跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐弘文
研究生(外文):Hong-Wen Tang
論文名稱:Atg1在細胞自噬和細胞凋亡之探討
論文名稱(外文):Induction of autophagy and apoptosis by Atg1 to promote cell death
指導教授:陳光超陳光超引用關係
指導教授(外文):Guang-Chao Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:66
中文關鍵詞:Atg1細胞自噬細胞凋零細胞死亡果蠅
外文關鍵詞:Atg1autophagyapoptosiscell deathDrosophila
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Atg1是一種絲氨酸/酥胺酸激脢。研究發現在酵母菌中,Atg1的激脢活性是CVT 訊息傳遞路徑以及細胞自噬所必須。Atg1可以和一些執行細胞自噬的蛋白質互相作用,而且有很多調控細胞自噬的訊息傳遞路徑會匯集在Atg1。因此Atg1可能是一個可以調控細胞自噬眾多步驟的一個調節點。但是在較高等的真核生物,Atg1的角色仍然不是很清楚。

目前已經知道細胞自噬可以導致細胞死亡,但是如何導致死亡的分子機制還不清楚。因此我利用果蠅為實驗材料,研究Atg1在細胞死亡中所扮演的角色。結果顯示在果蠅中,Atg1自己就足以引起細胞自噬和細胞凋零而導致細胞死亡。這個發現提供了一個直接的證據證明細胞自噬和細胞凋零在導致細胞死亡的過程中可能是互相影響的。另外,我找到一個未知的蛋白質dDlk。實驗結果顯示dDlk有能力引發細胞死亡。經由生化和遺傳分析,顯示dDlk可以和Atg1互相作用,且dDlk是位於Atg1引發細胞死亡訊息傳遞路徑的下游。我們正在調查Atg1如何調控dDlk的機制,藉此去建立Atg1和細胞死亡之間的關聯。
Atg1 encodes a Serine/Threonine kinase. In yeast, studies have found the requirement for Atg1 kinase activity in both CVT and autophagy. Atg1 interacts with multiple components of the autophagic machinery, and multiple signaling pathways converge on Atg1 to regulate autophagy. Thus, Atg1 is likely to represent a nodal point for controlling multiple steps in the autophagic process in response to various stresses. However, in higher eukaryotes, the role of Atg1 is still unclear.

It has been shown that autophagy can induce cells death. However, the molecular mechanism underlying the autophagic cell death program is unclear. I have examined a potential role for Atg1 in cell death using Drosophila melanogaster as a model system. My results demonstrate that dAtg1 is sufficient to cause cell death due to the induction of autophagy and apoptosis. These findings provide a direct evidence that autophagy and apoptosis are interconnected. I have also identified a novel protein, dDlk. My results demonstrated that dDlk can induce cell death. The biochemical and genetic data reveal that dDlk interacts with dAtg1 and functions downstream of dAtg1-mediated cell death. Thus, dDlk may be an important downstream player in mediating dAtg1’s biological effects on promoting cell death. I am currently investigating whether dDlk is mediated by Atg1 and what is the biological function of Atg1 in cell death.
目 錄
口試委員會審定書……………………………………………………… 1
誌謝……………………………………………………………………… 2
中文摘要………………………………………………………………… 3
英文摘要………………………………………………………………… 4
目錄……………………………………………………………………… 5-6
圖目錄…………………………………………………………………… 7
Introduction…………………………………………………………….. 8-20
The morphological characteristics of autophagy……………………. 9
The regulatory mechanisms of autophagy………………………….. 10-11
Atg1 plays a critical role in autophagy……………………………..... 11-12
Methods for monitoring autophagy………………………………….. 12-14
Autophagy in cell survival and cell death………………………….... 14-17
Autophagy in development…………………………………………... 17-20
Materials and Methods……………………………………………… 21-25
Results………………………………………………………………... 26-34
Expression of a constitutively active form of Atg1 in eye imaginal disc results in morphogenesis defects………………………………….............. 26

Excessive Atg1 kinase activity leads to apoptosis………………… 27-30

Overexpression of Atg1 induces autophagy………………………. 30-31

Atg1-induced cell death engages at least some of the same molecular machinery as starvation-induced autophagy……………………….. 31

dDlk can induce cell death………………………………………… 32-33

dDlk interacts with dAtg1 and is involved in the dAtg1-mediated cell death………………………………………………………………... 33-34
Discussion……………………………………………………………... 35-40
The ability of Atg1 to induce autophagy…………………………... 35-36

Photoreceptor autophagy…………………………………………... 36-37

Autophagy in development………………………………………... 37-38

Atg1 in cell death………………………………………………….. 38-40
Reference……………………………………………………………... 41-47
Figures………………………………………………………………... 48-66
Abeliovich, H., Zhang, C., Dunn, W. A., Jr., Shokat, K. M. and Klionsky, D. J. (2003). Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Biol Cell 14, 477-90.
Abraham, M. C. and Shaham, S. (2004). Death without caspases, caspases without death. Trends Cell Biol 14, 184-93.
Aita, V. M., Liang, X. H., Murty, V. V., Pincus, D. L., Yu, W., Cayanis, E., Kalachikov, S., Gilliam, T. C. and Levine, B. (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59-65.
Akdemir, F., Farkas, R., Chen, P., Juhasz, G., Medved''ova, L., Sass, M., Wang, L., Wang, X., Chittaranjan, S., Gorski, S. M. et al. (2006). Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death. Development 133, 1457-65.
Arbeitman, M. N., Furlong, E. E., Imam, F., Johnson, E., Null, B. H., Baker, B. S., Krasnow, M. A., Scott, M. P., Davis, R. W. and White, K. P. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270-5.
Bangs, P. and White, K. (2000). Regulation and execution of apoptosis during Drosophila development. Dev Dyn 218, 68-79.
Bialik, S. and Kimchi, A. (2006). The Death-Associated Protein Kinases: Structure, Function, and Beyond. Annu Rev Biochem.
Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T. et al. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25, 1025-40.
Brachmann, C. B. and Cagan, R. L. (2003). Patterning the fly eye: the role of apoptosis. Trends Genet 19, 91-6.
Brugarolas, J., Lei, K., Hurley, R. L., Manning, B. D., Reiling, J. H., Hafen, E., Witters, L. A., Ellisen, L. W. and Kaelin, W. G., Jr. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18, 2893-904.
Budovskaya, Y. V., Stephan, J. S., Deminoff, S. J. and Herman, P. K. (2005). An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 102, 13933-8.
Bursch, W., Ellinger, A., Gerner, C., Frohwein, U. and Schulte-Hermann, R. (2000a). Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 926, 1-12.
Bursch, W., Hochegger, K., Torok, L., Marian, B., Ellinger, A. and Hermann, R. S. (2000b). Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 113 ( Pt 7), 1189-98.
Cagan, R. L. and Ready, D. F. (1989). The emergence of order in the Drosophila pupal retina. Dev Biol 136, 346-62.
Chen, G. C., Gajowniczek, P. and Settleman, J. (2004). Rho-LIM kinase signaling regulates ecdysone-induced gene expression and morphogenesis during Drosophila metamorphosis. Curr Biol 14, 309-13.
Codogno, P. and Meijer, A. J. (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2, 1509-18.
Cohen, O. and Kimchi, A. (2001). DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ 8, 6-15.
Dominguez, M. and Campuzano, S. (1993). asense, a member of the Drosophila achaete-scute complex, is a proneural and neural differentiation gene. Embo J 12, 2049-60.
Dragunow, M., MacGibbon, G. A., Lawlor, P., Butterworth, N., Connor, B., Henderson, C., Walton, M., Woodgate, A., Hughes, P. and Faull, R. L. (1997). Apoptosis, neurotrophic factors and neurodegeneration. Rev Neurosci 8, 223-65.
Fingar, D. C. and Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151-71.
Freeman, M. (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651-60.
Gozuacik, D. and Kimchi, A. (2007). Autophagy and cell death. Curr Top Dev Biol 78, 217-45.
Gyrd-Hansen, M., Farkas, T., Fehrenbacher, N., Bastholm, L., Hoyer-Hansen, M., Elling, F., Wallach, D., Flavell, R., Kroemer, G., Nylandsted, J. et al. (2006). Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol 26, 7880-91.
Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M. et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488-92.
Inbal, B., Bialik, S., Sabanay, I., Shani, G. and Kimchi, A. (2002). DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157, 455-68.
Inoki, K., Zhu, T. and Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-90.
Jaattela, M. (2004). Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746-56.
Jang, C. W., Chen, C. H., Chen, C. C., Chen, J. Y., Su, Y. H. and Chen, R. H. (2002). TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4, 51-8.
Jia, L., Dourmashkin, R. R., Allen, P. D., Gray, A. B., Newland, A. C. and Kelsey, S. M. (1997). Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol 98, 673-85.
Kabeya, Y., Kamada, Y., Baba, M., Takikawa, H., Sasaki, M. and Ohsumi, Y. (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16, 2544-53.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19, 5720-8.
Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M. and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507-13.
Kaufmann, N., Wills, Z. P. and Van Vactor, D. (1998). Drosophila Rac1 controls motor axon guidance. Development 125, 453-61.
Kawai, T., Akira, S. and Reed, J. C. (2003). ZIP kinase triggers apoptosis from nuclear PML oncogenic domains. Mol Cell Biol 23, 6174-86.
Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T. and Ohsumi, Y. (1999). Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147, 435-46.
Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N., Yoshimori, T., Ohsumi, M., Takao, T., Noda, T. and Ohsumi, Y. (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151, 263-76.
Klionsky, D. J. (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7-18.
Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M. et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539-45.
Komatsu, M. and Kominami, E. (2006). [Autophagic-lysosomal system: physiology and pathology]. Nihon Shinkei Seishin Yakurigaku Zasshi 26, 75-81.
Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T. and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-6.
Kunchithapautham, K. and Rohrer, B. (2007). Autophagy is one of the multiple mechanisms active in photoreceptor degeneration. Autophagy 3, 65-6.
Lee, C. Y. and Baehrecke, E. H. (2001). Steroid regulation of autophagic programmed cell death during development. Development 128, 1443-55.
Lee, C. Y., Cooksey, B. A. and Baehrecke, E. H. (2002). Steroid regulation of midgut cell death during Drosophila development. Dev Biol 250, 101-11.
Levine, B. and Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-77.
Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H. and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-6.
Lohr, H. R., Kuntchithapautham, K., Sharma, A. K. and Rohrer, B. (2006). Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 83, 380-9.
Lum, J. J., DeBerardinis, R. J. and Thompson, C. B. (2005). Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6, 439-48.
Martin, D. N. and Baehrecke, E. H. (2004). Caspases function in autophagic programmed cell death in Drosophila. Development 131, 275-84.
Martinet, W., De Meyer, G. R., Andries, L., Herman, A. G. and Kockx, M. M. (2006). In situ detection of starvation-induced autophagy. J Histochem Cytochem 54, 85-96.
Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E. L., Hall, D. H. and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-91.
Mizushima, N., Sugita, H., Yoshimori, T. and Ohsumi, Y. (1998). A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273, 33889-92.
Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y. and Yoshimori, T. (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152, 657-68.
Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. and Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15, 1101-11.
Ng, G. and Huang, J. (2005). The significance of autophagy in cancer. Mol Carcinog 43, 183-7.
Noda, T., Suzuki, K. and Ohsumi, Y. (2002). Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12, 231-5.
Offen, D., Elkon, H. and Melamed, E. (2000). Apoptosis as a general cell death pathway in neurodegenerative diseases. J Neural Transm Suppl, 153-66.
Ogura, K., Wicky, C., Magnenat, L., Tobler, H., Mori, I., Muller, F. and Ohshima, Y. (1994). Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev 8, 2389-400.
Okada, M., Akimaru, H., Hou, D. X., Takahashi, T. and Ishii, S. (2002). Myb controls G(2)/M progression by inducing cyclin B expression in the Drosophila eye imaginal disc. Embo J 21, 675-84.
Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D. and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-39.
Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R. et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-84.
Pyo, J. O., Jang, M. H., Kwon, Y. K., Lee, H. J., Jun, J. I., Woo, H. N., Cho, D. H., Choi, B., Lee, H., Kim, J. H. et al. (2005). Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280, 20722-9.
Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y. et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112, 1809-20.
Raveh, T. and Kimchi, A. (2001). DAP kinase-a proapoptotic gene that functions as a tumor suppressor. Exp Cell Res 264, 185-92.
Reggiori, F., Tucker, K. A., Stromhaug, P. E. and Klionsky, D. J. (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6, 79-90.
Reme, C. E., Wolfrum, U., Imsand, C., Hafezi, F. and Williams, T. P. (1999). Photoreceptor autophagy: effects of light history on number and opsin content of degradative vacuoles. Invest Ophthalmol Vis Sci 40, 2398-404.
Richardson, H. and Kumar, S. (2002). Death to flies: Drosophila as a model system to study programmed cell death. J Immunol Methods 265, 21-38.
Rusten, T. E., Lindmo, K., Juhasz, G., Sass, M., Seglen, P. O., Brech, A. and Stenmark, H. (2004). Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7, 179-92.
Samari, H. R. and Seglen, P. O. (1998). Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J Biol Chem 273, 23758-63.
Scott, R. C., Schuldiner, O. and Neufeld, T. P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7, 167-78.
Shani, G., Marash, L., Gozuacik, D., Bialik, S., Teitelbaum, L., Shohat, G. and Kimchi, A. (2004). Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol 24, 8611-26.
Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B. and Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6, 1221-8.
Tapon, N., Harvey, K. F., Bell, D. W., Wahrer, D. C., Schiripo, T. A., Haber, D. A. and Hariharan, I. K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-78.
Thorburn, J., Moore, F., Rao, A., Barclay, W. W., Thomas, L. R., Grant, K. W., Cramer, S. D. and Thorburn, A. (2005). Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell 16, 1189-99.
Thummel, C. S. (2001). Steroid-triggered death by autophagy. Bioessays 23, 677-82.
Tomoda, T., Kim, J. H., Zhan, C. and Hatten, M. E. (2004). Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 18, 541-58.
Tsujimoto, Y. and Shimizu, S. (2005). Another way to die: autophagic programmed cell death. Cell Death Differ 12 Suppl 2, 1528-34.
Veraksa, A., Bauer, A. and Artavanis-Tsakonas, S. (2005). Analyzing protein complexes in Drosophila with tandem affinity purification-mass spectrometry. Dev Dyn 232, 827-34.
Wang, W. J., Kuo, J. C., Yao, C. C. and Chen, R. H. (2002). DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol 159, 169-79.
Wang, Z., Wilson, W. A., Fujino, M. A. and Roach, P. J. (2001). Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21, 5742-52.
Wolff, T. and Ready, D. F. (1991). Cell death in normal and rough eye mutants of Drosophila. Development 113, 825-39.
Yin, V. P. and Thummel, C. S. (2005). Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol 16, 237-43.
Yorimitsu, T. and Klionsky, D. J. (2005). Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2, 1542-52.
Yue, Z., Jin, S., Yang, C., Levine, A. J. and Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100, 15077-82.
Zhou, X., Babu, J. R., da Silva, S., Shu, Q., Graef, I. A., Oliver, T., Tomoda, T., Tani, T., Wooten, M. W. and Wang, F. (2007). Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci U S A 104, 5842-7.
Zong, W. X. and Thompson, C. B. (2006). Necrotic death as a cell fate. Genes Dev 20, 1-15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top