Acta 538:143-150.
23.Li, H., H. Wang, J. H. Chen, L. H. Wang, H. S. Zhang, and Y. Fan. 2003. Determination of amino acid neurotransmitters in cerebral cortex of rats administered with baicalin prior to cerebral ischemia by capillary electrophoresis-laser-induced fluorescence detection. J. Chromatogr. B 788:93-101.
24.Chan, K. C., G. M. Muschik, and H. J. Issaq. 2000. Solid-state UV laser-induced fluorescence detection in capillary electrophoresis. Electrophoresis 21:2062-2066.
25.Wu, J., Z. H. Chen, and N. J. Dovichi. 2000. Reaction rate, activation energy, and detection limit for the reaction of 5-furoylquinoline-3-carboxaldehyde with neurotransmitters in artificial cerebrospinal fluid. J. Chromatogr. B 741:85-88.
26.Kawasaki, T., T. Higuchi, K. Imai, and O. S. Wong. 1989. Determination of dopamine, norepinephrine, and related trace amines by prechromatographic derivatization with naphthalene-2,3-dicarboxaldehyde. Anal. Biochem. 180:279-285.
27.Roach, M. C., and M. D. Harmony. 1987. Determination of amino-acids at subfemtomole levels by high-performance liquid-chromatography with laser-induced fluorescence detection. Anal.Chem. 59:411-415.
28.Demontigny, P., J. F. Stobaugh, R. S. Givens, R. G. Carlson, K. Srinivasachar, L. A. Sternson, and T. Higuchi. 1987. Naphthalene-2,3-dicarboxaldehyde cyanide ion - a rationally designed fluorogenic reagent for primary amines. Anal. Chem. 59:1096-1101.
29.Robert, F., L. Bert, L. Denoroy, and B. Renaud. 1995. Capillary zone electrophoresis with laser-induced fluorescence detection for the determination of nanomolar concentrations of noradrenaline and dopamine - application to brain microdialysate analysis. Anal. Chem. 67:1838-1844.
30.Osbourn, D. M., D. J. Weiss, and C. E. Lunte. 2000. On-line preconcentration methods for capillary electrophoresis. Electrophoresis 21:2768-2779.
31.Chang, H.-T., and T.-C. Chiu. 2003. On-column concentration techniques in capillary electrophoresis using polymer solutions. G.I.T. Lab. J. 2:64-65.
32.Urbánek, M., L. Křivánková, and P. Boček. 2003. Stacking phenomena in electromigration: From basic principles to practical procedures. Electrophoresis 24:466-485.
33.Isoo, K., and S. Terabe. 2003. Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis. Anal. Chem. 75:6789-6798.
34.Hsieh, M.-M., C.-E. Hsu, W.-L. Tseng, and H.-T. Chang. 2002. Amplification of small analytes in polymer solution by capillary electrophoresis. Electrophoresis 23:1633-1641.
35.Kuo, I.-T., T.-C. Chiu, and H.-T. Chang. 2003. On-column concentration and separation of double-stranded DNA by gradient capillary electrophoresis. Electrophoresis 24:3339-3347.
36.Ho, H.-T., P.-L. Chang, C.-C. Hung, and H.-T. Chang. 2004. Capillary electrophoretic restriction fragment length polymorphism patterns for the mycobacterial hsp65 gene. J. Clin. Microbiol. 42:3525-3531.
37.Tseng, W. L., and H. T. Chang. 2000. On-line concentration and separation of proteins by capillary electrophoresis using polymer solutions. Anal. Chem. 72:4805-4811.
38.Chiu, T. C., Y. W. Lin, C. C. Huang, A. Chrambach, and H. T. Chang. 2003. A simple, rapid and sensitive method for analysis of SYPRO Red labeled sodium dodecyl sulfate-protein complexes by capillary electrophoresis with laser-induced fluorescence. Electrophoresis 24:1730-1736.
39.Huang, C. C., M. M. Hsieh, T. C. Chiu, Y. C. Lin, and H. T. Chang. 2001. Maximization of injection volumes for DNA analysis in capillary electrophoresis. Electrophoresis 22:4328-4332.
40.Preisler, J., and E. S. Yeung. 1996. Characterization of Nonbonded Poly(ethylene oxide) Coating for Capillary Electrophoresis via Continuous Monitoring of Electroosmotic Flow. Anal. Chem. 68:2885-2889.
41.Chen, H. S., and H. T. Chang. 1999. Electrophoretic separation of small DNA fragments in the presence of electroosmotic flow using poly(ethylene oxide) solutions. Anal. Chem. 71:2033-2036.
42.Tseng, W. L., and H. T. Chang. 2001. Regulation of electroosmotic flow and electrophoretic mobility of proteins for concentration without desalting. J. Chromatogr. A 924:93-101.
43.Choy, T. M. H., W. H. Chan, A. W. M. Lee, and C. W. Huie. 2003. Stacking and separation of enantiomers by acetonitrile-sait mixtures in micellar electrokinetic chromatography. Electrophoresis 24:3116-3123.
44.Veledo, M. T., M. de Frutos, and J. C. Diez-Masa. 2005. Amino acids determination using capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. J. Chromatogr. A 1079:335-343.
45. Sethuraman, R., T. L. Lee, S. Tachibana. 2004. Simple quantitative HPLC method for measuring physiologic amino acids in cerebrospinal fluid without pretreatment. Clin. Chem. 50:665-669.
1.Marsh, A., B. Clark, M. Broderick, J. Power, S. Donegan, and K. Altria. 2004. Recent advances in microemulsion electrokinetic chromatography. Electrophoresis 25:3970-3980.
2.Hu, S., and N. J. Dovichi. 2002. Capillary electrophoresis for the analysis of biopolymers. Anal. Chem. 74:2833-2850.
3.Cooper, J. W., Y. J. Wang, and C. S. Lee. 2004. Recent advances in capillary separations for proteomics. Electrophoresis 25:3913-3926.
4.Swinney, K., and D. J. Bornhop. 2000. Detection in capillary electrophoresis. Electrophoresis 21:1239-1250.
5.Fliser, D., S. Wittke, and H. Mischak. 2005. Capillary electrophoresis coupled to mass spectrometry for clinical diagnostic purposes. Electrophoresis 26:2708-2716.
6.Zhao, S. L., C. Xie, X. Lu, Y. R. Song, and Y. M. Liu. 2005. A facile and sensitive chemiluminescence detection of amino acids in biological samples after capillary electrophoretic separation. Electrophoresis 26:1745-1750.
7.Yan, J., X. Yang, and E. Wang. 2005. Fabrication of a Poly(dimethylsiloxane)-Based Electrochemiluminescence Detection Cell for Capillary Electrophoresis. Anal. Chem. 77:5385-5388.
8.Cao, W. D., J. F. Liu, X. R. Yang, and E. Wang. 2002. New technique for capillary electrophoresis directly coupled with end-column electrochemiluminescence detection. Electrophoresis 23:3683-3691.
9.Melanson, J. E., C. A. Boulet, and C. A. Lucy. 2001. Indirect laser-induced fluorescence detection for capillary electrophoresis using a violet diode laser. Anal. Chem. 73:1809-1813.
10.Kang, J., X.-B. Yin, X. Yan, and E. Wang. 2005. Electrochemiluminescence quenching as an indirect method for detection of dopamine and epinephrine with capillary electrophoresis. ELECTROPHORESIS 26:1732-1736.
11.Chen, S. J., M. J. Chen, and H. T. Chang. 2003. Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis. J. Chromatogr. A 1017:215-224.
12.Lu, M. J., T. C. Chiu, P. L. Chang, H. T. Ho, and H. T. Chang. 2005. Determination of glycine, glutamine, glutamate, and gamma-aminobutyric acid in cerebrospinal fluids by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Anal. Chim. Acta 538:143-150.
13.Sreedhar, M., Y.-W. Lin, W.-L. Tseng, and H.-T. Chang. 2005. Determination of tertiary amines based on pH junctions and field amplification in capillary electrophoresis with electrochemiluminescence detection. ELECTROPHORESIS 26:2984-2990.
14.Schulpis, K. H., G. A. Karikas, J. Tjamouranis, H. Michelakakis, and S. Tsakiris. 2002. Acetylcholinesterase activity and biogenic amines in phenylketonuria. Clin. Chem. 48:1794-1796.
15.Roach, M. C., and M. D. Harmony. 1987. Determination of amino acids at subfemtomole levels by high-performance liquid chromatography with laser-induced fluorescence detection. Anal Chem 59:411-415.
16.Qiu, H., J. Yan, X. Sun, J. Liu, W. Cao, X. Yang, and E. Wang. 2003. Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector. Anal Chem 75:5435-5440.
17.Brune, S. N., and D. R. Bobbitt. 1992. Role of electron-donating withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2''-Bipyridyl)Ruthenium(III) with amino acids. Anal. Chem. 64:166-170.
18.Noffsinger, J. B., and N. D. Danielson. 1987. Generation of chemiluminescence upon reaction of aliphatic-amines with tris(2,2''-Bipyridine)Ruthenium(III). Anal. Chem. 59:865-868.
19.Chiang, M. T., and C. W. Whang. 2001. Tris(2,2 ''-bipyridyl)ruthenium(III)-based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis. J. Chromatogr. A 934:59-66.
20.Cao, W., J. Liu, H. Qiu, X. Yang, and E. Wang. 2002. Simultaneous determination of tramadol and lidocaine in urine by end-column capillary electrophoresis with electrochemiluminescence detection. Electroanalysis 14:1571-1576.
21.Demontigny, P., J. F. Stobaugh, R. S. Givens, R. G. Carlson, K. Srinivasachar, L. A. Sternson, and T. Higuchi. 1987. Naphthalene-2,3-dicarboxaldehyde cyanide ion - a rationally designed fluorogenic reagent for primary amines. Anal. Chem. 59:1096-1101.
22.Brune, S. N., and D. R. Bobbitt. 1991. Effect of pH on the reaction of tris(2,2''-Bipyridyl)Ruthenium(III) with amino acids - implications for their detection. Talanta 38:419-424.
23.Matysik, F. M. 1999. Application of non-aqueous capillary electrophoresis with electrochemical detection to the determination of nicotine in tobacco. J. Chromatogr. A 853:27-34.
24.Marsh, A., B. J. Clark, and K. D. Altria. 2004. Orthogonal separations of nicotine and nicotine-related alkaloids by various capillary electrophoretic modes. Electrophoresis 25:1270-1277.
25.Wan, H., M. Ohman, and L. G. Blomberg. 2001. Chemometric modeling of neurotransmitter amino acid separation in normal and reversed migration micellar electrokinetic chromatography. J. Chromatogr. A 916:255-263.
26.Hsieh, M. M., C. E. Hsu, W. L. Tseng, and H. T. Chang. 2002. Amplification of small analytes in polymer solution by capillary electrophoresis. Electrophoresis 23:1633-1641.
27.Fekkes, D., A. Voskuilen-Kooyman, R. Jankie, and J. Huijmans. 2000. Precise analysis of primary amino acids in urine by an automated high-performance liquid chromatography method: comparison with ion-exchange chromatography. J. Chromatogr. B 744:183-188.
28.Schoengold, D. M., and R. H. deFiore. 1977. Plasma free amino acid patterns in pregnancy: relationships to gestational age and applications to detection of fetal distress. Clin Chem 23:1684-1688.
29.Mitsubuchi, H., M. Owada, and F. Endo. 2005. Markers associated with inborn errors of metabolism of branched-chain amino acids and their relevance to upper levels of intake in healthy people: an implication from clinical and molecular investigations on maple syrup urine disease. J. Nutr. 135:1565S-1570.
30.Kamoun, P. P., and P. R. Parvy. 1981. Analysis for free amino acids in pre-breakfast urine samples Clin. Chem. 27:783.
31.Goodwin, J. F. 1972. Spectrophotometry of Proline in Plasma and Urine. Clin. Chem. 18:449-453.
32.Liakakos, D., Karpouza.J, and Agathopo.A. 1968. Hyperprolinemia and hyperprolinuria in thalassemia. J. Pediatr. 73:419-421.
33.Jacquet, H., C. Demily, E. Houy, B. Hecketsweiler, J. Bou, G. Raux, J. Lerond, G. Allio, S. Haouzir, A. Tillaux, C. Bellegou, G. Fouldrin, P. Delamillieure, J. F. Menard, S. Dollfus, T. D''Amato, M. Petit, F. Thibaut, T. Frebourg, and D. Campion. 2005. Hyperprolinemia is a risk factor for schizoaffective disorder. Mol. Psychiatr. 10:479-485.
34.Qu, Y., R. H. Slocum, J. Fu, W. E. Rasmussen, H. D. Rector, J. B. Miller, and J. G. Coldwell. 2001. Quantitative amino acid analysis using a Beckman system gold HPLC 126AA analyzer. Clin. Chim. Acta 312:153-162.
35.Soga, T., Y. Kakazu, M. Robert, M. Tomita, and T. Nishioka. 2004. Qualitative and quantitative analysis of amino acids by capillary electrophoresis-electrospray ionization-tandem mass spectrometry. Electrophoresis 25:1964-1972.
36.Wu, W., D. L. Ashley, and C. H. Watson. 2002. Determination of nicotine and other minor alkaloids in international cigarettes by solid-phase microextraction and gas chromatography/mass spectrometry. Anal. Chem. 74:4878-4884.
37.Bolinder, G., L. Alfredsson, A. Englund, and U. de Faire. 1994. Smokeless tobacco use and increased cardiovascular mortality among Swedish construction workers. Am J Public Health 84:399-404.
38.Tso, T. C., J. E. McMurtrey, and T. Sorokin. 1960. Mineral deficiency and organic constituents in tobacco plants. I. alkaloids, sugars, and organic acids. Plant Physiol 35:860-864.
39.Tso, T. C., and J. E. McMurtrey. 1960. Mineral deficiency and organic constituents in tobacco plants. II. amino acids. Plant Physiol 35:865-870.
40.Lourenco, M. D., A. Matos, and M. C. Oliveira. 2000. Gas-liquid chromatographic determination of major tobacco alkaloids. J. Chromatogr. A 898:235-243.
41.Kullman, J. P., X. H. Chen, and D. W. Armstrong. 1999. Evaluation of the enantiomeric composition of amino acids in tobacco. Chirality 11:669-673.
42.Dawson, R. F. 1939. Influence of certain amino acids and of nicotinic acid upon the nicotine content of tobacco leaves. Plant Physiol 14:479-491.
43.Sharma, A., and B. A. Hamelin. 2003. Classic histamine H-1 receptor antagonists: A critical review of their metabolic and pharmacokinetic fate from a bird''s eye view. Curr. Drug Metab. 4:105-129.
44.Hawes, E. M. 1998. N+-glucuronidation, a common pathway in human metabolism of drugs with a tertiary amine group. Drug Metab. Dispos. 26:830-837.
1.Layman, D. K. 2003. The role of leucine in weight loss diets and glucose homeostasis. J. Nutr. 133:261S-267.
2.Mero, A. 1999. Leucine supplementation and intensive training. Sports Med. 27:347-358.
3.De Palo, E. F., R. Gatti, E. Cappellin, C. Schiraldi, C. B. De Palo, and P. Spinella. 2001. Plasma lactate, GH and GH-binding protein levels in exercise following BCAA supplementation in athletes. Amino Acids 20:1-11.
4.Blomstrand, E. 2001. Amino acids and central fatigue. Amino Acids 20:25-34.
5.Richardson, M. A., M. L. Bevans, L. L. Read, H. M. Chao, J. D. Clelland, R. F. Suckow, T. J. Maher, and L. Citrome. 2003. Efficacy of the branched-chain amino acids in the treatment of tardive dyskinesia in men. Am. J. of Psychiatry 160:1117-1124.
6.Scarna, A., H. J. Gijsman, S. F. B. McTavish, C. J. Harmer, P. J. Cowen, and G. M. Goodwin. 2003. Effects of a branched-chain amino acid drink in mania. Brit. J. of Psychiatry 182:210-213.
7.Torigoe, K., P. E. Potter, and D. P. Katz. 1999. Branched-chain amino acid-induced hippocampal norepinephrine release is antagonized by picrotoxin: Evidence for a central mode of action. Brain Res. Bull. 49:281-284.
8.Marchesini, G., G. Bianchi, M. Merli, P. Amodio, C. Panella, C. Loguercio, F. Rossi Fanelli, and R. Abbiati. 2003. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: A double-blind, randomized trial. Gastroenterology 124:1792-1801.
9.Charlton, M. 2003. Branched-chain amino acid-enriched supplements as therapy for liver disease: Rasputin lives. Gastroenterology 124:1980-1982.
10.Poon, R. T. P., W. C. Yu, S. T. Fan, and J. Wong. 2004. Long-term oral branched chain amino acids in patients undergoing chemoembolization for hepatocellular carcinoma: a randomized trial. Aliment. Pharmacol. Ther. 19:779-788.
11.Chin, S. E., R. W. Shepherd, B. J. Thomas, G. J. Cleghorn, M. K. Patrick, J. A. Wilcox, T. H. Ong, S. V. Lynch, and R. Strong. 1992. The nature of malnutrition in children with end-stage liver-disease awaiting orthotopic liver-transplantation. Am. J. of Clin. Nutr. 56:164-168.
12.Chin, S. E., R. W. Shepherd, B. J. Thomas, G. J. Cleghorn, M. K. Patrick, J. A. Wilcox, T. H. Ong, S. V. Lynch, and R. Strong. 1992. Nutritional support in children with end-stage liver-disease - a randomized crossover trial of a branched-chain amino-acid Supplement. Am. J. of Clin. Nutr. 56:158-163.
13.Poinsot, V., C. Bayle, and F. Couderc. 2003. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 24:4047-4062.
14.Lu, M. J., T. C. Chiu, P. L. Chang, H. T. Ho, and H. T. Chang. 2005. Determination of glycine, glutamine, glutamate, and gamma-aminobutyric acid in cerebrospinal fluids by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Anal. Chim. Acta 538:143-150.
15.Tseng, W. L., and H. T. Chang. 2000. On-line concentration and separation of proteins by capillary electrophoresis using polymer solutions. Anal. Chem. 72:4805-4811.
16.Roach, M. C., and M. D. Harmony. 1987. Determination of amino-acids at subfemtomole levels by high-performance liquid-chromatography with laser-induced fluorescence detection. Anal. Chem. 59:411-415.
17.Miller, J. N., and J. C. Miller. 2000. Statistics and chemometrics for analytical chemistry, 4th ed. Prentice Hall, New York.
18.Harris, D. C. 2001. Quantitative chemical analysis, 5th ed. W. H. Freeman and Company, New York.
19.Montanari, A., I. Simoni, D. Vallisa, A. Trifiro, R. Colla, R. Abbiati, L. Borghi, and A. Novarini. 1988. Free amino-acids in plasma and skeletal-muscle of patients with liver-cirrhosis. Hepatology 8:1034-1039.
20.Demontigny, P., J. F. Stobaugh, R. S. Givens, R. G. Carlson, K. Srinivasachar, L. A. Sternson, and T. Higuchi. 1987. Naphthalene-2,3-dicarboxaldehyde cyanide ion - a rationally designed fluorogenic reagent for primary amines. Anal. Chem. 59:1096-1101.
21.Sethuraman, R., T. L. Lee, and S. Tachibana. 2004. Simple quantitative HPLC method for measuring physiologic amino acids in cerebrospinal fluid without pretreatment. Clin Chem 50:665-669.
1.Reisner, B. S., A. M. Gatson, and G. L. Woods. 1994. Use of Gen-Probe AccuProbes to identify Mycobacterium avium complex, Mycobacterium tuberculosis complex, Mycobacterium kansasii, and Mycobacterium gordonae directly from BACTEC TB broth cultures. J. Clin. Microbiol. 32:2995-2998.
2.Brunello, F., M. Ligozzi, E. Cristelli, S. Bonora, E. Tortoli, and R. Fontana. 2001. Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J. Clin. Microbiol. 39:2799-2806.
3.Telenti, A., F. Marchesi, M. Balz, F. Bally, E. C. Bottger, and T. Bodmer. 1993. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 31:175-178.
4.Hernandez, S. M., G. P. Morlock, W. R. Butler, J. T. Crawford, and R. C. Cooksey. 1999. Identification of Mycobacterium species by PCR-restriction fragment length polymorphism analyses using fluorescence capillary electrophoresis. J. Clin. Microbiol. 37:3688-3692.
5.Plikaytis, B. B., B. D. Plikaytis, M. A. Yakrus, W. R. Butler, C. L. Woodley, V. A. Silcox, and T. M. Shinnick. 1992. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J. Clin. Microbiol. 30:1815-1822.
6.Bahrmand, A. R., T. G. Bakayeva, and V. V. Bakayev. 1998. Use of restriction enzyme analysis of amplified DNA coding for the hsp65 gene and polymerase chain reaction with universal primer for rapid differentiation of mycobacterium species in the clinical laboratory. Scand. J. Infect. Dis. 30:477-480.
7.da Silva Rocha, A., C. da Costa Leite, H. M. Torres, A. B. de Miranda, M. Q. Pires Lopes, W. M. Degrave, and P. N. Suffys. 1999. Use of PCR-restriction fragment length polymorphism analysis of the hsp65 gene for rapid identification of mycobacteria in Brazil. J. Microbiol. Methods 37:223-229.
8.Steingrube, V. A., J. L. Gibson, B. A. Brown, Y. Zhang, R. W. Wilson, M. Rajagopalan, and R. J. Wallace, Jr. 1995. PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J. Clin. Microbiol. 33:149-153.
9.Taylor, T. B., C. Patterson, Y. Hale, and W. W. Safranek. 1997. Routine use of PCR-restriction fragment length polymorphism analysis for identification of mycobacteria growing in liquid media. J. Clin. Microbiol. 35:79-85.
10.Chen, H. S., and H. T. Chang. 1999. Stepwise capillary electrophoretic separation of DNA fragments using poly(ethylene oxide) solutions in the presence of electroosmotic flow. J. Chromatogr. A 853:337-347.
11.Chen, H. S., and H. T. Chang. 1999. Electrophoretic separation of small DNA fragments in the presence of electroosmotic flow using poly(ethylene oxide) solutions. Anal. Chem. 71:2033-2036.
12.Hsieh, M. M., W. L. Tseng, and H. T. Chang. 2000. On-column preconcentration and separation of DNA fragments using polymer solutions in the presence of electroosmotic flow. Electrophoresis 21:2904-2910.
13.Huang, M. F., C. E. Hsu, W. L. Tseng, Y. C. Lin, and H. T. Chang. 2001. Separation of dsDNA in the presence of electroosmotic flow under discontinuous conditions. Electrophoresis 22:2281-2290.
14.Tseng, W. L., and H. T. Chang. 2001. A new strategy for optimizing sensitivity, speed, and resolution in capillary electrophoretic separation of DNA. Electrophoresis 22:763-770.
15.Tseng, W. L., M. M. Hsieh, S. J. Wang, C. C. Huang, Y. C. Lin, P. L. Chang, and H. T. Chang. 2001. Analysis of large-volume DNA markers and polymerase chain reaction products by capillary electrophoresis in the presence of electroosmotic flow. J. Chromatogr. A 927:179-190.
16.Shinnick, T. M. 1987. The 65-kilodalton antigen of Mycobacterium tuberculosis. J. Bacteriol. 169:1080-1088.
17.Gao, Q., and E. S. Yeung. 2000. High-throughput detection of unknown mutations by using multiplexed capillary electrophoresis with poly(vinylpyrrolidone) solution. Anal. Chem. 72:2499-2506.
1.Falkinham, J. O., 3rd. 1996. Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol. Rev. 9:177-215.
2.Wayne, L. G., and H. A. Sramek. 1992. Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin. Microbiol. Rev. 5:1-25.
3.McNeil, M. M., and J. M. Brown. 1994. The medically important aerobic actinomycetes: epidemiology and microbiology. Clin. Microbiol. Rev. 7:357-417.
4.Olson, E. S., A. J. Simpson, A. J. Norton, and S. S. Das. 1998. Not everything acid fast is Mycobacterium tuberculosis--a case report. J. Clin. Pathol. 51:535-536.
5.Patterson, J. E., K. Chapin-Robertson, S. Waycott, P. Farrel, A. McGeer, M. M. McNeil, and S. C. Edberg. 1992. Pseudoepidemic of Nocardia asteroides associated with a mycobacterial culture system. J. Clin. Microbiol. 30:1357-1360.
6.Short, W. R., C. Emery, M. Bhandary, and J. A. O''Donnell. 2005. Misidentification of Mycobacterium peregrinum, the causal organism of a case of bacteremia and automatic implantable cardioverter defibrillator-associated infection, due to its unusual acid-fast staining characteristics. J. Clin. Microbiol. 43:2015-2017.
7.Staneck, J. L., P. T. Frame, W. A. Altemeier, and E. H. Miller. 1981. Infection of bone by Mycobacterium fortuitum masquerading as Nocardia asteroides. Am. J. Clin. Pathol. 76:216-222.
8.Brunello, F., M. Ligozzi, E. Cristelli, S. Bonora, E. Tortoli, and R. Fontana. 2001. Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J. Clin. Microbiol. 39:2799-2806.
9.Ringuet, H., C. Akoua-Koffi, S. Honore, A. Varnerot, V. Vincent, P. Berche, J. L. Gaillard, and C. Pierre-Audigier. 1999. hsp65 sequencing for identification of rapidly growing mycobacteria. J. Clin. Microbiol. 37:852-857.
10.Taylor, T. B., C. Patterson, Y. Hale, and W. W. Safranek. 1997. Routine use of PCR-restriction fragment length polymorphism analysis for identification of mycobacteria growing in liquid media. J. Clin. Microbiol. 35:79-85.
11.Telenti, A., F. Marchesi, M. Balz, F. Bally, E. C. Bottger, and T. Bodmer. 1993. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 31:175-178.
12.Wilson, R. W., V. A. Steingrube, B. A. Brown, and R. J. Wallace, Jr. 1998. Clinical application of PCR-restriction enzyme pattern analysis for rapid identification of aerobic actinomycete isolates. J. Clin. Microbiol. 36:148-152.
13.Reisner, B. S., A. M. Gatson, and G. L. Woods. 1994. Use of Gen-Probe AccuProbes to identify Mycobacterium avium complex, Mycobacterium tuberculosis complex, Mycobacterium kansasii, and Mycobacterium gordonae directly from BACTEC TB broth cultures. J. Clin. Microbiol. 32:2995-2998.
14.Hernandez, S. M., G. P. Morlock, W. R. Butler, J. T. Crawford, and R. C. Cooksey. 1999. Identification of Mycobacterium species by PCR-restriction fragment length polymorphism analyses using fluorescence capillary electrophoresis. J. Clin. Microbiol. 37:3688-3692.
15.Ho, H. T., P. L. Chang, C. C. Hung, and H. T. Chang. 2004. Capillary electrophoretic restriction fragment length polymorphism patterns for the Mycobacterial hsp65 gene. J. Clin. Microbiol. 42:3525-3531.
16.Tuohy, M. J., G. S. Hall, M. Sholtis, and G. W. Procop. 2005. Pyrosequencing as a tool for the identification of common isolates of Mycobacterium sp. Diagn. Microbiol. Infect. Dis. 51:245-250.
17.Chen, H. S., and H. T. Chang. 1999. Electrophoretic separation of small DNA fragments in the presence of electroosmotic flow using poly(ethylene oxide) solutions. Anal. Chem. 71:2033-2036.
18.Chen, H. S., and H. T. Chang. 1999. Stepwise capillary electrophoretic separation of DNA fragments using poly(ethylene oxide) solutions in the presence of electroosmotic flow. J. Chromatogr. A 853:337-347.
19.Hsieh, M. M., W. L. Tseng, and H. T. Chang. 2000. On-column preconcentration and separation of DNA fragments using polymer solutions in the presence of electroosmotic flow. Electrophoresis 21:2904-2910.
20.Huang, M. F., C. E. Hsu, W. L. Tseng, Y. C. Lin, and H. T. Chang. 2001. Separation of dsDNA in the presence of electroosmotic flow under discontinuous conditions. Electrophoresis 22:2281-2290.
21.Tseng, W. L., and H. T. Chang. 2001. A new strategy for optimizing sensitivity, speed, and resolution in capillary electrophoretic separation of DNA. Electrophoresis 22:763-770.
22.Tseng, W. L., M. M. Hsieh, S. J. Wang, C. C. Huang, Y. C. Lin, P. L. Chang, and H. T. Chang. 2001. Analysis of large-volume DNA markers and polymerase chain reaction products by capillary electrophoresis in the presence of electroosmotic flow. J. Chromatogr. A 927:179-190.
23.Laurent, F. J., F. Provost, and P. Boiron. 1999. Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR. J. Clin. Microbiol. 37:99-102.
24.Plikaytis, B. B., B. D. Plikaytis, M. A. Yakrus, W. R. Butler, C. L. Woodley, V. A. Silcox, and T. M. Shinnick. 1992. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J. Clin. Microbiol. 30:1815-1822.
25.Steingrube, V. A., J. L. Gibson, B. A. Brown, Y. Zhang, R. W. Wilson, M. Rajagopalan, and R. J. Wallace, Jr. 1995. PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J. Clin. Microbiol. 33:149-153.
26.Steingrube, V. A., R. W. Wilson, B. A. Brown, K. C. Jost, Jr., Z. Blacklock, J. L. Gibson, and R. J. Wallace, Jr. 1997. Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis. J. Clin. Microbiol. 35:817-822.
27.Lungu, O., P. Della Latta, I. Weitzman, and S. Silverstein. 1994. Differentiation of Nocardia from rapidly growing Mycobacterium species by PCR-RFLP analysis. Diagn. Microbiol. Infect. Dis. 18:13-18.
28.McNabb, A., D. Eisler, K. Adie, M. Amos, M. Rodrigues, G. Stephens, W. A. Black, and J. Isaac-Renton. 2004. Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J. Clin. Microbiol. 42:3000-3011.
29.Wallace, R. J., Jr., M. Tsukamura, B. A. Brown, J. Brown, V. A. Steingrube, Y. S. Zhang, and D. R. Nash. 1990. Cefotaxime-resistant Nocardia asteroides strains are isolates of the controversial species Nocardia farcinica. J. Clin. Microbiol. 28:2726-2732.
30.Davison, M. B., J. G. McCormack, Z. M. Blacklock, D. J. Dawson, M. H. Tilse, and F. B. Crimmins. 1988. Bacteremia caused by Mycobacterium neoaurum. J. Clin. Microbiol. 26:762-764.
31.George, S. L., and L. S. Schlesinger. 1999. Mycobacterium neoaurum--an unusual cause of infection of vascular catheters: case report and review. Clin. Infect. Dis. 28:682-683.
32.Kiska, D. L., C. Y. Turenne, A. S. Dubansky, and J. B. Domachowske. 2004. First case report of catheter-related bacteremia due to "Mycobacterium lacticola". J. Clin. Microbiol. 42:2855-2857.
33.Springer, B., E. C. Bottger, P. Kirschner, and R. J. Wallace, Jr. 1995. Phylogeny of the Mycobacterium chelonae-like organism based on partial sequencing of the 16S rRNA gene and proposal of Mycobacterium mucogenicum sp. nov. Int. J. Syst. Bacteriol. 45:262-267.
34.Steingrube, V. A., B. A. Brown, J. L. Gibson, R. W. Wilson, J. Brown, Z. Blacklock, K. Jost, S. Locke, R. F. Ulrich, and R. J. Wallace, Jr. 1995. DNA amplification and restriction endonuclease analysis for differentiation of 12 species and taxa of Nocardia, including recognition of four new taxa within the Nocardia asteroides complex. J. Clin. Microbiol. 33:3096-3101.
35.Wilson, R. W., V. A. Steingrube, B. A. Brown, Z. Blacklock, K. C. Jost, Jr., A. McNabb, W. D. Colby, J. R. Biehle, J. L. Gibson, and R. J. Wallace, Jr. 1997. Recognition of a Nocardia transvalensis complex by resistance to aminoglycosides, including amikacin, and PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol. 35:2235-2242.
36.Steingrube, V. A., R. J. Wallace, Jr., B. A. Brown, Y. Zhang, L. C. Steele, G. Young, and D. R. Nash. 1993. Partial characterization of Nocardia farcinica beta-lactamases. Antimicrob. Agents Chemother. 37:1850-1855.
37.Ruimy, R., P. Riegel, A. Carlotti, P. Boiron, G. Bernardin, H. Monteil, R. J. Wallace, Jr., and R. Christen. 1996. Nocardia pseudobrasiliensis sp. nov., a new species of Nocardia which groups bacterial strains previously identified as Nocardia brasiliensis and associated with invasive diseases. Int. J. Syst. Bacteriol. 46:259-264.
38.Wallace, R. J., Jr., B. A. Brown, Z. Blacklock, R. Ulrich, K. Jost, J. M. Brown, M. M. McNeil, G. Onyi, V. A. Steingrube, and J. Gibson. 1995. New Nocardia taxon among isolates of Nocardia brasiliensis associated with invasive disease. J. Clin. Microbiol. 33:1528-1533.
39.Rodriguez-Nava, V., A. Couble, G. Devulder, J. P. Flandrois, P. Boiron, and F. Laurent. 2006. Use of PCR-restriction enzyme pattern analysis and sequencing database for hsp65 gene-based identification of Nocardia species. J. Clin. Microbiol. 44:536-546.
1.Drobniewski, F. A., M. Caws, A. Gibson, and D. Young. 2003. Modern laboratory diagnosis of tuberculosis. Lancet Infect. Dis. 3:141-147.
2.Falkinham, J. O. 1996. Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol. Rev. 9:177-215.
3.Brown, T. J., E. G. Power, and G. L. French. 1999. Evaluation of three commercial detection systems for Mycobacterium tuberculosis where clinical diagnosis is difficult. J Clin Pathol 52:193-197.
4.Reischl, U., N. Lehn, H. Wolf, and L. Naumann. 1998. Clinical evaluation of the automated COBAS AMPLICOR MTB assay for testing respiratory and nonrespiratory specimens. J Clin Microbiol 36:2853-2860.
5.Piersimoni, C., A. Callegaro, C. Scarparo, V. Penati, D. Nista, S. Bornigia, et al. 1998. Comparative evaluation of the new Gen-probe Mycobacterium tuberculosis amplified direct test and the semiautomated abbott LCx Mycobacterium tuberculosis assay for direct detection of Mycobacterium tuberculosis complex in respiratory and extrapulmonary specimens. J Clin Microbiol 36:3601-3604.
6.Hellyer, T. J., T. W. Fletcher, J. H. Bates, W. W. Stead, G. L. Templeton, M. D. Cave, et al. 1996. Strand displacement amplification and the polymerase chain reaction for monitoring response to treatment in patients with pulmonary tuberculosis. J Infect Dis 173:934-941.
7.Roth, A., U. Reischl, A. Streubel, L. Naumann, R. M. Kroppenstedt, M. Habicht, et al. 2000. Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol 38:1094-1104.
8.Tortoli, E. 2003. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev 16:319-354.
9.Behr, M. A., S. A. Warren, H. Salamon, P. C. Hopewell, A. P. de Leon, C. L. Daley, et al. 1999. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 353:444-449.
10.Frieden, T. R., T. R. Sterling, S. S. Munsiff, C. J. Watt, and C. Dye. 2003. Tuberculosis. Lancet 362:887-899.
11.Chen, H.-S., and H.-T. Chang. 1999. Electrophoretic separation of small DNA fragments in the presence of electroosmotic flow using poly(ethylene oxide) solutions. Anal Chem 71:2033-2036.
12.Hsieh, M.-M., W.-L. Tseng, and H.-T. Chang. 2000. On-column preconcentration and separation of DNA fragments using polymer solutions in the presence of electroosmotic flow. Electrophoresis 21:2904-2910.
13.Tseng, W.-L., and H.-T. Chang. 2001. A new strategy for optimizing sensitivity, speed, and resolution in capillary electrophoretic separation of DNA. ELECTROPHORESIS 22:763-770.
14.Hsieh, M.-M., P.-L. Chang, and H.-T
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊