跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 15:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊易勳
研究生(外文):Yi-Hsun Yang
論文名稱:合成以螢光共振能量轉移為基礎的七異戊醇衍生物用於篩選醣基轉移酶之抑制劑
論文名稱(外文):Synthetic Route of Heptaprenol Derivative for Developing FRET Based Assay to Screen Glycosyltransferase Inhibitors
指導教授:陳昭岑
指導教授(外文):Chao-Tsen Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:130
中文關鍵詞:合成七異戊醇衍生物
外文關鍵詞:synthesisheptaprenol derivative
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌對抗生素所產生的抗藥性從數十年前就不斷的增加, 但在此期間所對應的抗生素並沒有隨著抗藥性的增加而以相同的速度被發現並且應用在臨床上. 目前所使用的抗生素不是在數十年前就被發現並使用就是以現有的抗生素的結構為骨架而做修飾而來.
新藥引入的緩慢有部份是歸因於目前沒有一個有效的藥物篩選方法. 因此我們嘗試建構一個以螢光共振能量傳遞為原理的新的藥物篩選方法. 我們設計了以Lipid II為骨架的類似物並且在它的兩端加上螢光團. 兩個螢光團分別修飾在(L)賴氨酸的支鏈氨基上和萜烯長碳鏈的末端. Lipid II的長碳鏈的長度是可以經由化學合成調整長度, 並且可以藉由調整長度來達到能量轉移效率的最佳化.
經由這樣的設計我們希望能夠建立一個能夠快速篩選醣基轉移酶抑制劑的方法. 以楓基為輔助基來幫助達成的丙烯基和丙烯基的耦合反應被引用在合成路徑裡. 這幫助將來可以合成更多不同長度的長碳鏈萜烯類並應用在這樣的篩選檢測裡.
Bacterial drug resistance increased in decades. There are few drugs which were introduced clinically due to the lack of an efficient screen method. Therefore we attempt to develop a new assay detecting compound inhibitory property to GTase (glycosyltransferase) based on FRET (Fluorescence Resonance Energy Transfer). We have designed a Lipid II analogue with two fluorophores on two terminal of lipid II. The length of the lipid chain is tunable in order to find a proper length for our purpose. In this way, we want to develop a HPT (high throughput) assay to detect GTase inhibitors. Sulfonyl group assisted allyl-allyl coupling has been applied to the convenient and convergent synthetic route. It helps us to further synthesize tunable length of linear terpene chain for the screen assay.
Table of contents

Table of contents………………………………………………………I
Figure index….………………………………………………………….IV
Scheme index……………………………………………………….……V
Table index………………………………………………………….…VIII
Abbreviation…………………………………………………………….IX
Chinese abstract…………………………………………………………XI
English abstract……………………………………………...................XII

Chapter 1 Introduction
1.1 Antibiotics and bacterial resistance…..............................................1
1.2 Peptidoglycan biosynthesis…………………………………………2
1.3 Total synthesis of Lipid II and its analogues……………………5
1.3.1Total synthesis of Lipid II………………………………………5
1.3.2 Fluorescence analogue of lipid II……………………………...9
1.3.3 Lipid chain variation of Lipid II analogues……………10
1.4 Introduction of Allyl-Allyl coupling………………………………17
1.4.1 Allylmagnesium (Grignard reaction) and Allylbarium……….17
1.4.2 Stille coupling………………………………………………...18
1.4.3 Thiophenyl assisted allyl-allyl coupling……………………...19
1.4.4 Sulfone assisted allyl-allyl coupling………………………….20

Chapter 2 Design and synthesis
2.1 The assay designed………………………………………….23
2.2 Design of target molecule………………………………………….26
2.3 Retrosynthetic analysis of heptaprenyl monophosphate fluorescent analogue…………………………………………………...27
2.4 Synthesis of nerol derivative N07 and geraniol derivative G03……………………………………………………………………...30
2.4.1 Synthesis of nerol derivative N07……………………….........30
2.4.2 Synthesis of geraniol derivative G03………………………...40
2.5 Synthesis of allyl sulfone G07 and N13...........................................41
2.6 Allyl-allyl coupling…………………………………………………42
2.6.1 Sulfone assisted allyl-allyl coupling………………………….42
2.6.2 Palladium-catalyzed desulfonylation of allylic sulfones……..43
2.6.3 Desulfonylation with dissolving metal, lithium and sodium…45
2.7 Second round of allyl-allyl coupling………………………………48
2.7 Conclusion…………………………………………………………49

Chapter 3 Experimental section
3.1 General description………………………………………….53
3.2 Synthetic routes and spectral data………………………….55
References……….……………………………………………………..87
Appendix……………………………………………………………...95

Figure index
Figure 1.1 Three stages of peptidoglycan biosynthesis…………………..3
Figure 1.2 Intermediates of Lipid II total synthesis………………………9
Figure 1.3 Dependence on lipid length for compounds containing cis-allylic double bonds…………………………………………………14
Figure 1.4 Lipid I and its analogues.........................................................16
Figure 1.5 Natural Lipid II and its analogues…………………………...16

Figure 2.1 Heptaprenyl monophosphate and its fluorescent analogue (MANT-C30-OP)………………………………………………………26
Figure 2.2 1H NMR spectrum, chemical structure and NMR assignment of N07………………………………………………………………….34
Figure 2.3 NOESY of N07 from δ=1 to δ=5……………………………35
Figure 2.4 1H NMR spectra, chemical structure, and NMR assignment of N11 and its isomer………………………………………………………39
Figure 2.5 NMR spectra of separated compound from Pd/LiHBEt3……………………………………………………………...45


Scheme index
Scheme 1.1 Transglycosylase transfers disaccharide to construct linear saccharide chain…………………………………………………………..4
Scheme 1.2 Retrosynthetic scheme of Lipid II…………………………...7
Scheme 1.3 Synthesis of protected muramic acid………………………..7
Scheme 1.4 Synthetic scheme of lipid II synthesis………………………8
Scheme 1.5 The dansylated Lipid II…………………………………….10
Scheme 1.6 Synthesis of various chain length lipid II analogues……….11
Scheme 1.7 Lipid I analogue 27-36 and Lipid II analogue 33a………...13
Scheme 1.8 When the Lipid II formed, UDP released and coupled two enzymatic reactions……………………………………………………..13
Scheme 1.9 Grignard reaction resulted to complex products…………...17
Scheme 1.10 Allylbarium as nucleophile provides potential condition for allyl-allyl coupling………………………………………………………18
Scheme 1.11 η3-Palladium complex formation…………………………19
Scheme 1.12 The preparation of allyl phenyl thioether, the following allyl-allyl coupling and deprotection……………………………………19
Scheme 1.13 Allyl ester and allyl sulfone assisted allyl-allyl coupling and removal of auxiliaries…………………………………………………...20
Scheme 1.14 Allyl sulfone assisted allyl-allyl coupling………………...21

Scheme 2.1 The schematic representation of the assay…………………23
Scheme 2.2 In the absence of inhibitors, the transglycosylase transfers the disaccharide from Lipid II to linear glycan chain………………………24
Scheme 2.3 In the presence of inhibitors, the transglycosylase is inhibited and the FRET is retained………………………………………………..24
Scheme 2.4 Enzymatically synthetic scheme of Lipid II analogue……..25
Scheme 2.5 MANT Lipid II analogue is further modified chemically to MANT-NBD Lipid II analogue……………………………………….25
Scheme 2.6 The retrosynthetic scheme of MANT-C30-OP……………28
Scheme 2.7 The retrosynthetic scheme of nerol derivative N07………..29
Scheme 2.8 The retrosynthetic scheme of geraniol derivative G03…….30
Scheme 2.9 Selective ozonalysis to O-acetyl geraniol………………….31
Scheme 2.10 The transition state of Wittig reaction…………………….33
Scheme 2.11 Corey-Kim condition yields oxidation product and chlorination product……………………………………………………..36
Scheme 2.12 Desulfonylation using Na/naphthalenide………………...46
Scheme 2.13 Summary of N07 synthetic scheme………………………50
Scheme 2.14 Summary of G07 synthetic scheme………………………51
Scheme 2.15 Synthetic route to triterpene derivative C08……………52





Table index
Table 1.1 Percentage of peptidoglycan (cpm baseline material/total cpm) formed from radiolabel led compounds 21-26…………………………12
Table 1.2 The reaction rate (RFU/Min) and relative reaction rate of Lipid analogues………………………………………………………………..14

Table 2.1 Desulfonylation with Pd catalyst and LHBEt3……………….44
1.Walker, S.; Chen, L.; Hu, Y. Rew, Y.; Shin, D.; Boger, D. L. Chem. Rev. 2005, 105, 449.
2.(a) Hall, R. M.; Collis, C. M. Drug Resist. Updat. 1998, 1, 109. (b) Toleman, M. A.; Bennett, P. M.; Walsh, T. R. Microbiol. Mol. Biol. Rev. 2006, 70, 296. (c) Walsh, C. T. Antibiotics: Actions, Origins, Resistance; ASM Press: Washington, D.C., 2003.
3.(a) Gale, E. F.; Cundliffe, E.; Reynolds, P. E.; Richmond, M. H.; Waring, M. J. The Molecular Basis of Antibiotic Action; Wiley-Interscience: New York, 1981. (b) Wright, G. D. Nature Rev. Microbiol. 2007, 5, 175.
4.Rogers, H. J.; Perkins, H. R.; Ward, J. B. Microbial Cell Walls and Membranes; Chapman & Hall: London, 1980.
5.Wong, K. K.; Pompliano, D. L. Adv. Exp. Med. Biol. 1998, 456, 197.
6.Silver, L. L. Curr. Opin. Microbiol. 2003, 6, 431.
7.van Heijenoort, J. Glycobiology 2001, 11, 25R.
8.(a) Anderson, J. S.; Matsuhashi, M.; Haskin, M. A.; Strominger, J. L. PNAS 1965, 53, 881. (b) Bouhss, A.; Mengin-Lecreulx, D.; Le Beller, D.; van Heijenoort, J. Mol. Microbiol. 1999, 34, 576.
9.(a) Crouvoisier, M.; Mengin-Lecreulx, D.; van Heijenoort, J. FEBS Lett. 1999, 449, 289. (b) Barrett, D.; Leimkuhler, C.; Chen, L.; Walker, D.; Kahne, D.; Walker, S. J. Bacteriol. 2005, 187, 2215.
10.Terrak, M.; Ghosh, T. K.; van Heijenoort, J.; van Beeumen, J.; Lampilas, M.; Aszodi, J.; Ayala, J. A.; Ghuysen, J.-M.; Nguyen-Diste`che, M. Mol. Microbiol. 1999, 34, 350.
11.Pares, S.; Mouz, N.; Pe′tillot, Y.; Hakenbeck, R.; Dideberg, O. Nat. Struct. Biol. 1996, 3, 284.
12.Men, H.; Park, P.; Ge, M.; Walker, S. J. Am. Chem. Soc. 1998, 120, 2484.
13.Ye, X.-Y.; Lo, M.-C.; Brunner, L.; Walker, D.; Kahne, D.; Walker, S. J. Am. Chem. Soc. 2001, 123, 3155.
14.Schwartz, B.; Markwalder, H. A.; Wang, Y. J. Am. Chem. Soc. 2001, 123, 11638.
15.Narayan, R. S.; VanNieuwenhze, M. S. Eur. J. Org. Chem. 2007, 2007, 1399.
16.Weerapana, E.; Glover, K. J.; Chen, M. M.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 13766.
17.Janiak, A. M.; Hoffmann, M.; Milewska, M. J.; Milewski, S. Bioorg. Med. Chem. 2003, 11, 1653.
18.Brooks, G.; Edwards, P. D.; Hatto, J. D. I.; Smale, T. C.; Southage, R. Tetrahedron 1995, 51, 7999.
19.Hoard, D. E.; Ott, D. G. J. Am. Chem. Soc. 1965, 87, 1785.
20.VanNieuwenhze, M. S., Mauldin, S. C., Zia-Ebrahimi, M., Winger, B. E., Hornback, W. J., Saha, S. L., Aikins, J. A., Blaszczak, L. C. J. Am. Chem. Soc. 2002, 124, 3656.
21.Imperiali, B.; Zimmerman, J. W. Tetrahedron Lett. 1990, 31, 6485.
22.Chen, L.; Men, H.; Ha, S.; Ye, X.-Y.; Brunner, L.; Hu, Y.; Walker, S. Biochemistry 2002, 41, 6824.
23.Gosselin, S.; Alhussaini, M.; Streiff, M. B.; Takabayashi, K.; Palcic, M. M. Anal. Biochem.1994, 220, 92.
24.Lazar, K.; Walker, S. Curr. Opin. Chem. Biol. 2002, 6, 786.
25.(a) Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1981, 103, 1969. (b) Mechelke, M. F.; Wiemer, D. F. J. Org. Chem. 1999, 64, 4821.
26.Nakamura, H.; Bao, M.; Yamamoto, Y.; Angew. Chem. Int. Ed. 2001, 40, 3208.
27.Nakamura, H. Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 6641.
28.(a) Hioki, H.; Ooi, H.; Hamano, M.; Mimura, Y.; Yoshio, S.; Yanai, M.; Ikegami, S. Tetrahedron 2001, 57, 1235. (b) Ichihashi, M.; Takikawa, H.; Mori, K. Biosci. Biotechnol. Biochem. 2001, 65, 2569.
29.(a) Mohri, M.; Kinoshita, H.; Inomata, K.; Kotake, H. Chem. Lett. 1985, 14, 451. (b) Kotake, H.; Yamamoto, T.; Kinoshita, H. Chem. Lett. 1982, 11, 1331. (c) Hutchins, R. O.; Learn, K. Org. Chem. 1982, 47, 4380.
30.Bouzbouz, S.; Kirschleger, B. Synthesis, 1994, 1994, 714.
31.Yu, X.-J.; Chen, F.-E.; Dai, H.-F.; Chen, X.-X.; Kuang, Y.-Y.; Xie, B. Hel. Chem. Acta 2005, 88, 2575.
32.Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Am. Chem. Soc. 1991, 113, 8955.
33.Lipshutz, B. H.; Bulow, G.; Fernandez-Lazaro, F.; Kim, S.-K.; Lowe, R.; Mollaed, P.; Stevens, K. L. J. Am. Chem. Soc. 1999, 121, 11664.
34.Nakamura, H.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 6641.
35.Nakamura, H.; Bao, M.; Yamamoto, Y. Angew. Chem. 2001, 113, 3308.
36.Bouveault, L.; Blanc, G. Bull. Soc. Chim. France 1904, 31, 666.
37.Kodama, M.; Matsuki, Y.; Ito, S. Tetrahedron Lett. 1975, 35, 3065.
38.Trost, B. M.; Machacek, M. R.; Tsui, H. C. J. Am. Chem. Soc. 2005, 127, 7014.
39.Terao, S.; Kato, K.; Shiraishi, M.; Morimoto, H. J. Org. Chem. 1979, 44, 868.
40.(a) Chen, A. P.-C.; Chen,Y.-H.; Liu, H.-P.; Li, Y.-C.; Chen, C.-T.; Liang, P.-H. J. Am. Chem. Soc. 2002, 124, 15217. (b) Lan, J.; Li, J.; Liu, Z.; Li, J.; Chan, A. S. C. Tetrahedron: Asymmetry, 1999, 10, 1877. (c) Lee, C. Y. Master Thesis in NTU Chemistry department, 2004, July.
41.(a) Sato, K.; Miyamoto, O.; Inoue, S.; Furusawa, F.; Matsuhashi, Y. Chem. Lett. 1983, 12, 725. (b) Sato, K.; Osamu, M.; Seiichi, I.; Yasusuke, M.; Shingo, K.; Toshihiko, K. Chem. Commun. 1986, 1761. (c) Unpublished result by Lee, Y. C.. (d) Coates, R. M.; Johnson, M. W. J. Org. Chem. 1980, 45, 2685.
42.(a) Depres, J. P.; Greene, A. E. J. Org. Chem. 1980, 45, 2037. (b) Coates, R. M.; Johnson, M. W. J. Org. Chem. 1980, 45, 2685.
43.Boehm, M. F.; Prestwich, G. D. J. Org. Chem. 1986, 51, 5447.
44.Meinwald, J. Chem. Ber. 1955, 88, 1886.
45.Trost, B. M.; Machacek, M. R.; Tsui, H. C. J. Am. Chem. Soc. 2005, 127, 7014.
46.Chen, K. M.; Semple, J. E.; and JoulliBé, M. M. J. Org. Chem. 1985, 50, 3997.
47.Inoue, S.; Honda, K.; Iwase, N.; Sato, K. Bull. Chem. Soc. Jpn. 1990, 63, 1629.
48.Kim, D. S. H. L.; Kim, J. Y. Bioorg. Med. Chem. Lett. 2001, 11, 2541.
49.Appel, M.; Blaurock, S.; Berger, S. Eur. J. Org. Chem. 2002, 2002, 1143.
50.Corey, E. J.; Kim, C. U. J. Am. Chem. Soc. 1972, 94, 7586.
51.Philips, K. D.; Zemlicka, J.; Horwitz, J. P. Carbohydr. Res. 1973, 30, 281.
52.Buenadicha, F. L.; Bartolome, M. T.; Aquirre, M. J.; Avendano, C.; Sollhuber, M. Tetrahedron: Asymmetery 1998, 9, 483.
53.Rodebaugh, R.; Debenham, J. S.; Fraser-Reid, B. Tetrahedron Lett. 1996, 37, 5477.
54.Jiang, H.; Huang, W.; Zhang, X.; Liu, H.; Shen, J. Tetrahedron Lett. 2005, 46, 5965.
55.Sinay, P.; Roizel, B. C.; Cabianca, E., Rollin, P. Tetrohedron 2002, 58, 9579.
56.Guo, H.; Ye, S.; Wang, J.; Zhang, Y. J. Chem. Research 1997, 1997, 114.
57.Liu, H. J.; Yip, J. Tetrahedron Lett. 1997, 38, 2253.
58.(a) Pearce, A. J.; Sinay, P. Angew. Chem. Int. Ed. 2000, 39, 3610. (b) Falck, J. R.; Barma, D. K.; Venkataraman, S. K.; Baati, R.; Mioskowski, C. Tetrahedron Lett. 2002, 43, 963.
59.Croteau, R. B.; Wise, M. L.; Pyun, H.-J.; Helms, G.; Assink, B.; Coates, R. M.; Tetrahedron 2001, 51, 5327.
60.Corey, E. J.; Kim, C. U. J. Am. Chem. Soc. 1972, 94, 7586.
61.Cole, K. P.; Hsung, R. P. Org. Lett. 2003, 5, 4843.
62.Trost, B. M.; Crawley, M. L.; Lee, C. B. J. Am. Chem. Soc. 2000, 122, 6120.
63.Birch, A. J. Q. Rev. Chem. Soc. 1950, 4, 69.
64.(a) Wise, M. L.; Pyun, H.-J.; Helms, G.; Assink, B.; Coates, R. M.; Croteau, R. B. Tetrahedron 2001, 57, 5326. (b) Terao, S.; Kato, K.; Shiraishi, M.; Morimoto, H. J. Org. Chem. 1979, 44, 868.
65.Liu, P.; Xu, X. Tetrahedron Lett. 2004, 45, 5163.
66.Yoshitomo, S.; Aya, M.; Maya, K.; Shino, M.; Kimie, N.; Naoko, T.; Toshino, O. Bioorg. Med. Chem. Lett. 2007, 17, 1622.
67.Tsai, C.-S. Master Thesis in NTU Chemistry department, 2002, June.
68.(a) Shriver, D. F. et al. Inorganic synthesis Vol. XIX, pp.220, press: A Wiley-Interscience Publication. (b) Dent, W. T.; Long, R.; Wilkinson, A. J. J. Chem. Soc. 1964, 1585.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top