|
[1] Nakata, D. and Troy II, F.A. (2005) Degree of polymerization (DP) of polysialic acid (polySia) on neural cell adhesion molecules (N-CAMS): development and application of a new strategy to accurately determine the DP of polySia chains on N-CAMS. J. Biol. Chem. 280, 38305-38316. [2] Inoue, Y., Lee, Y.C. and Tory II, F.A. (1999) Sialobiology and Other Novel Forms of glycosylation, 129–134 pp. Gakushin Publishing Company, Osaka. [3] Angata, T. and Varki, A. (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102, 439-469. [4] Rutishauser, U., Acheson, A., Hall, A.K., Mann, D.M. and Sunshine, J. (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240, 53-57. [5] McGuire, E.J. and Binkley, S.B. (1964) The Structure and Chemistry of Colominic Acid. Biochemistry 3, 247-251. [6] Lifely, M.R., Gilbert, A.S. and Moreno, C. (1981) Sialic acid polysaccharide antigens of Neisseria meningitidis and Escherichia coli: esterification between adjacent residues. Carbohydr. Res. 94, 193-203. [7] Lifely, M.R., Gilbert, A.S. and Moreno, C. (1984) Rate, mechanism, and immunochemical studies of lactonisation in serogroup B and C polysaccharides of Neisseria meningitidis. Carbohydr. Res. 134, 229-243. [8] Flaherty, T.M. and Gervay, J. (1996) 2D NMR analysis of the polylactone derivative of colominic acid. Complete 1H and 13C NMR chemical shift assignments. Carbohydr. Res. 281, 173-177. [9] Maggio, B., Ariga, T. and Yu, R.K. (1990) Ganglioside GD3 lactones: polar head group mediated control of the intermolecular organization. Biochemistry 29, 8729-8734. [10] Ando, S., Yu, R.K., Scarsdale, J.N., Kusunoki, S. and Prestegard, J.H. (1989) High resolution proton NMR studies of gangliosides. Structure of two types of GD3 lactones and their reactivity with monoclonal antibody R24. J. Biol. Chem. 264, 3478-3483. [11] Fronza, G., Kirschner, G., Acquotti, D. and Sonnino, S. (1989) Synthesis, structure, and conformation of the dilactone derivative of GD1b ganglioside. Carbohydr. Res. 195, 51-58. [12] Riboni, L., Sonnino, S., Acquotti, D., Malesci, A., Ghidoni, R., Egge, H., Mingrino, S. and Tettamanti, G. (1986) Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J. Biol. Chem. 261, 8514-8519. [13] Nakamura, T., Bubb, W.A., Saito, T., Arai, I. and Urashima, T. (2000) An NMR study of the lactonization of alpha-N-acetylneuraminyl-(2 --> 3)-lactose. Carbohydr. Res. 329, 471-476. [14] Terabayashi, T., Ogawa, T. and Kawanishi, Y. (1990) Characterization of ganglioside GM4 lactones isolated from the whale brain. J. Biochem. 107, 868-871. [15] Yu, R.K., Koerner, T.A., Ando, S., Yohe, H.C. and Prestegard, J.H. (1985) High-resolution proton NMR studies of gangliosides. III. Elucidation of the structure of ganglioside GM3 lactone. J. Biochem. 98, 1367-1373. [16] Gross, S.K., Williams, M.A. and McCluer, R.H. (1980) Alkali-labile, sodium borohydride-reducible ganglioside sialic acid residues in brain. J. Neurochem. 34, 1351-1361. [17] Nores, G.A., Dohi, T., Taniguchi, M. and Hakomori, S. (1987) Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. J. Immunol. 139, 3171-3176. [18] Riboni, L., Ghidoni, R. and Tettamanti, G. (1989) Formation of ganglioside GD1b-lactone in rat brain from intracisternally administered GD1b. J. Neurochem. 52, 1401-1406. [19] Leon, A., Facci, L., Toffano, G., Sonnino, S. and Tettamanti, G. (1981) Activation of (Na+, K+)-ATPase by nanomolar concentrations of GM1 ganglioside. J. Neurochem. 37, 350-357. [20] Nagata, Y., Ando, M., Iwata, M., Hara, A. and Taketomi, T. (1987) Effect of exogenous gangliosides on amino acid uptake and Na+, K+-ATPase activity in superior cervical and nodose ganglia of rats. J. Neurochem. 49, 201-207. [21] Karpiak, S.E., Li, Y.S. and Mahadik, S.P. (1987) Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: protection of membrane function. Stroke 18, 184-187. [22] Behr, J.P. and Lehn, J.M. (1973) The binding of divalent cations by purified gangliosides. FEBS Lett. 31, 297-300. [23] Sharom, F.J. and Grant, C.W. (1978) A model for ganglioside behaviour in cell membranes. Biochim. Biophys. Acta. 507, 280-293. [24] Neuberger, A. and VanDeenen, L.L.M. (1985) New Comprehensive Biochemistry, 199-260 pp. Elsevier, Amsterdam. [25] Fishman, P.H. (1982) Role of membrane gangliosides in the binding and action of bacterial toxins. J. Membr. Biol. 69, 85-97. [26] Sonnino, S., Ghidoni, R., Chigorno, V., Masserini, M. and Tettamanti, G. (1983) Recognition by two-dimensional thin-layer chromatography and densitometric quantification of alkali-labile gangliosides from the brain of different animals. Anal. Biochem. 128, 104-114. [27] Bellato, P., Milan, F., Facchinetti, E. and Toffano, G. (1992) Disposition of exogenous tritium-labelled GM1lactone in the rat. Neurochem. Int. 20, 359-364. [28] Terabayashi, T. and Kawanishi, Y. (1998) Naturally occurring ganglioside lactones in Minke whale brain. Carbohydr. Res. 307, 281-290. [29] Mauri, L., Casellato, R., Kirschner, G. and Sonnino, S. (1999) A procedure for the preparation of GM3 ganglioside from GM1-lactone. Glycoconj. J. 16, 197-203. [30] Sonnino, S., Kirschner, G., Gronza, G., Egge, H., Ghidoni, R., Acquotti, D. and Tettamanti, G. (1985) Synthesis of GM1 ganglioside inner ester. Glycoconjugate J. 2, 343-354. [31] Tietze, L.F., Keim, H., Janssen, C.O., Tappertzhofen, C. and Olschimke, J. (2000) Synthesis of a novel ether-bridged GM3-lactone analogue as a target for an antibody-based cancer therapy. Chemistry Eur. J. 6, 2801-2808. [32] Fronza, G., Kirschner, G., Acquotti, D., Bassi, R., Tagliavacca, L. and Sonnino, S. (1988) Synthesis and structural characterization of the dilactone derivative of GD1a ganglioside. Carbohydr. Res. 182, 31-40. [33] Acquotti, D., Fronza, G., Riboni, L., Sonnino, S. and Tettamanti, G. (1987) Ganglioside lactones: 1H-NMR determination of the inner ester position of GD1b-ganglioside lactone naturally occurring in human brain or produced by chemical synthesis. Glycoconjugate J. 4, 119-127. [34] Zollinger, W.D. (1997) New Generation Vaccines, 469–488 pp. Marcel Dekker, NY. [35] Frasch, C.E. (1995) Meningococcal Disease, 245–283 pp. John Wiley and Sons, NY. [36] Brisson, J.-R., Baumann, H., Imberty, A., Pérez, S. and Jennings, H.J. (1992) Helical epitope of the Group B meningococcal a(2-8)-linked sialic acid polysaccharide. Biochemistry 31, 4996-5004. [37] Henderson, T.J., Venable, R.M. and Egan, W. (2003) Conformational flexibility of the group B meningococcal polysaccharide in solution. J. Am. Chem. Soc. 125, 2930-2939. [38] Gidney, M.A., Plested, J.S., Lacelle, S., Coull, P.A., Wright, J.C., Makepeace, K., Brisson, J.R., Cox, A.D., Moxon, E.R. and Richards, J.C. (2004) Development, characterization, and functional activity of a panel of specific monoclonal antibodies to inner core lipopolysaccharide epitopes in Neisseria meningitidis. Infect. Immun. 72, 559-569. [39] Haselhorst, T., Stummeyer, K., Muhlenhoff, M., Schaper, W., Gerardy-Schahn, R. and von Itzstein, M. (2006) Endosialidase NF appears to bind polySia DP5 in a helical conformation. Chembiochem 7, 1875-1877. [40] Terabayashi, T., Tsuda, M. and Kawanishi, Y. (1992) The characteristic negative Cotton effect of ganglioside lactones observed by circular dichroism spectrometry. Anal. Biochem. 204, 15-21. [41] Terabayashi, T., Ogawa, T. and Kawanishi, Y. (1996) Negative circular dichroism (CD) band of lactones of sialic acid polymers observed at 235 nm. Carbohydr. Polymer 29, 35-39. [42] Cheng, M.-C., Lin, C.-H., Khoo, K.-H. and Wu, S.-H. (1999) Regioselective lactonization of a(2→8) tri-sialic acid. Angew. Chem. Int. Ed. Engl. 38, 686-689. [43] Cheng, M.C., Lin, S.L., Wu, S.H., Inoue, S. and Inoue, Y. (1998) High-performance capillary electrophoretic characterization of different types of oligo- and polysialic acid chains. Anal. Biochem. 260, 154-159. [44] Cheng, M.C., Lin, C.H., Wang, H.Y., Lin, H.R. and Wu, S.H. (2000) Regioselective Lactonization of Tetrasialic Acid. Angew. Chem. Int. Ed. Engl. 39, 772-776. [45] Yu, Y.P., Cheng, M.C., Lin, H.R., Lin, C.H. and Wu, S.H. (2001) Acid-catalyzed hydrolysis and lactonization of alpha2,8-linked oligosialic acids. J. Org. Chem. 66, 5248-5251. [46] Cheng, M.C., Lin, C.H., Lin, H.J., Yu, Y.P. and Wu, S.H. (2004) Hydrolysis, lactonization, and identification of alpha(2 ® 8)/alpha(2 ® 9) alternatively linked tri-, tetra-, and polysialic acids. Glycobiology 14, 147-155. [47] Yu, Y.-P., Cheng, M.-C. and Wu, S.-H. (2006) High-performance CE: An effective method to study lactonization of alpha2,8-linked oligosialic acid. Electrophoresis 27, 4487-4499. [48] Rispens, T., Lensink, M.F., Berendsen, H.J. and Engberts, J.B.F.N. (2004) J. Phys. Chem. B 108, 5483-5488. [49] Fife, T.H., Singh, R. and Bembi, R. (2002) Intramolecular general base catalyzed ester hydrolysis. The hydrolysis of 2-aminobenzoate esters. J. Org. Chem. 67, 3179-3183. [50] Fernandez, M.A. and de-Rossi, R.H. (1999) On the mechanism of ester hydrolysis: trifluoroacetate derivatives. J. Org. Chem. 64, 6000-6004. [51] Fernandez, M.A. and de-Rossi, R.H. (2003) J. Org. Chem. 68, 6887-6893. [52] Zahn, D. (2004) Eur. J. Org. Chem. 4020-4023. [53] Gorb, L., Asensio, A., Tunon, I. and Ruiz-Lopez, M.F. (2005) The mechanism of formamide hydrolysis in water from ab initio calculations and simulations. Chem. Eur. J. 11, 6743-6753. [54] Perakyla, M. and Kollman, P.A. (1997) J. Am. Chem. Soc. 119, 1189-1196. [55] Pitarch, J., Ruiz-Lopez, M.F., Silla, E., Pascual-Ahuir, J.-L. and Tunon, I. (1998) J. Am. Chem. Soc. 120, 2146-2155. [56] Okimoto, N., Tsukui, T., Kitayama, K., Hata, M., Hoshino, T. and Tsuda, M. (2000) J. Am. Chem. Soc. 122, 5613-5622. [57] Li, Z. and Lazaridis, T. (2005) The effect of water displacement on binding thermodynamics: concanavalin A. J. Phys. Chem. B 109, 662-670. [58] Grigorenko, B.L., Rogov, A.V. and Nemukhin, A.V. (2006) Mechanism of triphosphate hydrolysis in aqueous solution: QM/MM simulations in water clusters. J. Phys. Chem. B 110, 4407-4412. [59] Houk, K.N., Paddon-Row, M.N., Rondan, N.G., Wu, Y.D., Brown, F.K., Spellmeyer, D.C., Metz, J.T., Li, Y. and Loncharich, R.J. (1986) Theory and modeling of stereoselective organic reactions. Science 231, 1108-1117. [60] Bender, M.L. (1960) Mechanisms of catalysis of nucleophilic reactions of carboxylate acid derivatives. Chem. Rev. 60, 53-83. [61] More-O''Ferral, R.A. (1970) Relationships between E2 and E1cB mechanisms of beta-elimination. J. Chem. Soc. B 274-280. [62] Satoh, T. and Hosokawa, M. (1998) The mammalian carboxylesterases: from molecules to functions. Annu. Rev. Pharmacol. Toxicol. 38, 257-288. [63] Blandamer, M.J., Burgess, J. and Engberts, J.B.F.N. (1985) Chem. Soc. Rev. 14, 237-264. [64] Reichart, C. (1988) Solvent and Solvent effect in Organic Chemistry, pp. VCH, Weinheim. [65] Buchwald, P. and Bodor, N. (1999) Quantitative structure-metabolism relationships: steric and nonsteric effects in the enzymatic hydrolysis of noncongener carboxylic esters. J. Med. Chem. 42, 5160-5168. [66] Imberty, A. and Perez, S. (2000) Structure, conformation and dynamics of bioactive oligosaccharides. Chem. Rev. 100, 4567-4588. [67] Schwieters, C.D., Kuszewski, J.J., Tjandra, N. and Clore, G.M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65-73. [68] http://www.ibs-isb.nrc-cnrc.gc.ca/facilities/molecularmodelling_e.html [69] http://davapc1.bioch.dundee.ac.uk/programs/prodrg/prodrg.html. [70] Brady, J.W. (1989) Molecular dynamics simulations of alpha-D-glucose in aqueous-solution. J. Am. Chem. Soc. 111, 5155-5165. [71] Brady, J.W. and Schmidt, R.K. (1993) The role of hydrogen bonding in carbohydrates: molecular dynamics simulations of maltose in aqueous solution. J. Phys. Chem. 97, 958-966. [72] Engelsen, S.B. and Perez, S. (1997) Internal motions and hydration of sucrose in a diluted water solution. J. Mol. Graph. Model. 15, 122-131. [73] Liu, Q., Schmidt, R.K., Teo, B., Karplus, P.A. and Brady, J.W. (1997) Molecular dynamics studies of the hydration of alpha,alpha-trehalose. J. Am. Chem. Soc. 119, 7851-7862. [74] Chen, C.-S., Wu, Y.-P.Y.Y.-T., Zou, W., Fang, J.-M. and Wu, S.-H. (2007) Eur. J. Org. Chem. 2007, 3648-3654. [75] Yamasaki, R. and Bacon, B. (1991) Three-dimensional structural analysis of the group B polysaccharide of Neisseria meningitidis 6275 by two-dimensional NMR: the polysaccharide is suggested to exist in helical conformations in solution. Biochemistry 30, 851-857. [76] Michon, F., Brisson, J.-R. and Jennings, H.J. (1987) Conformational differences between linear alpha (2®8)-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharid. Biochemistry 26, 8399-8405. [77] Bhattacharjee, A.K., Jennings, H.J., Kenny, C.P., Martin, A. and Smith, I.C. (1975) Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J. Biol. Chem. 250, 1926-1932. [78] Batta, G. and Gervay, J. (1995) Solution-phase 13C and lH chemical shift anisotropy of sialic acid and Its homopolymer (colominic acid) from cross-correlated relaxation. J. Am. Chem. Soc. 117, 368-374. [79] Rao, V.S.R., Qasbe, P.K., Balaji, P.V. and Chandrasekaran, R. (1998) Conformation of Carbohydrate, pp. Harwood Academic Publishers, Netherlands. [80] Schauer, R. (1982) Sialic acid Chemistry, Metabolism, and function, pp. Springer-Verlag, NY. [81] Flippen, J.L. (1973) The crystal structure of beta-D-N-acetylneuraminic acid dihydrate (sialic acid), C11H19NO9.2H2O. Acta. Crystallogr. Sect. B 29, 1881-1886. [82] Vishnyakov, A., Widmalm, G., Kowalewski, J. and Laaksonen, A. (1999) Molecular dynamics simulation of the alpha-D-manp-(1-3)-beta-D-glcp-OMe disaccharide in water and water/DMSO solution J. Am. Chem. Soc. 121, 5403-5412. [83] Mathieson, A.M. and Tayler, J.C. (1961) The structure of the bromodilactone from jacobine and the conformation of the lactone group. Tetrahedron Lett. 2, 590-592. [84] Sheppard, R.C. and Turner, S. (1968) The conformations of delta-lactones. Chem. Commun. 9, 77-78. [85] McConnel, J.F., Mathieson, A.M. and Schoenborn, B.P. (1962) Conformation of iridomyrmecin and isoiridomyrmecin. Tetrahedron Lett. 3, 445-447. [86] Moffitt, W., Woodward, R.B., Moscowitz, A., Klyne, W. and Djerassi, C. (1961) Structure and the optical rotatory dispersion of saturated ketones. J. Am. Chem. Soc. 83, 4013-4018. [87] Wilson, E.K. (2004) Calculating carbohydrates. Chem. Eng. News 82, 36-39. [88] Sugeta, H. and Miyazawa, T. (1967) General method for calculating helical parameters of polymer chains from bond lengths, bond angles, and internal-rotation angles. Biopolymer 5, 679-763. [89] Massari, A.M., Finkelstein, I.J., McClain, B.L., Goj, A., Wen, X., Bren, K.L., Loring, R.F. and Fayer, M.D. (2005) The influence of aqueous versus glassy solvents on protein dynamics: vibrational echo experiments and molecular dynamics simulations. J. Am. Chem. Soc. 127, 14279-14289. [90] Franklin, J. and Doniach, S. (2005) Adaptive time stepping in biomolecular dynamics. J. Chem. Phys. 123, 124909. [91] Naidoo, K.J. and Kuttel, M. (2001) Development of the cyclic cluster approach for ionic systems. J. Comput. Chem. 22, 445-456. [92] Engelsen, S.B., Monteiro, C., Herve de Penhoat, C. and Perez, S. (2001) The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy. Biophys. Chem. 93, 103-127. [93] Ha, S., Gao, J., Tidor, B., Brady, J.W. and Karplus, M. (1991) J. Am. Chem. Soc. 113, 1553-1557. [94] Schmidt, R.K., Karplus, M. and Brady, J.W. (1996) J. Am. Chem. Soc. 118, 541-546. [95] Liu, Q. and Brady, J.W. (1996) J. Am. Chem. Soc. 118, 12276-12286. [96] Xie, D., Xu, D., Zhang, L. and Guo, H. (2005) Theoretical study of general base-catalyzed hydrolysis of aryl esters and implications for enzymatic reactions. J. Phys. Chem. B 109, 5259-5266. [97] Wu, Y.-D., Houk, K.N. and Paddon-Row, M.N. (1992) Effect of torsional strain and electrostatic interactions on the stereochemistry of nucleophilic additions to cyclohexanone and related systems. Angew. Chem. Int. Ed. Engl. 31, 1019-1021. [98] Perez-Prior, M.T., Manso, J.A., Garcia-Santos, M.d.P., Calle, E. and Casado, J. (2005) Reactivity of lactones and GHB formation. J. Org. Chem. 70, 420-426. [99] Anh, N.T. and Eisenstein, O. (1977) Theoretical interpretation of 1-2 asymmetric induction. The importance of antiperiplanarity. Nouv. J. Chim. 1, 61-63. [100] Frenking, G., Kohler, K.F. and Reetz, M.T. (1991) Angew. Chem. Int. Ed. Engl. 30, 1146-1149. [101] Mukherjee, D., Wu, Y.-D., Fronczek, F.R. and Houk, K.N. (1988) Experimental tests of models to predict nucleophilic addition stereochemistries J. Am. Chem. Soc. 110, 3328-3330. [102] Wu, Y.-D. and Houk, K.N. (1987) Electronic and conformational effects on pi-facial stereoselectivity in nucleophilic additions to carbonyl compounds. J. Am. Chem. Soc. 109, 908-910. [103] Brandange, S., Farnback, M., Leijonmarck, H. and Sundin, A. (2003) Highly diastereoselective hydrogenations leading to beta-hydroxy delta-lactones in hydroxy-protected form. A modified view of delta-lactone conformations. J. Am. Chem. Soc. 125, 11942-11955. [104] Ding, S., Hong, Y.W., Chen, C.Y. and Chang, N.C. (2006) One and two dimensional 1H and 13C high resolution NMR investigation of lariat ethers and their alkali metal ionic complexes: a more tangible evidence for the presence of less common C-H…O hydrogen bonds. Biophys. Chem. 121, 75-83. [105] Steiner, T. and Saenger, W. (1992) Geometry of carbon-hydrogen…oxygen hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data. J. Am. Chem. Soc. 114, 10146-10154. [106] Gu, Y., Kar, T. and Scheiner, S. (1999) Fundamental properties of the C-H...O interaction: Is it a true hydrogen bond ? J. Am. Chem. Soc. 121, 9411-9422. [107] Hobza, P. and Havlas, Z. (1999) The fluoroform...ethylene oxide complex exhibits a C-H...O anti-hydrogen bond. Chem. Phys. Lett. 303, 447-452. [108] Desiraju, G.R. and Steiner, T. (1999) The Weak Hydrogen Bond In Structural Chemistry and Biology, pp. Oxford University Press, Oxford. [109] Law, R.V. and Sasanuma, Y. (1996) Nature of the non-bonded C-H…O interaction of ethers CH3O—(CH2)n—OCH3(n= 4-8). J. Chem. Soc. Faraday Trans. 92, 4885-4888. [110] Gil, F.P.S.C., Costa, A.M.A.d. and Teixeira-Dias, J.J.C. (1995) Comformational analysis of CmH2m+1OCh2CH2OH (m = 1-4): The role of C-H…O intramolecular interactions. J. Phys. Chem. 99, 8066-8070. [111] Reiling, S., Brickmann, J., Schlenkrich, M. and Bopp, P.A. (1996) Theoretical investigations on 1,2-ethanediol: The problem of intramolecular hydrogen bonds. J. Comput. Chem. 17, 133-147. [112] Corey, E.J. and Rohde, J.J. (1997) The application of the formyl C-H…O hydrogen bond postulate to the understanding of enantioselective reactions involving chiral boron lewis acids and aldehydes. Tetrahedron Lett. 38, 37-40.
[1] Booth, P.J., Templer, R.H., Curran, A.R. and Allen, S.J. (2001) Can we identify the forces that drive the folding of integral membrane proteins? Biochem. Soc. Trans. 29, 408-413. [2] Fischer, G., Tradler, T. and Zarnt, T. (1998) The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett. 426, 17-20. [3] Gothel, S.F. and Marahiel, M.A. (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life. Sci. 55, 423-436. [4] Mayr, L.M., Willbold, D., Landt, O. and Schmid, F.X. (1994) Role of the Cys2-Cys10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1. Protein Sci. 3, 227-239. [5] Schiene-Fischer, C. and Yu, C. (2001) Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett. 495, 1-6. [6] Kim, P.S. and Baldwin, R.L. (1990) Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631-660. [7] Lin, L.N. and Brandts, J.F. (1987) Refolding of ribonuclease in the presence and absence of ammonium sulfate pulses. Comparison between experiments and simulations. Biochemistry 26, 1826-1830. [8] Fox, R.O., Evans, P.A. and Dobson, C.M. (1986) Multiple conformations of a protein demonstrated by magnetization transfer NMR spectroscopy. Nature 320, 192-194. [9] Mucke, M. and Schmid, F.X. (1994) Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds. Biochemistry 33, 14608-14619. [10] Min, L., Fulton, A.H. and Andreotti, A.H. (2005) A case study of proline isomerization in cell signaling. Front. Biosci. 10, 385-397. [11] Lummis, S.C., Beene, D.L., Lee, L.W., Lester, H.A., Broadhurst, R.W. and Dougherty, D.A. (2005) Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248-252. [12] Fischer, G. and Aumuller, T. (2003) Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev. Physiol. Biochem. Pharmacol. 148, 105-150. [13] Higgins, K.A., Craik, D.J., Hall, J.G. and Andrews, P.R. (1988) Cis-trans isomerization of the proline residue in insulin studied by 13C NMR spectroscopy. Drug Des Deliv 3, 159-170. [14] Lang, K., Schmid, F.X. and Fischer, G. (1987) Catalysis of protein folding by prolyl isomerase. Nature 329, 268-270. [15] Schonbrunner, E.R. and Schmid, F.X. (1992) Peptidyl-prolyl cis-trans isomerase improves the efficiency of protein disulfide isomerase as a catalyst of protein folding. Proc. Natl. Acad. Sci. USA 89, 4510-4513. [16] Brattstrom, B.H. (1964) Evolution of the pit-vipers. Trans. San Diego Soc. Nat. Hist. 13, 185-268. [17] Leviton, A.E. (1964) Contributions to a review of Philippine snakes. V. The snakes of the genus Trimeresurus. Philips J. Sci. 93, 251-276. [18] Weinstein, S.A., Schmidt, J.J., Bernheimer, A.W. and Smith, L.A. (1991) Characterization and amino acid sequences of two lethal peptides isolated from venom of Wagler''s pit viper, Trimeresurus wagleri. Toxicon 29, 227-236. [19] Schmidt, J.J., Weinstein, S.A. and Smith, L.A. (1992) Molecular properties and structure-function relationships of lethal peptides from venom of Wagler''s pit viper, Trimeresurus wagleri. Toxicon 30, 1027-1036. [20] Hsiao, Y.M., Chuang, C.C., Chuang, L.C., Yu, H.M., Wang, K.T., Chiou, S.H. and Wu, S.H. (1996) Protein engineering of venom toxins by synthetic approach and NMR dynamic simulation: status of basic amino acid residues in waglerin I. Biochem. Biophys. Res. Commun. 227, 59-63. [21] Aiken, S.P., Sellin, L.C., Schmidt, J.J., Weinstein, S.A. and McArdle, J.J. (1992) A novel peptide toxin from Trimeresurus wagleri acts pre- and post-synaptically to block transmission at the rat neuromuscular junction. Pharmacol Toxicol 70, 459-462. [22] McArdle, J.J., Schmidt, J.J., Weinstein, S.A. and Sellin., L.C. (1995) Conformational Analysis of a Toxic Peptide from Trimeresurus wagleri which Blocks the Nicotinic Acetylcholine Receptor. Biophys. J. 68, A327-A338. [23] McArdle, J.J., Xiao, Y.-F., Aiken, S.P., Sellin, L.C., Schmidt, J.J. and Weinstein., S.A. (1992) A novel peptide neurotoxin selectively blocks myocardial L-type calcium current. Neurosci. Soc. 18, 969-978. [24] Molles, B.E., Rezai, P., Kline, E.F., McArdle, J.J., Sine, S.M. and Taylor, P. (2002) Identification of residues at the alpha and epsilon subunit interfaces mediating species selectivity of Waglerin I for nicotinic acetylcholine receptors. J. Biol. Chem. 277, 5433-5440. [25] Chuang, L.C., Yu, H.M., Chen, C., Huang, T.H., Wu, S.H. and Wang, K.T. (1996) Determination of three-dimensional solution structure of waglerin I, a toxin from Trimeresurus wagleri, using 2D-NMR and molecular dynamics simulation. Biochim. Biophys. Acta. 1292, 145-155. [26] Sellin, L.C., Mattila, K., Annila, A., Schmidt, J.J., McArdle, J.J., Hyvonen, M., Rantala, T.T. and Kivisto, T. (1996) Conformational analysis of a toxic peptide from Trimeresurus wagleri which blocks the nicotinic acetylcholine receptor. Biophys. J. 70, 3-13. [27] Schwieters, C.D., Kuszewski, J.J., Tjandra, N. and Clore, G.M. (2003) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65-73. [28] Melander, W.R., Jacobson, J. and Horvath, C. (1982) Effect of molecular structure and conformational change of proline-containing dipeptides in reversed-phase chromatography. J. Chromatogr. A 234, 269-276. [29] Jacobson, J., Melander, W.R., Vaisnys, G. and Horvath, C. (1984) Dynamic effect of secondary equilibria in reversed-phase chromatography. J. Phys. Chem. 88, 4527-4536. [30] Henderson, D.E. and Horvath, C. (1986) Low Temperature High-Performance Liquid Chromatography of Cis-trans Proline Dipeptides. J. Chromatogr. A 368, 203-213. [31] Henderson, D.E. and Mello, J.A. (1990) Physicochemical studies of biologically active peptides by low-temperature reversed-phase high-performance liquid chromatography. J. Chromatogr. 499, 79-88. [32] Kalman, A., Thunecke, F., Schmidt, R., Schiller, P.W. and Horvath, C. (1996) Isolation and identification of peptide conformers by reversed-phase high-performance liquid chromatography and NMR at low temperature. J. Chromatogr. A 729, 155-171. [33] Ma, S., Kalman, F., Kalman, A., Thunecke, F. and Horvath, C. (1995) Capillary zone electrophoresis at subzero temperatures. I. Separation of the cis and trans conformers of small peptides. J. Chromatogr. A 716, 167-182. [34] Meyer, S., Jabs, A., Schutkowski, M. and Fischer, G. (1994) Separation of cis/trans isomers of a prolyl peptide bond by capillary zone electrophoresis. Electrophoresis 15, 1151-1157. [35] Wuthrich, K. (1986) NMR of proteins and Nucleic Acid, John Wiley, NY. [36] Grathwohl, C. and Wuthrich, K. (1976) Nmr studies of the molecular conformations in the linear oligopeptides H-(L-Ala)n-L-Pro-OH. Biopolymers 15, 2043-2057. [37] Gething, M.J., Doms, R.W., York, D. and White, J. (1986) Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J. Cell. Biol. 102, 11-23. [38] Steinhauer, D.A., Wharton, S.A., Skehel, J.J. and Wiley, D.C. (1995) Studies of the membrane fusion activities of fusion peptide mutants of influenza virus hemagglutinin. J. Virol. 69, 6643-6651. [39] Matsumoto, T. (1999) Membrane destabilizing activity of influenza virus hemagglutinin-based synthetic peptide: implications of critical glycine residue in fusion peptide. Biophys. Chem. 79, 153-162. [40] Salvatella, X., Caba, J.M., Albericio, F. and Giralt, E. (2003) Solution structure of the antitumor candidate trunkamide A by 2D NMR and restrained simulated annealing methods. J. Org. Chem. 68, 211-215. [41] Boruah, A., Rao, I.N., Nandy, J.P., Kumar, S.K., Kunwar, A.C. and Iqbal, J. (2003) Synthesis of a novel cis-proline-derived cyclic type VI beta-turn mimic via ring-closing metathesis. J. Org. Chem. 68, 5006-5008. [42] Xiao, J., Weisblum, B. and Wipf, P. (2006) Trisubstituted (E)-alkene dipeptide isosteres as beta-turn promoters in the gramicidin S cyclodecapeptide scaffold. Org. Lett. 8, 4731-4734. [43] Liao, S.Y., Ong, G.T., Wang, K.T. and Wu, S.H. (1995) Conformation of polymyxin B analogs in DMSO from NMR spectra and molecular modeling. Biochim. Biophys. Acta. 1252, 312-320. [44] Francart, C., Wieruszeski, J.-M., Tartar, A. and Lippens, G. (1996) Structural and dynamic characterization of Pro cis/trans isomerization in. a small cyclic peptide. J. Am. Chem. Soc. 118, 7019-7027. [45] Stewart, D.E., Sarkar, A. and Wampler, J.E. (1990) Occurrence and role of cis peptide bonds in protein structures. J. Mol. Biol. 214, 253-260. [46] Chou, P.Y. and Fasman, G.D. (1978) Empirical predictions of protein conformation. Annu. Rev. Biochem. 47, 251-276. [47] Muller, G., Gurrath, M., Kurz, M. and Kessler, H. (1993) Beta VI turns in peptides and proteins: a model peptide mimicry. Proteins 15, 235-251. [48] Shi, T., Spain, S.M. and Rabenstein, D.L. (2006) A striking periodicity of the cis/trans isomerization of proline imide bonds in cyclic disulfide-bridged peptides. Angew. Chem. Int. Ed. Engl. 45, 1780-1783. [49] Shi, T., Spain, S.M. and Rabenstein, D.L. (2004) Unexpectedly fast cis/trans isomerization of Xaa-Pro peptide bonds in disulfide-constrained cyclic peptides. J. Am. Chem. Soc. 126, 790-796. [50] Rabenstein, D.L., Shi, T. and Spain, S. (2000) Intramolecular catalysis of the cis-trans isomerization of proline peptide bonds in cyclic disulfide-containing peptides. J. Am. Chem. Soc. 122, 2401-2402. [51] Guruprasad, K., Pavan, M.N., Rajkumar, S. and Swaminathan, S. (2000) Isolated and multiple beta-turns with proline in the third position. Curr. Sci. 79, 992-995. [52] Blout, E.R., Bovey, F.A., Goodman, M. and Lotan, N. (1974) Peptides, Polypeptides and Proteins, John Wiley, NY. [53] Halab, L. and Lubell, W.D. (2002) Effect of sequence on peptide geometry in 5-tert-butylprolyl type VI beta-turn mimics. J. Am. Chem. Soc. 124, 2474-2484. [54] Halab, L. and Lubell, W.D. (1999) The type B spectrum exhibited by (S)-1b has been previously assigned to a type VIa beta-turn conformation. J. Org. Chem. 64, 3312-3321. [55] Hamelberg, D., Shen, T. and McCammon, J.A. (2005) Phosphorylation effects on cis/trans-isomerization and the backbone conformation of serine-proline motifs: Accelerated molecular dynamics analysis. J. Am. Chem. Soc. 127, 1969-1974. [56] Mantz, Y.A., Gerard, H., Iftimie, R. and Martyna, G.J. (2004) Isomerization of a peptidic fragment studied theoretically in vacuum and in explicit water solvent at finite temperature. J. Am. Chem. Soc. 126, 4080-4081. [57] Hamelberg, D. and McCammon, J.A. (2005) Fast peptidyl cis/trans isomerization within the flexible Gly-rich flaps of HIV-1 protease. J. Am. Chem. Soc. 127, 13778-13779. [58] Fischer, S., Dunbrack, R.L., Karplus, J.M. and Karplus, M. (1994) Cis-trans imide isomerization in the proline dipeptide. J. Am. Chem. Soc. 116, 11931-11937. [59] Zhang, W.J., Berglund, A., Kao, J.L., Couty, J.P., Gershengorn, M.C. and Marshall, G.R. (2003) Impact of azaproline on amide cis-trans isomerism: conformational analyses and NMR studies of model peptides including TRH analogues. J. Am. Chem. Soc. 125, 1221-1235. [60] Gaggelli, E., D''Amelio, N., Gaggelli, N. and Valensin, G. (2001) Metal ion effects on the cis/trans isomerization equilibrium of proline in short-chain peptides: a solution NMR study. Chembiochem 2, 524-529. [61] Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M.J., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179-5197. [62] Keller, M., Sager, C., Dumy, P., Schutkowski, M., Fischer, G.S., Mutter, M. (1998) Enhancing the proline effect: pseudo-prolines for tailoring cis/trans isomerization. J. Am. Chem. Soc. 120, 2714-2720. [63] Kern, D., Schutkowski, M. and Drakenberg, T. (1997) Rotational Barriers of cis/trans Isomerization of Proline Analogues and Their Catalysis by Cyclophilin. J. Am. Chem. Soc. 119, 8403-8408. [64] Reimer, U., Scherer, G., Drewello, M., Kruber, S., Schutkowski, M. and Fischer, G. (1998) Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J. Mol. Biol. 279, 449-460. [65] Brandts, J.F., Halvorson, H.R. and Brennan, M. (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14, 4953-4963. [66] Florio, G.M., Christie, R.A., Jordan, K.D. and Zwier, T.S. (2002) Conformational preferences of jet-cooled melatonin: probing trans- and cis-amide regions of the potential energy surface. J. Am. Chem. Soc. 124, 10236-10247. [67] Breznik, M., Golic, S., Grdadolnik, Giester, G., Leban, I. and Kikelj, D. (2001) Influence of chirality of the preceding acyl moiety on the cis/trans ratio of the proline peptide bond. J. Org. Chem. 66, 7044-7050. [68] Tonelli, E.A. (1973) An estimate of the barriers hindering rotation about the Ca-C'' bond between the cis and trans conformations in an Isolated L-proline residue. J. Am. Chem. Soc. 95, 5946-5948. [69] Schulz, G.E. and Schirmer, R.H. (1961) Principles of Protein Structure, Springer-Verlag, NY.
|