跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王怡人
研究生(外文):Iren Wang
論文名稱:微精漿蛋白結構及Lon蛋白酶alpha區塊結構與去氧核糖核酸結合之研究
論文名稱(外文):Structural Studies of β-microseminoproteins and of Lon Protease α-domain in Complex with DNA
指導教授:吳世雄吳世雄引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:136
中文關鍵詞:核磁共振光譜j旋光光譜微精漿蛋白蛋白質結構
外文關鍵詞:NMR spectroscopyCDmicroseminoproteinprotein structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
除了X-光晶體繞射外,核磁共振技術是另一個被廣為運用來決定生物巨分子構造的一項利器。在本篇論文裡,我們表現並純化出大量所欲探討的重組蛋白質,利用碳-13與氮-15同位素來標定這些重組蛋白,以旋光光譜及異核多維核磁共振技術來探討這些蛋白質的結構與其功能的相關性,內容如下:
[第一部分]
微精漿蛋白被發現存在於許多不同的物種,此蛋白質的特色是不含醣基且具有多對雙硫鍵,但其胺基酸序列保留度並不高。根據我們所得的NOEs發現,豬的微精漿蛋白所形成的雙硫鍵與先前以質譜技術分析出駝鳥蛋白的雙硫鍵位置不一致;此外,旋光光譜顯示出豬跟人類的微精漿蛋白結構皆具有相當高的熱及化學穩定性。透過分析核磁共振光譜所得到的1018個設限(restraints),我們成功地解出了豬微精漿蛋白的三級結構,其主要藉由全為β-摺板組成的N端與C端區塊(domain)所形成,除了利用此兩區塊間長距 NOEs來確定其立體結構計算外,我們也運用殘存磁偶矩的設限(RDCs)加以證實這兩個區塊所組成的三級立體結構。根據豬微精漿蛋白表面的電荷分布推測,這兩個區塊間的作用力主要應透過其表面電荷相互吸引所造成。我們所解出的豬微精漿蛋白三級結構,是微精漿蛋白質成員裡第一個被決定出的蛋白質結構,同時透過DALI、CATH及 CE等方式搜尋目前已知的蛋白質資料庫,證實這個豬微精漿蛋白質的三級結構是一個全新的立體結構。
[第二部分]
Lon蛋白酶的功用主要是負責清除細胞中結構摺疊錯誤或受損的蛋白質,已知位於Lon蛋白酶的ATPase上alpha區塊可辨識其受質蛋白,也可與去氧核糖核酸結合。在我們所探討的兩個Lon蛋白酶alpha區塊研究結果中,旋光光譜顯示出alpha區塊蛋白的二級結構及熱穩定性都很容易受到pH值的影響而有非常大的變化;在pH值為5.8的條件下,我們解出了枯草芽孢桿菌(Bacillus subtilis) Lon蛋白酶alpha區塊的三級結構,其主要由四段α-螺旋與一對β-摺板所組成。分析其所形成的三級結構,我們發現這個alpha區塊蛋白並不屬於常見的去氧核糖核酸結合結構,如helix-turn-helix或winged-helix,不過經電泳凝膠遲緩分析(gel mobility shift assay)與核磁共振光譜中化學位移的擾動實驗結果顯示,此一alpha區塊蛋白確實可與去氧核糖核酸結合。根據核磁共振光譜發現,位於第三段α-螺旋與其所連接的區段所聚集形成的表面正電荷群,應是這些alpha區塊主要負責結合去氧核糖核酸的位置,同時藉由幾個不同物種的alpha區塊表面電荷分布的比較,我們推測其他的Lon蛋白酶alpha區塊也應具有相似的去氧核糖核酸結合能力。
It is well known that NMR, in addition to X-ray crystallography, is another powerful technique used to determine the 3D structure of biomacromolecule. In this dissertation, several recombinant unlabeled as well as 15N- or 15N/13C-labeled proteins were expressed and purified in large quantities. We then carried out circular dichroism (CD) and heteronuclear multidimensional NMR experiments to gain insight into the structure-function relationships on these proteins, as described below.
Part I. β-microseminoproteins (MSPs), identified from diverse species, are all non-glycosylated and disulfide bond-rich, but show a relatively low level of conservation. Although all Cys residues are conserved, the disulfide bond pairings of porcine MSP determined based on NOEs are different from those of ostrich MSP derived based on mass spectrometric analysis. CD titration spectra revealed that both porcine and human MSPs are thermally and chemically stable. The solution structure of porcine MSP determined on the basis of 1018 restraints showed that it exhibits a β-sheet-rich structure with two distinct domains, an N-terminal domain consisting of one double-stranded and one four-stranded antiparallel β-sheets, and a C-terminal domain consisting of two double-stranded antiparallel β-sheets. The orientation of the two domains was derived mainly on the basis of long-range NOEs and verified using residual dipolar coupling data. A number of charged residues were found in close proximity between the two domains, indicating that electrostatic interaction may be the key contact between the two domains. Also, structure of porcine MSP is the first 3D structure reported among all MSPs, and contains a novel fold according to the structural comparison using DALI, CATH, and CE methods.
Part II. Lon protease is mainly responsible for eliminating misfolded or damaged proteins in cells. A small α-domain, localized in the sub-domain of the ATPase domain for Lon, is thought to carry the substrate-recognition and DNA-binding sites. CD spectra revealed that secondary structure and structural stability of Lon α-domains are dramatically altered at extreme pH values. Solution structure of the Bacillus subtilis Lon α-domain at pH 5.8 is consisted of four α-helices and a short two-stranded parallel β-sheet. Although this α-domain contains neither the canonical helix-turn-helix motif nor the winged-helix motif, as usually observed in the DNA-binding protein, it was confirmed that this α-domain indeed binds with DNA based on gel mobility shift assay and NMR shift perturbation experiment. It is suggested based on NMR data that the positively charged residues in α3 helix and in the both loops connecting with α3 are the major sites responsible for DNA binding. Structural comparisons of various Lon α-domains further revealed that other Lon α-domains are very likely to possess similar DNA-binding characteristics.
Table of Contents
List of Abbreviations………………………………………………………….……i
List of Tables……………………………………………………………………..…ii
List of Figures……………………………………………………………………...iii

Part 1:
Solution Structural Studies of β-Microseminoproteins
1-1. Introduction………………………………………………………….……….2
1-2. Materials and Methods…………………………………………………….8
1-2-1. Preparation of porcine and human MSPs…………………………………8
1-2-2. Circular dichroism (CD) experiment…………………………………….10
1-2-3. NMR experiments and resonance assignments………………………….11
1-2-4. Residual dipolar coupling analysis………………………………………13
1-2.5. Structure calculation and analysis………………………………………..14
1-2-6. Relaxation data analysis…………………………………………………15
1-3. Results………………………………………………………………...………20
1-3-1. Conformational stability based on CD analysis of pMSP and hMSP……20
1-3-2. Comparison of NMR data and resonance assignments…………………20
1-3-3. Disulfide pairings and proline cis-trans conformation………………….21
1-3-4. Secondary structure and amide proton exchange rate……………….....22
1-3-5. Structure determination for pMSP………………………………………23
1-3-6. Structure description for pMSP…………………………………………24
1-3-7. Backbone dynamics analysis……………………………………………26
1-3-8. Structural similarity search………………………………………………27
1-4. Discussion……………………………………………………………………57
Part 2:
Structure and DNA-binding of the Bacillus subtilis Lon protease α-domain
2-1. Introduction…………………………………………..……………………..71
2-2. Materials and Methods…………………………………………………...76
2-2-1. Protein expression and purification……..………………………………76
2-2-2. Circular dichroism (CD) experiment………..…………………………77
2-2-3. NMR experiments and resonance assignments…………………………78
2-2-4. Structure calculation and analysis……………………………………….79
2-2-5. Relaxation data analysis…………………………………………………79
2-2-6. Protein-DNA interactions monitored by NMR…………………………80
2-2-7. Homology model…………………...……………………………………80
2-3. Results………………………………………………………………...………83
2-3-1. Conformational stability based on CD analysis of Lon α-domains…..…83
2-3-2. Resonance assignment and secondary structure…………………………83
2-3-3. Structure determination……………………………….…………………85
2-3-4. Backbone dynamics analysis………….…………………………………86
2-3-5. Mapping of interactions between Bs-Lon α-domain and DNA…………87
2-4. Discussion………………………………………..…………………………106

References…………..……………………………………………………………112
Appendix……………...……………………………………………..................…119
1.The Website of American Cancer Society. Learn About Prostate Cancer. http://www.cancer.org/docroot/lrn/lrn_0.asp (2006).
2.Stamey, T. A. Yang, N., Hay, A. R., McNeal, J. E., Freiha, F. S. & Redwine, E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909-16 (1987).
3.Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34-45 (2001).
4.Shukeir, N., Garde, S., Wu, J. J., Panchal, C. & Rabbani, S. A. Prostate secretory protein of 94 amino acids (PSP-94) and its peptide (PCK3145) as potential therapeutic modalities for prostate cancer. Anticancer Drugs 16, 1045-51 (2005).
5.Annabi, B., Bouzeghrane, M., Currie, J. C., Hawkins, R., Dulude, H., Daigneault, L., Ruiz, M., Wisniewski, J. Garde, S., Rabbani, S. A. Panchal, C., Wu, J. J. & Beliveau, R. A PSP94-derived peptide PCK3145 inhibits MMP-9 secretion and triggers CD44 cell surface shedding: implication in tumor metastasis. Clin. Exp. Metastasis 22, 429-39 (2005).
6.Shukeir, N., Arakelian, A., Chen, G., Garde, S., Ruiz, M., Panchal, C. & Rabbani, S. A. A synthetic 15-mer peptide (PCK3145) derived from prostate secretory protein can reduce tumor growth, experimental skeletal metastases, and malignancy-associated hypercalcemia. Cancer Res. 64, 5370-7 (2004).
7.Abrahamsson, P. A. & Lilja, H. Three predominant prostatic proteins. Andrologia 22 Suppl.1, 122-31 (1990).
8.Nolet, S., St-Louis, D., Mbikay, M. & Chretien, M. Rapid evolution of prostatic protein PSP94 suggested by sequence divergence between rhesus monkey and human cDNAs. Genomics 9, 775-7. (1991).
9.Xuan, J. W., Wu, D., Guo, Y., Garde, S., Shum, D. T., Mbikay, M., Zhong, R. & Chin, J. L. Molecular cloning and gene expression analysis of PSP94 (prostate secretory protein of 94 amino acids) in primates. DNA Cell Biol. 16, 627-38 (1997).
10.Makinen, M., Valtonen-Andre, C. & Lundwall, A. New world, but not Old World, monkeys carry several genes encoding beta-microseminoprotein. Eur. J. Biochem. 264, 407-14 (1999).
11.Fernlund, P., Granberg, L. B. & Roepstorff, P. Amino acid sequence of beta-microseminoprotein from porcine seminal plasma. Arch. Biochem. Biophys. 309, 70-6 (1994).
12.Fernlund, P., Granberg, L. B. & Larsson, I. Cloning of beta-microseminoprotein of the rat: a rapidly evolving mucosal surface protein. Arch. Biochem. Biophys. 334, 73-82 (1996).
13.Xuan, J. W., Kwong, J., Chan, F. L., Ricci, M., Imasato, Y., Sakai, H., Fong, G. H., Panchal, C. & Chin, J. L. cDNA, genomic cloning, and gene expression analysis of mouse PSP94 (prostate secretory protein of 94 amino acids). DNA Cell Biol. 18, 11-26 (1999).
14.Lazure, C., Villemure, M., Gauthier, D., Naude, R. J. & Mbikay, M. Characterization of ostrich (Struthio camelus) beta-microseminoprotein (MSP): identification of homologous sequences in EST databases and analysis of their evolution during speciation. Protein Sci.10, 2207-18 (2001).
15.Garde, S., Sheth, A., Porter, A. T. & Pienta, K. J. Effect of prostatic inhibin peptide (PIP) on prostate cancer cell growth in vitro and in vivo. Prostate 22, 225-33 (1993).
16.Kamada, M., Mori, H., Maeda, N., Yamamoto, S., Kunimi, K., Takikawa, M., Maegawa, M., Aono, T., Futaki, S. & Koide, S. S. beta-Microseminoprotein/ prostatic secretory protein is a member of immunoglobulin binding factor family. Biochim. Biophys. Acta. 1388, 101-10 (1998).
17.Hyakutake, H., Sakai, H., Yogi, Y., Tsuda, R., Minami, Y., Yushita, Y., Kanetake, H., Nakazono, I. & Saito, Y. Beta-microseminoprotein immuno- reactivity as a new prognostic indicator of prostatic carcinoma. Prostate 22, 347-55 (1993).
18.Garde, S. V., Sheth, A. R., Porter, A. T. & Pienta, K. J. A comparative study on expression of prostatic inhibin peptide, prostate acid phosphatase and prostate specific antigen in androgen independent human and rat prostate carcinoma cell lines. Cancer Lett. 70, 159-66 (1993).
19.Shukeir, N., Arakelian, A., Kadhim, S., Garde, S. & Rabbani, S. A. Prostate secretory protein PSP-94 decreases tumor growth and hypercalcemia of malignancy in a syngenic in vivo model of prostate cancer. Cancer Res. 63, 2072-8 (2003).
20.Nam, R. K., Reeves, J. R. Toi, A., Dulude, H., Trachtenberg, J., Emami, M., Daigneault, L., Panchal, C., Sugar, L., Jewett, M. A. & Narod, S. A. A novel serum marker, total prostate secretory protein of 94 amino acids, improves prostate cancer detection and helps identify high grade cancers at diagnosis. J. Urol. 175, 1291-7 (2006).
21.Schroder, F. H. Prostate specific antigen and other markers for prostate cancer. J. Urol. 175, 1199-200 (2006).
22.Xu, K., Wang, X., Ling, M. T., Lee, D. T., Fan, T., Chan, F. L., Xuan, J. J., Tsao, S. W. & Wong, Y. C. Identification of a specifically expressed modified form of novel PSP-94 protein in the secretion of benign prostatic hyperplasia. Electrophoresis 24, 1311-8 (2003).
23.Chao, C. F., Chiou, S. T., Jeng, H. & Chang, W. C. The porcine sperm motility inhibitor is identical to beta-microseminoprotein and is a competitive inhibitor of Na+, K+-ATPase. Biochem. Biophys. Res. Commun. 218, 623-8 (1996).
24.Chao, C. F. The biochemical studies of sperm motility inhibitors from porcines seminal plasma. Doctoral dissertation, Institute of Biochemical Sciences, NTU (1997).
25.Wang, I., Yu, T. A., Wu, S. H., Chang, W. C. & Chen, C. Disulfide pairings and secondary structure of porcine beta-microseminoprotein. FEBS Lett. 541, 80-4 (2003).
26.Wang, I., Lou, Y. C., Wu, K. P., Wu, S. H., Chang, W. C. & Chen, C. Novel solution structure of porcine beta-microseminoprotein. J. Mol. Biol. 346, 1071-82 (2005).
27.Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316-9 (1998).
28.Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B. & Thornton, J. M. CATH-a hierarchic classification of protein domain structures. Structure 5, 1093-108 (1997).
29.Shindyalov, I. N. & Bourne, P. E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739-47 (1998).
30.Ghasriani, H., Teilum, K., Johnsson, Y., Fernlund, P. & Drakenberg, T. Solution Structures of Human and Porcine beta-Microseminoprotein. J. Mol. Biol. 362, 502-15 (2006).
31.Yang, J. P., Finkelman, M. A. & Clarke, M. W. Detection of PSP94 and its specific binding sites in the prostate adenocarcinoma cell line LNCaP. J. Urol. 160, 2240-4 (1998).
32.Mundle, S. D. & Sheth, N. A. Suppression of DNA synthesis and induction of apoptosis in rat prostate by human seminal plasma inhibin (HSPI). Cell Biol. Int. 17, 587-94 (1993).
33.Lamy, S., Ruiz, M. T., Wisniewski, J., Garde, S., Rabbani, S. A., Panchal, C., Wu, J. J. & Annabi, B. A prostate secretory protein94-derived synthetic peptide PCK3145 inhibits VEGF signalling in endothelial cells: implication in tumor angiogenesis. Int. J. Cancer 118, 2350-8 (2006).
34.Thakur, A. N., Vaze, A. Y., Dattatreyamurthy, B. & Sheth, A. R. Isolation & characterization of inhibin from human seminal plasma. Indian J. Exp. Biol. 19, 307-13 (1981).
35.Weiber, H., Borch, K., Sundler, F. & Fernlund, P. Beta-microseminoprotein in gastric carcinoids: a marker of tumour progression. Digestion 60, 440-8 (1999).
36.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-80 (1994).
37.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-8 (1999).
38.Rance, M., Sorensen, O. W., Bodenhausen, G., Wagner, G., Ernst, R. R. & Wuthrich, K. Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 117, 479-485. (1983).
39.Bax, A. & Davis, D. G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355-360 (1985).
40.Kumar, A., Ernst, R. R. & Wuthrich, K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 95, 1-6 (1980).
41.Kay, L. E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog. Biophys. Mol. Biol. 63, 277-99. (1995).
42.Hwang, T. L., van Zijl, P. C. & Mori, S. Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR 11, 221-6 (1998).
43.Wishart, D. S., Bigam, C. G., Yao, J., Abildgaard, F., Dyson, H. J., Oldfield, E., Markley, J. L. & Sykes, B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135-40 (1995).
44.Prestegard, J. H., Bougault, C. M. & Kishore, A. I. Residual dipolar couplings in structure determination of biomolecules. Chem. Rev. 104, 3519-40 (2004).
45.Ramirez, B. E., Voloshin, O. N., Camerini-Otero, R. D. & Bax, A. Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci. 9, 2161-9 (2000).
46.Baber, J. L., Libutti, D., Levens, D. & Tjandra, N. High precision solution structure of the C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K, a c-myc transcription factor. J. Mol. Biol. 289, 949-62 (1999).
47.Williams, D. C., Jr., Cai, M. & Clore, G. M. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex. J. Biol. Chem. 279, 1449-57 (2004).
48.Brunner, E. Residual dipolar couplings in protein NMR. Concepts in Magnetic Resonace 13, 238-259 (2001).
49.Clore, G. M., Gronenborn, A. M. & Tjandra, N. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Magn. Reson. 131, 159-62 (1998).
50.Clore, G. M., Gronenborn, A. M. & Bax, A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133, 216-21 (1998).
51.Hansen, M. R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065-74 (1998).
52.Ottiger, M., Delaglio, F., Marquardt, J. L., Tjandra, N. & Bax, A. Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination. J. Magn. Reson. 134, 365-9 (1998).
53.Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289-302. (1999).
54.Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65-73 (2003).
55.Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51-5, 29-32 (1996).
56.Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477-86 (1996).
57.Kay, L. E., Nicholson, L., Delaglio, F., Bax, A. and Torchia, D. Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J. Magn. Resonance 97, 359-375. (1992).
58.Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269-78 (1992).
59.Johnson, B. A. & Blevins, R. A. NMRVIEW: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603-614 (1994).
60.Tjandra, N., Feller, S. E., Pastor, R. W. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J. Am. Chem. Soc. 117, 12562-6 (1995).
61.Cole, R. & Loria, J. P. FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. J. Biomol. NMR 26, 203-13 (2003).
62.Mandel, A. M., Akke, M. & Palmer, A. G., 3rd. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144-63 (1995).
63.Blackledge, M. Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy 46, 23-61 (2005).
64.Sreerama, N. & Woody, R. W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Anal. Biochem. 287, 252-260 (2000).
65.Case, D. A. Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6, 341-6 (1995).
66.Gouet, P. & Courcelle, E. ENDscript: a workflow to display sequence and structure information. Bioinformatics 18, 767-8 (2002).
67.Dandekar, S. P., Sheth, A. R. & Ghosh, D. Presence of specific receptor binding sites for inhibin in rat spermatids. Andrologia 15, 274-8 (1983).
68.Reeves, J. R., Xuan, J. W. Arfanis, K., Morin, C., Garde, S. V., Ruiz, M. T., Wisniewski, J., Panchal, C. & Tanner, J. E. Identification, purification and characterization of a novel human blood protein with binding affinity for prostate secretory protein of 94 amino acids. Biochem. J. 385, 105-14 (2005).
69.Udby, L., Lundwall, A., Johnsen, A. H., Fernlund, P., Valtonen-Andre, C., Blom, A. M., Lilja, H., Borregaard, N., Kjeldsen, L. & Bjartell, A. beta-Microseminoprotein binds CRISP-3 in human seminal plasma. Biochem. Biophys. Res. Commun. 333, 555-61 (2005).
70.Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309-20 (1994).
71.Shapiro, L., Kwong, P. D., Fannon, A. M., Colman, D. R. & Hendrickson, W. A. Considerations on the folding topology and evolutionary origin of cadherin domains. Proc. Natl. Acad. Sci. USA 92, 6793-7 (1995).
72.Cota, E., Steward, A., Fowler, S. B. & Clarke, J. The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold. J. Mol. Biol. 305, 1185-94 (2001).
73.Hamill, S. J., Steward, A. & Clarke, J. The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology. J. Mol. Biol. 297, 165-78 (2000).
74.Arnesano, F., Banci, L., Bertini, I. & Thompsett, A. R. Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure 10, 1337-47 (2002).
75.Zhang, C. & Kim, S. H. A comprehensive analysis of the Greek key motifs in protein beta-barrels and beta-sandwiches. Proteins 40, 409-19 (2000).
76.Feige, M. J., Walter, S. & Buchner, J. Folding mechanism of the CH2 antibody domain. J. Mol. Biol. 344, 107-18 (2004).
77.Zhang, C. & Kim, S. H. The anatomy of protein beta-sheet topology. J. Mol. Biol. 299, 1075-89 (2000).
78.Guo, M., Teng, M., Niu, L., Liu, Q., Huang, Q. & Hao, Q. Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold. J. Biol. Chem. 280, 12405-12 (2005).
79.Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27-43 (1999).
80.Fukui, T., Eguchi, T., Atomi, H. & Imanaka, T. A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. J. Bacteriol. 184, 3689-98 (2002).
81.Gottesman, S. Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465-506 (1996).
82.Van Dyck, L., Pearce, D. A. & Sherman, F. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 269, 238-42 (1994).
83.Wang, N., Gottesman, S., Willingham, M. C., Gottesman, M. M. & Maurizi, M. R. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. Natl. Acad. Sci. USA 90, 11247-51 (1993).
84.Gottesman, S. Genetics of proteolysis in Escherichia coli*. Annu. Rev. Genet. 23, 163-98 (1989).
85.Zehnbauer, B. A., Foley, E. C., Henderson, G. W. & Markovitz, A. Identification and purification of the Lon+ (capR+) gene product, a DNA-binding protein. Proc. Natl. Acad. Sci. USA 78, 2043-7 (1981).
86.Schmidt, R., Decatur, A. L., Rather, P. N., Moran, C. P., Jr. & Losick, R. Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J. Bacteriol. 176, 6528-37 (1994).
87.Rudyak, S. G., Brenowitz, M. & Shrader, T. E. Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis. Biochemistry 40, 9317-23 (2001).
88.Stahlberg, H. et al. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc. Natl. Acad. Sci. USA 96, 6787-90 (1999).
89.Goldberg, A. L., Moerschell, R. P., Chung, C. H. & Maurizi, M. R. ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol. 244, 350-75 (1994).
90.Burton, R. E., Baker, T. A. & Sauer, R. T. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat. Struct. Mol. Biol. 12, 245-51 (2005).
91.Kim, Y. I., Levchenko, I., Fraczkowska, K., Woodruff, R. V., Sauer, R. T. & Baker, T. A. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230-3 (2001).
92.Sousa, M. C., Trame, C. B., Tsuruta, H., Wilbanks, S. M., Reddy, V. S. & McKay, D. B. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633-43 (2000).
93.Vasilyeva, O. V., Kolygo, K. B., Leonova, Y. F., Potapenko, N. A. & Ovchinnikova, T. V. Domain structure and ATP-induced conformational changes in Escherichia coli protease Lon revealed by limited proteolysis and autolysis. FEBS Lett. 526, 66-70 (2002).
94.Maurizi, M. R. Proteases and protein degradation in Escherichia coli. Experientia 48, 178-201 (1992).
95.Ebel, W., Skinner, M. M., Dierksen, K. P., Scott, J. M. & Trempy, J. E. A conserved domain in Escherichia coli Lon protease is involved in substrate discriminator activity. J. Bacteriol. 181, 2236-43 (1999).
96.Roudiak, S. G. & Shrader, T. E. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis. Biochemistry 37, 11255-63 (1998).
97.Dougan, D. A., Weber-Ban, E. & Bukau, B. Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. Mol. Cell 12, 373-80 (2003).
98.Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673-83 (2002).
99.Botos, I., Melnikov, E. E., Cherry, S., Tropea, J. E., Khalatova, A. G., Rasulova, F., Dauter, Z., Maurizi, M. R., Rotanova, T. V., Wlodawer, A. & Gustchina, A. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140-8 (2004).
100.Amerik, A., Antonov, V. K., Gorbalenya, A. E., Kotova, S. A., Rotanova, T. V. & Shimbarevich, E. V. Site-directed mutagenesis of La protease. A catalytically active serine residue. FEBS Lett. 287, 211-4 (1991).
101.Rotanova, T. V., Melnikov, E. E., Khalatova, A. G., Makhovskaya, O. V., Botos, I., Wlodawer, A. & Gustchina, A. Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. Eur. J. Biochem. 271, 4865-71 (2004).
102.Lupas, A. N. & Martin, J. AAA proteins. Curr. Opin. Struct. Biol. 12, 746-53 (2002).
103.Smith, C. K., Baker, T. A. & Sauer, R. T. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl. Acad. Sci. USA 96, 6678-82 (1999).
104.Lee, A. Y., Hsu, C. H. & Wu, S. H. Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains. J. Biol. Chem. 279, 34903-12 (2004).
105.Li, M., Rasulova, F., Melnikov, E. E., Rotanova, T. V., Gustchina, A., Maurizi, M. R. & Wlodawer, A. Crystal structure of the N-terminal domain of E. coli Lon protease. Protein Sci. 14, 2895-900 (2005).
106.Botos, I., Melnikov, E. E., Cherry, S., Khalatova, A. G., Rasulova, F. S., Tropea, J. E., Maurizi, M. R., Rotanova, T. V., Gustchina, A. & Wlodawer, A. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9Å resolution. J. Struct. Biol. 146, 113-22 (2004).
107.Fu, G. K., Smith, M. J. & Markovitz, D. M. Bacterial protease Lon is a site-specific DNA-binding protein. J. Biol. Chem. 272, 534-8 (1997).
108.Aravind, L., Anantharaman, V., Balaji, S., Babu, M. M. & Iyer, L. M. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29, 231-62 (2005).
109.Gajiwala, K. S., Chen, H., Cornille, F., Roques, B. P., Reith, W. & Mach, B Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916-21 (2000).
110.Liu, T., Lu, B., Lee, I., Ondrovicova, G., Kutejova, E. & Suzuki, C. K. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J. Biol. Chem. 279, 13902-10 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top