|
1.The Website of American Cancer Society. Learn About Prostate Cancer. http://www.cancer.org/docroot/lrn/lrn_0.asp (2006). 2.Stamey, T. A. Yang, N., Hay, A. R., McNeal, J. E., Freiha, F. S. & Redwine, E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909-16 (1987). 3.Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34-45 (2001). 4.Shukeir, N., Garde, S., Wu, J. J., Panchal, C. & Rabbani, S. A. Prostate secretory protein of 94 amino acids (PSP-94) and its peptide (PCK3145) as potential therapeutic modalities for prostate cancer. Anticancer Drugs 16, 1045-51 (2005). 5.Annabi, B., Bouzeghrane, M., Currie, J. C., Hawkins, R., Dulude, H., Daigneault, L., Ruiz, M., Wisniewski, J. Garde, S., Rabbani, S. A. Panchal, C., Wu, J. J. & Beliveau, R. A PSP94-derived peptide PCK3145 inhibits MMP-9 secretion and triggers CD44 cell surface shedding: implication in tumor metastasis. Clin. Exp. Metastasis 22, 429-39 (2005). 6.Shukeir, N., Arakelian, A., Chen, G., Garde, S., Ruiz, M., Panchal, C. & Rabbani, S. A. A synthetic 15-mer peptide (PCK3145) derived from prostate secretory protein can reduce tumor growth, experimental skeletal metastases, and malignancy-associated hypercalcemia. Cancer Res. 64, 5370-7 (2004). 7.Abrahamsson, P. A. & Lilja, H. Three predominant prostatic proteins. Andrologia 22 Suppl.1, 122-31 (1990). 8.Nolet, S., St-Louis, D., Mbikay, M. & Chretien, M. Rapid evolution of prostatic protein PSP94 suggested by sequence divergence between rhesus monkey and human cDNAs. Genomics 9, 775-7. (1991). 9.Xuan, J. W., Wu, D., Guo, Y., Garde, S., Shum, D. T., Mbikay, M., Zhong, R. & Chin, J. L. Molecular cloning and gene expression analysis of PSP94 (prostate secretory protein of 94 amino acids) in primates. DNA Cell Biol. 16, 627-38 (1997). 10.Makinen, M., Valtonen-Andre, C. & Lundwall, A. New world, but not Old World, monkeys carry several genes encoding beta-microseminoprotein. Eur. J. Biochem. 264, 407-14 (1999). 11.Fernlund, P., Granberg, L. B. & Roepstorff, P. Amino acid sequence of beta-microseminoprotein from porcine seminal plasma. Arch. Biochem. Biophys. 309, 70-6 (1994). 12.Fernlund, P., Granberg, L. B. & Larsson, I. Cloning of beta-microseminoprotein of the rat: a rapidly evolving mucosal surface protein. Arch. Biochem. Biophys. 334, 73-82 (1996). 13.Xuan, J. W., Kwong, J., Chan, F. L., Ricci, M., Imasato, Y., Sakai, H., Fong, G. H., Panchal, C. & Chin, J. L. cDNA, genomic cloning, and gene expression analysis of mouse PSP94 (prostate secretory protein of 94 amino acids). DNA Cell Biol. 18, 11-26 (1999). 14.Lazure, C., Villemure, M., Gauthier, D., Naude, R. J. & Mbikay, M. Characterization of ostrich (Struthio camelus) beta-microseminoprotein (MSP): identification of homologous sequences in EST databases and analysis of their evolution during speciation. Protein Sci.10, 2207-18 (2001). 15.Garde, S., Sheth, A., Porter, A. T. & Pienta, K. J. Effect of prostatic inhibin peptide (PIP) on prostate cancer cell growth in vitro and in vivo. Prostate 22, 225-33 (1993). 16.Kamada, M., Mori, H., Maeda, N., Yamamoto, S., Kunimi, K., Takikawa, M., Maegawa, M., Aono, T., Futaki, S. & Koide, S. S. beta-Microseminoprotein/ prostatic secretory protein is a member of immunoglobulin binding factor family. Biochim. Biophys. Acta. 1388, 101-10 (1998). 17.Hyakutake, H., Sakai, H., Yogi, Y., Tsuda, R., Minami, Y., Yushita, Y., Kanetake, H., Nakazono, I. & Saito, Y. Beta-microseminoprotein immuno- reactivity as a new prognostic indicator of prostatic carcinoma. Prostate 22, 347-55 (1993). 18.Garde, S. V., Sheth, A. R., Porter, A. T. & Pienta, K. J. A comparative study on expression of prostatic inhibin peptide, prostate acid phosphatase and prostate specific antigen in androgen independent human and rat prostate carcinoma cell lines. Cancer Lett. 70, 159-66 (1993). 19.Shukeir, N., Arakelian, A., Kadhim, S., Garde, S. & Rabbani, S. A. Prostate secretory protein PSP-94 decreases tumor growth and hypercalcemia of malignancy in a syngenic in vivo model of prostate cancer. Cancer Res. 63, 2072-8 (2003). 20.Nam, R. K., Reeves, J. R. Toi, A., Dulude, H., Trachtenberg, J., Emami, M., Daigneault, L., Panchal, C., Sugar, L., Jewett, M. A. & Narod, S. A. A novel serum marker, total prostate secretory protein of 94 amino acids, improves prostate cancer detection and helps identify high grade cancers at diagnosis. J. Urol. 175, 1291-7 (2006). 21.Schroder, F. H. Prostate specific antigen and other markers for prostate cancer. J. Urol. 175, 1199-200 (2006). 22.Xu, K., Wang, X., Ling, M. T., Lee, D. T., Fan, T., Chan, F. L., Xuan, J. J., Tsao, S. W. & Wong, Y. C. Identification of a specifically expressed modified form of novel PSP-94 protein in the secretion of benign prostatic hyperplasia. Electrophoresis 24, 1311-8 (2003). 23.Chao, C. F., Chiou, S. T., Jeng, H. & Chang, W. C. The porcine sperm motility inhibitor is identical to beta-microseminoprotein and is a competitive inhibitor of Na+, K+-ATPase. Biochem. Biophys. Res. Commun. 218, 623-8 (1996). 24.Chao, C. F. The biochemical studies of sperm motility inhibitors from porcines seminal plasma. Doctoral dissertation, Institute of Biochemical Sciences, NTU (1997). 25.Wang, I., Yu, T. A., Wu, S. H., Chang, W. C. & Chen, C. Disulfide pairings and secondary structure of porcine beta-microseminoprotein. FEBS Lett. 541, 80-4 (2003). 26.Wang, I., Lou, Y. C., Wu, K. P., Wu, S. H., Chang, W. C. & Chen, C. Novel solution structure of porcine beta-microseminoprotein. J. Mol. Biol. 346, 1071-82 (2005). 27.Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316-9 (1998). 28.Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B. & Thornton, J. M. CATH-a hierarchic classification of protein domain structures. Structure 5, 1093-108 (1997). 29.Shindyalov, I. N. & Bourne, P. E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739-47 (1998). 30.Ghasriani, H., Teilum, K., Johnsson, Y., Fernlund, P. & Drakenberg, T. Solution Structures of Human and Porcine beta-Microseminoprotein. J. Mol. Biol. 362, 502-15 (2006). 31.Yang, J. P., Finkelman, M. A. & Clarke, M. W. Detection of PSP94 and its specific binding sites in the prostate adenocarcinoma cell line LNCaP. J. Urol. 160, 2240-4 (1998). 32.Mundle, S. D. & Sheth, N. A. Suppression of DNA synthesis and induction of apoptosis in rat prostate by human seminal plasma inhibin (HSPI). Cell Biol. Int. 17, 587-94 (1993). 33.Lamy, S., Ruiz, M. T., Wisniewski, J., Garde, S., Rabbani, S. A., Panchal, C., Wu, J. J. & Annabi, B. A prostate secretory protein94-derived synthetic peptide PCK3145 inhibits VEGF signalling in endothelial cells: implication in tumor angiogenesis. Int. J. Cancer 118, 2350-8 (2006). 34.Thakur, A. N., Vaze, A. Y., Dattatreyamurthy, B. & Sheth, A. R. Isolation & characterization of inhibin from human seminal plasma. Indian J. Exp. Biol. 19, 307-13 (1981). 35.Weiber, H., Borch, K., Sundler, F. & Fernlund, P. Beta-microseminoprotein in gastric carcinoids: a marker of tumour progression. Digestion 60, 440-8 (1999). 36.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-80 (1994). 37.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-8 (1999). 38.Rance, M., Sorensen, O. W., Bodenhausen, G., Wagner, G., Ernst, R. R. & Wuthrich, K. Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 117, 479-485. (1983). 39.Bax, A. & Davis, D. G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355-360 (1985). 40.Kumar, A., Ernst, R. R. & Wuthrich, K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 95, 1-6 (1980). 41.Kay, L. E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog. Biophys. Mol. Biol. 63, 277-99. (1995). 42.Hwang, T. L., van Zijl, P. C. & Mori, S. Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR 11, 221-6 (1998). 43.Wishart, D. S., Bigam, C. G., Yao, J., Abildgaard, F., Dyson, H. J., Oldfield, E., Markley, J. L. & Sykes, B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135-40 (1995). 44.Prestegard, J. H., Bougault, C. M. & Kishore, A. I. Residual dipolar couplings in structure determination of biomolecules. Chem. Rev. 104, 3519-40 (2004). 45.Ramirez, B. E., Voloshin, O. N., Camerini-Otero, R. D. & Bax, A. Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci. 9, 2161-9 (2000). 46.Baber, J. L., Libutti, D., Levens, D. & Tjandra, N. High precision solution structure of the C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K, a c-myc transcription factor. J. Mol. Biol. 289, 949-62 (1999). 47.Williams, D. C., Jr., Cai, M. & Clore, G. M. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex. J. Biol. Chem. 279, 1449-57 (2004). 48.Brunner, E. Residual dipolar couplings in protein NMR. Concepts in Magnetic Resonace 13, 238-259 (2001). 49.Clore, G. M., Gronenborn, A. M. & Tjandra, N. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Magn. Reson. 131, 159-62 (1998). 50.Clore, G. M., Gronenborn, A. M. & Bax, A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133, 216-21 (1998). 51.Hansen, M. R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065-74 (1998). 52.Ottiger, M., Delaglio, F., Marquardt, J. L., Tjandra, N. & Bax, A. Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination. J. Magn. Reson. 134, 365-9 (1998). 53.Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289-302. (1999). 54.Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65-73 (2003). 55.Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51-5, 29-32 (1996). 56.Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477-86 (1996). 57.Kay, L. E., Nicholson, L., Delaglio, F., Bax, A. and Torchia, D. Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J. Magn. Resonance 97, 359-375. (1992). 58.Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269-78 (1992). 59.Johnson, B. A. & Blevins, R. A. NMRVIEW: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603-614 (1994). 60.Tjandra, N., Feller, S. E., Pastor, R. W. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J. Am. Chem. Soc. 117, 12562-6 (1995). 61.Cole, R. & Loria, J. P. FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. J. Biomol. NMR 26, 203-13 (2003). 62.Mandel, A. M., Akke, M. & Palmer, A. G., 3rd. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144-63 (1995). 63.Blackledge, M. Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy 46, 23-61 (2005). 64.Sreerama, N. & Woody, R. W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Anal. Biochem. 287, 252-260 (2000). 65.Case, D. A. Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6, 341-6 (1995). 66.Gouet, P. & Courcelle, E. ENDscript: a workflow to display sequence and structure information. Bioinformatics 18, 767-8 (2002). 67.Dandekar, S. P., Sheth, A. R. & Ghosh, D. Presence of specific receptor binding sites for inhibin in rat spermatids. Andrologia 15, 274-8 (1983). 68.Reeves, J. R., Xuan, J. W. Arfanis, K., Morin, C., Garde, S. V., Ruiz, M. T., Wisniewski, J., Panchal, C. & Tanner, J. E. Identification, purification and characterization of a novel human blood protein with binding affinity for prostate secretory protein of 94 amino acids. Biochem. J. 385, 105-14 (2005). 69.Udby, L., Lundwall, A., Johnsen, A. H., Fernlund, P., Valtonen-Andre, C., Blom, A. M., Lilja, H., Borregaard, N., Kjeldsen, L. & Bjartell, A. beta-Microseminoprotein binds CRISP-3 in human seminal plasma. Biochem. Biophys. Res. Commun. 333, 555-61 (2005). 70.Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309-20 (1994). 71.Shapiro, L., Kwong, P. D., Fannon, A. M., Colman, D. R. & Hendrickson, W. A. Considerations on the folding topology and evolutionary origin of cadherin domains. Proc. Natl. Acad. Sci. USA 92, 6793-7 (1995). 72.Cota, E., Steward, A., Fowler, S. B. & Clarke, J. The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold. J. Mol. Biol. 305, 1185-94 (2001). 73.Hamill, S. J., Steward, A. & Clarke, J. The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology. J. Mol. Biol. 297, 165-78 (2000). 74.Arnesano, F., Banci, L., Bertini, I. & Thompsett, A. R. Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure 10, 1337-47 (2002). 75.Zhang, C. & Kim, S. H. A comprehensive analysis of the Greek key motifs in protein beta-barrels and beta-sandwiches. Proteins 40, 409-19 (2000). 76.Feige, M. J., Walter, S. & Buchner, J. Folding mechanism of the CH2 antibody domain. J. Mol. Biol. 344, 107-18 (2004). 77.Zhang, C. & Kim, S. H. The anatomy of protein beta-sheet topology. J. Mol. Biol. 299, 1075-89 (2000). 78.Guo, M., Teng, M., Niu, L., Liu, Q., Huang, Q. & Hao, Q. Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold. J. Biol. Chem. 280, 12405-12 (2005). 79.Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27-43 (1999). 80.Fukui, T., Eguchi, T., Atomi, H. & Imanaka, T. A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. J. Bacteriol. 184, 3689-98 (2002). 81.Gottesman, S. Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465-506 (1996). 82.Van Dyck, L., Pearce, D. A. & Sherman, F. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 269, 238-42 (1994). 83.Wang, N., Gottesman, S., Willingham, M. C., Gottesman, M. M. & Maurizi, M. R. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. Natl. Acad. Sci. USA 90, 11247-51 (1993). 84.Gottesman, S. Genetics of proteolysis in Escherichia coli*. Annu. Rev. Genet. 23, 163-98 (1989). 85.Zehnbauer, B. A., Foley, E. C., Henderson, G. W. & Markovitz, A. Identification and purification of the Lon+ (capR+) gene product, a DNA-binding protein. Proc. Natl. Acad. Sci. USA 78, 2043-7 (1981). 86.Schmidt, R., Decatur, A. L., Rather, P. N., Moran, C. P., Jr. & Losick, R. Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J. Bacteriol. 176, 6528-37 (1994). 87.Rudyak, S. G., Brenowitz, M. & Shrader, T. E. Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis. Biochemistry 40, 9317-23 (2001). 88.Stahlberg, H. et al. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc. Natl. Acad. Sci. USA 96, 6787-90 (1999). 89.Goldberg, A. L., Moerschell, R. P., Chung, C. H. & Maurizi, M. R. ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol. 244, 350-75 (1994). 90.Burton, R. E., Baker, T. A. & Sauer, R. T. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat. Struct. Mol. Biol. 12, 245-51 (2005). 91.Kim, Y. I., Levchenko, I., Fraczkowska, K., Woodruff, R. V., Sauer, R. T. & Baker, T. A. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230-3 (2001). 92.Sousa, M. C., Trame, C. B., Tsuruta, H., Wilbanks, S. M., Reddy, V. S. & McKay, D. B. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633-43 (2000). 93.Vasilyeva, O. V., Kolygo, K. B., Leonova, Y. F., Potapenko, N. A. & Ovchinnikova, T. V. Domain structure and ATP-induced conformational changes in Escherichia coli protease Lon revealed by limited proteolysis and autolysis. FEBS Lett. 526, 66-70 (2002). 94.Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia 48, 178-201 (1992). 95.Ebel, W., Skinner, M. M., Dierksen, K. P., Scott, J. M. & Trempy, J. E. A conserved domain in Escherichia coli Lon protease is involved in substrate discriminator activity. J. Bacteriol. 181, 2236-43 (1999). 96.Roudiak, S. G. & Shrader, T. E. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis. Biochemistry 37, 11255-63 (1998). 97.Dougan, D. A., Weber-Ban, E. & Bukau, B. Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. Mol. Cell 12, 373-80 (2003). 98.Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673-83 (2002). 99.Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., Rasulova, F., Dauter, Z., Maurizi, M. R., Rotanova, T. V., Wlodawer, A. & Gustchina, A. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140-8 (2004). 100.Amerik, A., Antonov, V. K., Gorbalenya, A. E., Kotova, S. A., Rotanova, T. V. & Shimbarevich, E. V. Site-directed mutagenesis of La protease. A catalytically active serine residue. FEBS Lett. 287, 211-4 (1991). 101.Rotanova, T. V., Melnikov, E. E., Khalatova, A. G., Makhovskaya, O. V., Botos, I., Wlodawer, A. & Gustchina, A. Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. Eur. J. Biochem. 271, 4865-71 (2004). 102.Lupas, A. N. & Martin, J. AAA proteins. Curr. Opin. Struct. Biol. 12, 746-53 (2002). 103.Smith, C. K., Baker, T. A. & Sauer, R. T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl. Acad. Sci. USA 96, 6678-82 (1999). 104.Lee, A. Y., Hsu, C. H. & Wu, S. H. Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains. J. Biol. Chem. 279, 34903-12 (2004). 105.Li, M., Rasulova, F., Melnikov, E. E., Rotanova, T. V., Gustchina, A., Maurizi, M. R. & Wlodawer, A. Crystal structure of the N-terminal domain of E. coli Lon protease. Protein Sci. 14, 2895-900 (2005). 106.Botos, I., Melnikov, E. E., Cherry, S., Khalatova, A. G., Rasulova, F. S., Tropea, J. E., Maurizi, M. R., Rotanova, T. V., Gustchina, A. & Wlodawer, A. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9Å resolution. J. Struct. Biol. 146, 113-22 (2004). 107.Fu, G. K., Smith, M. J. & Markovitz, D. M. Bacterial protease Lon is a site-specific DNA-binding protein. J. Biol. Chem. 272, 534-8 (1997). 108.Aravind, L., Anantharaman, V., Balaji, S., Babu, M. M. & Iyer, L. M. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29, 231-62 (2005). 109.Gajiwala, K. S., Chen, H., Cornille, F., Roques, B. P., Reith, W. & Mach, B Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916-21 (2000). 110.Liu, T., Lu, B., Lee, I., Ondrovicova, G., Kutejova, E. & Suzuki, C. K. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J. Biol. Chem. 279, 13902-10 (2004).
|