|
1.Ferlini, C., et al., Second generation taxanes: from the natural framework to the challenge of drug resistance. Curr Med Chem Anticancer Agents, 2003. 3(2): p. 133-8. 2.Nabholtz, J.M., et al., Advances in the use of taxanes in the adjuvant therapy of breast cancer. Clin Breast Cancer, 2003. 4(3): p. 187-92. 3.Kumar, N., Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem, 1981. 256(20): p. 10435-41. 4.Parekh, H. and H. Simpkins, The transport and binding of taxol. Gen Phar-macol, 1997. 29(2): p. 167-72. 5.Horwitz, S.B., Mechanism of action of taxol. Trends Pharmacol Sci, 1992. 13(4): p. 134-6. 6.Ettmayer, P., et al., Lessons learned from marketed and investigational prod-rugs. J Med Chem, 2004. 47(10): p. 2393-404. 7.Skwarczynski, M., Y. Hayashi, and Y. Kiso, Paclitaxel prodrugs: toward smarter delivery of anticancer agents. J Med Chem, 2006. 49(25): p. 7253-69. 8.Rooseboom, M., J.N. Commandeur, and N.P. Vermeulen, Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev, 2004. 56(1): p. 53-102. 9.Abraham, S., et al., Synthesis of the next-generation therapeutic antibodies that combine cell targeting and antibody-catalyzed prodrug activation. Proc Natl Acad Sci U S A, 2007. 104(13): p. 5584-9. 10.Chatterjee, S.K. and B.R. Zetter, Cancer biomarkers: knowing the present and predicting the future. Future Oncol, 2005. 1(1): p. 37-50. 11.de Graaf, M., et al., Beta-glucuronidase-mediated drug release. Curr Pharm Des, 2002. 8(15): p. 1391-403. 12.Wu, J., Q. Liu, and R.J. Lee, A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm, 2006. 316(1-2): p. 148-53. 13.Prestwich, G.D., et al., Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release, 1998. 53(1-3): p. 93-103. 14.Jaracz, S., et al., Recent advances in tumor-targeting anticancer drug conju-gates. Bioorg Med Chem, 2005. 13(17): p. 5043-54. 15.Shen, S.I., et al., Synthesis and characterization of RGD-fatty acid amphiphilic micelles as targeted delivery carriers for anticancer agents. J Drug Target, 2007. 15(1): p. 51-8. 16.Mittal, S., et al., Proline Prodrug of Melphalan Targeted to Prolidase, a Prodrug Activating Enzyme Overexpressed in Melanoma. Pharm Res, 2007. 17.Damen, E.W., et al., Synthesis of novel paclitaxel prodrugs designed for bio-reductive activation in hypoxic tumour tissue. Bioorg Med Chem, 2002. 10(1): p. 71-7. 18.Liu, D.Z., et al., Synthesis of 2''-paclitaxel methyl 2-glucopyranosyl succinate for specific targeted delivery to cancer cells. Bioorg Med Chem Lett, 2007. 17(3): p. 617-20. 19.Raval, R.R., et al., Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol, 2005. 25(13): p. 5675-86. 20.Funasaka, T., et al., Regulation of phosphoglucose isomerase/autocrine motil-ity factor expression by hypoxia. Faseb J, 2005. 19(11): p. 1422-30. 21.Macheda, M.L., S. Rogers, and J.D. Best, Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol, 2005. 202(3): p. 654-62. 22.Flier, J.S., et al., Elevated levels of glucose transport and transporter messen-ger RNA are induced by ras or src oncogenes. Science, 1987. 235(4795): p. 1492-5. 23.Abouzied, M.M., E.S. Crawford, and H.A. Nabi, 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol, 2005. 33(3): p. 145-55; quiz 162-3. 24.Nguyen, X.C., et al., FDG uptake, glucose transporter type 1, and Ki-67 ex-pressions in non-small-cell lung cancer: correlations and prognostic values. Eur J Radiol, 2007. 62(2): p. 214-9. 25.Sperker, B., et al., Expression and function of beta-glucuronidase in pancre-atic cancer: potential role in drug targeting. Naunyn Schmiedebergs Arch Pharmacol, 2000. 362(2): p. 110-5. 26.Bosslet, K., et al., Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res, 1998. 58(6): p. 1195-201. 27.Islam, M.R., et al., Active site residues of human beta-glucuronidase. Evi-dence for Glu(540) as the nucleophile and Glu(451) as the acid-base residue. J Biol Chem, 1999. 274(33): p. 23451-5. 28.Mellado, W., et al., Preparation and biological activity of taxol acetates. Bio-chem Biophys Res Commun, 1984. 124(2): p. 329-36. 29.Gueritte, F., General and recent aspects of the chemistry and structure-activity relationships of taxoids. Curr Pharm Des, 2001. 7(13): p. 1229-49. 30.Ganesh, T., et al., The bioactive Taxol conformation on beta-tubulin: experi-mental evidence from highly active constrained analogs. Proc Natl Acad Sci U S A, 2004. 101(27): p. 10006-11. 31.Han, Y., et al., Interaction of a fluorescent derivative of paclitaxel (Taxol) with microtubules and tubulin-colchicine. Biochemistry, 1996. 35(45): p. 14173-83. 32.Sengupta, S., et al., Interaction of a fluorescent paclitaxel analogue with tubu-lin. Biochemistry, 1995. 34(37): p. 11889-94. 33.Huang, C.M., Y.T. Wu, and S.T. Chen, Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem Biol, 2000. 7(7): p. 453-61. 34.Kovacs, P., et al., Effects of taxol treatment on the microtubular system and mitochondria of Tetrahymena. Cell Biol Int, 2007. 35.Hartfield, P.J., G.C. Mayne, and A.W. Murray, Ceramide induces apoptosis in PC12 cells. FEBS Lett, 1997. 401(2-3): p. 148-52. 36.Rodrigues, M.L., et al., Synthesis and beta-lactamase-mediated activation of a cephalosporin-taxol prodrug. Chem Biol, 1995. 2(4): p. 223-7. 37.de Groot, F.M., L.W. van Berkom, and H.W. Scheeren, Synthesis and bio-logical evaluation of 2''-carbamate-linked and 2''-carbonate-linked prodrugs of paclitaxel: selective activation by the tumor-associated protease plasmin. J Med Chem, 2000. 43(16): p. 3093-102.
|