跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐大諒
研究生(外文):Da-Liang Ou
論文名稱:探討趨化素受體在頭頸癌中表現與調控機制
論文名稱(外文):Regulation of chemokine receptor expression profiles in head and neck cancer
指導教授:林亮音
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:199
中文關鍵詞:趨化素鼻咽癌趨化素受體轉移表觀遺傳
外文關鍵詞:chemokinenasopharyngeal carcinomachemokine receptormetastasisepigenetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部份
鼻咽癌是一種上皮細胞癌,極易發生頸部淋巴結轉移和遠端轉移。因而本研究主要探討趨化素受體 (chemokine receptors) 在鼻咽癌轉移過程中是否扮演重要的角色,此外也分析趨化素受體表現與放射線治療之間的關係。我們利用5株鼻咽癌細胞株 (TW01、TW04、HONE-1、BM-1和AS-1) 與取自48位鼻咽癌病人的52個腫瘤組織切片進行實驗。首先利用RT-PCR偵測5株鼻咽癌細胞株中,所有已知之趨化素受體 (CCR1-10、CXCR1-6和CX3CR1) 的mRNA表現,我們發現只有CCR7、CCR9、CXCR4和CXCR6表現量是比較有意義。接著用定量real-time RT-PCR確定五株鼻咽癌細胞株中CCR7、CCR9、CXCR4和CXCR6表現量,而流式細胞儀、趨化性分析與肌動蛋白聚合檢测也確認了表現在細胞膜上CCR7、CXCR4和CXCR6是有功能性;而CCR9則只表現在細胞質內不具功能。此外利用免疫組織化學染色針對52個鼻咽癌腫瘤細胞組織切片進行抗體免疫染色,我們發現幾乎所有原發癌的鼻咽檢體 (n= 12) 與病人已有近端轉移的鼻咽檢體 (n=15),其CCR7、CXCR4和CXCR6表現皆呈陰性。然而二位已有肝臟轉移的病人之鼻咽檢體分別表現二或三種趨化素受體。此外近端或遠端轉移的腫瘤檢體,其CCR7、CXCR4和CXCR6的染色呈強陽性。統計後發現原發癌腫瘤和轉移癌腫瘤CCR7、CXCR4和CXCR6的表現量大不相同 (p < 0.001,p < 0.001 和 p < 0.002)。而我們也利用雷射擷取顯微切割 (laser capture microdissection, LCM) 技術,準確獲取5個新鮮冷凍原發癌腫瘤,及8個轉移癌的腫瘤細胞進行mRNA分析,結果與免疫化學染色有一致性結果 (CCR7、CXCR4 與 CXCR6分別為p = 0.05、0.03 和 0.03)。此外未治療組與放射線治療後組的CXCR4的表現也有很大差異 (1/22 比 5/8; p < 0.003)。因此我們認為CCR7、CXCR4和CXCR6在人類鼻咽癌轉移過程中會被表現,並且具有活性,其中CXCR4的表現還與是否曾經接受放射線治療有密切關係。
除此之外,我們還探討了4株鼻咽癌細胞株 (TW01、HONE-1、BM-1和AS-1) 中CXCR4表現是否會受到表觀遺傳 (epigenetic) 所調控。我們用甲基化特異性聚合酶鏈反應 (MSP) 確認CXCR4基因promoter甲基化狀況。結果發現只有AS1細胞CXCR4基因promoter上的CpG islands是未甲基化,其它三株細胞株都有高甲基化狀況。接著我們使用去甲基化藥物 (例如: 5-Aza-2’-deoxycytidine) 與組蛋白去乙醯化酶抑製劑 (例如: Trichostatin A)去處理4株鼻咽癌細胞株,之後利用定量real-time RT-PCR、免疫化學染色法與西式墨點法分析加藥後CXCR4 mRNA與蛋白的變化。我們發現藥物處理後細胞中的CXCR4 mRNA與蛋白表現量明顯增加,這些實驗結果證明在鼻咽癌細胞中CXCR4表現會受到表觀遺傳的調控。
第二部份
Twist過去被發現與許多癌症轉移有相關性,包括:肝癌、乳癌與前列腺癌,然而Twist在頭頸癌中所扮演的角色並不清楚。因而我們研究主要是探討Twist在頭頸癌中的表現及可能扮演的角色。我們首先利用CH1組織微陣列 (tissue microarray, TMA) (它含有50位頭頸癌病人的資料) 進行CXCR4、CXCR6、CCR7、Twist、E-cadherin、Fibronectin 與Osteopontin免疫組織化學染色,之後將染色結果與病人臨床資料進行統計分析,染色結果我們發現50位病人組織中Twist、CXCR4、CXCR6、CCR7、E-cadherin、Fibronectin與Osteopontin蛋白陽性率分別為20 (40.0%)、25 (50.0%)、25 (50.0%)、20 (40.0%)、25 (50.0%)、15 (30.0%)與36 (72.0%)。此外Twist表現也與病人腫瘤細胞分化狀況 (p= 0.027),淋巴結轉移 (p= 0.032) 與疾病惡化程度 (p= 0.029) 都有正相關; 另外也發現CCR7與CXCR4表現與淋巴結轉移有正相關。利用Spearman統計分析顯示Twist的表現與CXCR4 (Spearman, r=0.408, p= 0.003) 和 CCR7 (r=0.417, p= 0.003) 表現有正相關。接著我們使用short hairpin RNA (sh-RNA)技術,降低頭頸癌細胞株 (HONE1) 內Twist的表現量,之後利用定量real-time RT-PCR、西式墨點法與免疫細胞化學染色法,分析HONE1細胞株內CXCR4與CCR7的m-RNA與蛋白表現量。結果發現降低HONE1細胞株內Twist的表現量,確實會使CXCR4與CCR7的m-RNA及蛋白表現量隨著下降。這個研究証實了,Twist (已知是轉錄因子) 可能藉由調控CXCR4與CCR7表現而幫助鱗狀細胞癌的腫瘤細胞轉移到淋巴結。
Part 1
Nasopharyngeal carcinoma is an epithelial cancer that metastasizes predictably to cervical lymph nodes or distant organs. To assess whether the chemokine receptors of NPC cells play important roles in metastasis and are associated with history of radiotherapy. We analyzed the significance of various chemokine receptors (CCR1-10, CXCR1-6, XCR1, and CX3CR1) in five NPC cell lines (TW01, TW04, HONE1, BM1, and AS1) and 52 NPC tumor biopsies from 48 NPC patients. We found that only CCR7, CCR9, CXCR4 and CXCR6 showed substantial amount of messenger RNA in these NPC cell lines. Quantitative real-time reverse transcription-PCR revealed that heterogeneous expression of CCR7, CCR9, CXCR4 and CXCR6 mRNA in above NPC cell lines, subsequent flow cytometric analysis, chemotaxis assay and actin polymerization assay indicated surface receptors CCR7, CXCR4 and CXCR6 were functional in NPC cells. Surprisingly, CCR9 protein was expressed in cytoplasm but not on membrane of the NPC cells. Negative immunoreactivity for CCR7, CXCR4, and CXCR6 was demonstrated in almost all nasopharyngeal (NP) specimens from patients with primary NPC (n = 12) and in those with regional metastatic NPC (n = 15). However, expression of two or three of these chemokine receptors was demonstrated in NP specimens from patients with liver metastasis. Strong positivity was demonstrated for all three of these chemokine receptors in almost all of the regional and distant metastasis specimens. Significant differences in the expression of CCR7, CXCR4, and CXCR6 were found between primary tumours and metastases (p < 0.001, p < 0.001, and p < 0.002, respectively). This observation was further confirmed by laser capture microdissection of freshly frozen tumours from primary (n = 5) and metastatic (n = 8) NPC sites (p = 0.05, 0.03, and 0.03 for CCR7, CXCR4, and CXCR6, respectively). In addition, significant differences in CXCR4 expression were demonstrated between de novo and post-radiotherapy groups (1/22 vs. 5/8; p < 0.003). It appears reasonable to conclude, therefore, that CCR7, CXCR4, and CXCR6 are expressed and active in human NPC metastases, while CXCR4 expression is associated with history of radiotherapy.
Furthermore, we investigated whether CXCR4 on NPC cells (TW01, HONE1, BM1, and AS1) were undergone epigenetic regulation. Then, methylation-specific PCR (MSP) was performed to confirm methylation status of CXCR4 gene promoter. We found that the 5’ CpG islands of CXCR4 gene was unmethylated in AS1 cells, whereas promoter hypermethylation was detected in 3 NPC cell lines. Finally, NPC Cells were treated with a histone deacetylase inhibitor (Trichostatin A) and a demethylating agent (5-Aza-2’-deoxycytidine). Then, quantitative real-time RT-PCR, immunohistochemistry, and Western blot analysis were used to assess CXCR4 mRNA and protein expression induced by TSA and 5-Aza in NPC cell lines. We found that CXCR4 expression was increased in NPC cell lines treated with TSA, or both TSA and 5-Aza. These findings demonstrated that epigenetic regulation of CXCR4 in NPC cell lines.
Part 2
Twist has been found to be correlated with metastasis in various cancers including hepatocarcinoma, breast and prostate cancers. However, the role of Twist in head and neck squamous carcinoma (HNSCC) remains unknown. The purpose of this study is to investigate the expression and possible role of Twist in HNSCC. We examined CH1 tissue microarrays (TMAs) which composed of tumors from 50 patients with head and neck tumor. Immunohistochemical (IHC) stain analysis of CXCR4, CXCR6, CCR7, Twist, E-cadherin, Fibronectin and Osteopontin were performed, and the relationship between the staining pattern and clinicopathological features were studied. Out of the 50 cases of head and neck cancer, 20 (40.0%), 25 (50.0%), 25 (50.0%), 20 (40.0%), 25 (50.0%), 15 (30.0%) and 36 (72.0%) showed positive staining in the tumors cells for the Twist, CXCR4, CXCR6, CCR7, E-cadherin, Fibronectin and Osteopontin proteins, respectively. Further, Twist expression was positively associated with differentiation status (p= 0.027), lymph node metastasis (p= 0.032) and disease progression (p= 0.029). Besides, CCR7 and CXCR4 expression were also associated with lymph node metastasis. Further analysis revealed that the expression of Twist was positively correlated with CXCR4 (Spearman, r=0.408, p= 0.003) and CCR7 (r=0.417, p= 0.003) in tissue microarray experiment. Furthermore, down-regulation of Twist through short hairpin RNA (sh-RNA) was prepared in head and neck squamous carcinoma HONE1 cells. Quantitative RT-PCR, Western blotting and Immunocytochemical staining analysis were used to evaluate the effect of Twist sh-RNA. We found that knockdown of Twist by short hairpin RNA (sh-RNA) in HONE1 cells showed decreased mRNA and protein expression of CXCR4 and CCR7. This study demonstrated that the transcription factor Twist could regulate the CXCR4 and CCR7 expression in squamous cell carcinoma, which might lead to lymph node metastasis potential.
口試委員會審定書………………………………………………………Ⅰ
誌謝………………………………………………………………………Ⅱ
總目錄………………………………………………………… …………1
圖目錄………………………………………………………… …………7
表目錄……………………………………………………………………10
縮寫表 ………………………………………………………… ………11
第一部份: 趨化素受體在鼻咽癌中表現之研究………………………12
中文摘要…………………………………………………………………13
英文摘要…………………………………………………………………15
第一章 序論………………………………………………… …………17
1-1 鼻咽癌流行病學與病原學…………………………………………17
1-2 鼻咽癌之病理分類與分期…………………………………………19
1-3 鼻咽癌臨床症狀……………………………………………………20
1-4 鼻咽癌治療 ……………………………………… ………………21
1-5 趨化素與趨化素受體: 結構與分類………………………………22
1-6 癌症轉移……………………………………………………………25
1-7 腫瘤細胞轉移和趨化素-趨化素受體之間作用之相關性…… …26
1-8 表觀遺傳學 (epigenetics) 調控基因表現………………… …26
1-9 本論文研究動機與實驗策略………………………………………29
1-10 本論文研究成果概述…………………………………… ………30
第二章 實驗材料與方法……………………………………… ………31
2-1 材料…………………………………………………………………31
2-1-1 儀器設備…………………………………………………………31
2-1-2 藥品………………………………………………………………32
2-1-3 試劑組……………………………………………………………34
2-1-4 抗體………………………………………………………………34
2-1-5 試劑配置…………………………………………………………35
2-1-6 人類鼻咽癌細胞株 (human NPC cell lines)……… ………39
2-2 方法…………………………………………………………………40
2-2-1 移形分析 (migration assay)…………………………………40
2-2-2 抽取RNA與反轉錄-聚合酶連鎖反應 (extraction of RNA and RT-PCR)…………………………………………… ……………40
2-2-3 即時定量聚合酶連鎖反應 (qantitative real-time PCR)…44
2-2-4 流式細胞儀分析 (flow cytometry analysis)………………45
2-2-5 趨化性分析 (chemotaxis assay)………………… …………46
2-2-6 肌動蛋白聚合檢测 (actin polymerization assay)… ……47
2-2-7 組織免疫化學染色抗體效價測定 (tissue immunohistochemistry antibody titration)………………………48
2-2-8 鼻咽癌病人檢體…………………………………………………49
2-2-9 鼻咽癌組織免疫化學染色 (Immunohistochemical stain of NPC tissues)……………………………………………………………49
2-2-10 雷射擷取顯微切割 (laser capture microdissection, LCM)........……………………………………………………………50
2-2-11 鼻咽癌細胞株處理5-Aza與TSA…………………… …………51
2-2-12 西式墨點法測定鼻咽癌細胞株 (western blot)……………52
2-2-13 免疫細胞化學染色測定鼻咽癌細胞株 (immunocytochemical stain)……………………………………………………………………53
2-2-14 甲基化特異性聚合酶連鎖反應 (methylation-specific PCR)……………………………………………………………………………55
2-2-15 增殖分析測定鼻咽癌細胞株 (proliferation assay)……………………………………………………………………………59
2-2-16 統計分析 (statistical analysis)……………………………………………………………………………59
第三章 實驗結果………… ……………………………………………60
3-1 胎牛血清與周邊血漿中,含有能吸引鼻咽癌細胞進行migration的物質……………………………………………………………………60
3-2 RT-PCR篩選目前已知18個趨化素受體在鼻咽癌細胞株中的表現…………………………………………………………………………60
3-3 Real-time PCR定量CCR7、CCR9、CXCR4 與CXCR6在鼻咽癌細胞株表現量……………………………………………………………………61
3-4 Flow cytometry分析CCR7、CCR9、CXCR4與CXCR6蛋白在鼻咽癌細胞中表現…………………………………………………………………61
3-5 CXCL16是否能引起帶有CXCR6細胞株具有細胞趨化能力…… …62
3-6 CXCL16是否能引起帶有CXCR6細胞株的actin polymerization62
3-7 Immunohistochemical stain評估CXCR4、CXCR6與CCR7在鼻咽癌組織表現…………………………………………………………………63
3-8 LCM-qRT-PCR評估在原發癌組織和轉移癌組織中CXCR4、CXCR6與CCR7 mRNA表現………….………………………………………………65
3-9 鼻咽癌細胞株處理5-Aza 與TSA觀察CXCR4 m-RNA表現…………65
3-10 鼻咽癌細胞株處理5-Aza 與TSA觀察CXCR4 蛋白表現…………66
3-11 利用methylation-specific PCR分析鼻咽癌細胞株中CXCR4基因的DNA甲基化狀況……………………………………………… ………66
第四章 討論………………………………… …………………………68
第五章 參考文獻………………………… ……………………………73
圖…………………………………………………………………………83
表……………………………………………………………… ………106
第二部份: Twist在頭頸癌中調控CXCR4與CCR7的研究………… …114
中文摘要…………………………………………………………… …115
英文摘要………………………………………………………… ……117
第一章 序論……………………………………………………………119
1-1 頭頸部鱗狀細胞癌……………………………………… ………119
1-2 Twist介紹…………………………………………………………120
1-3 腫瘤相關蛋白……………………………………………… ……121
1-4 本論文研究動機與實驗策略…………………………… ………124
1-5 本論文研究成果概述……………………………………… ……125
第二章 實驗材料與方法………………………………………………126
2-1 材料………………………………………………………… ……126
2-1-1 儀器設備………………………………………………… ……126
2-1-2 藥品…………………………………………………… ………126
2-1-3 試劑組…………………………………………………… ……126
2-1-4 抗體……………………………………………………… ……126
2-1-5 試劑配置………………………………………………… ……127
2-1-6 細胞株…………………………………………………… ……127
2-1-7 腫瘤組織微陣列 (tumor tissue arrays) …………………127
2-1-8 sh-RNA載體……………………………………………… ……127
2-2 方法……………………………………………………… ………128
2-2-1 免疫組織化學染色分析TMAs (Immunohistochemical staining of tissue microarrays)…………………………………128
2-2-2 利用sh-RNA技術,產生穩定sh-RNA-Twist HONE1細胞株….129
2-2-3 抽取RNA,進行定量real-time RT-PCR………………………129
2-2-4 西式墨點法測定HONE1細胞株 (western blot)…… ………130
2-2-5 免疫細胞化學染色測定HONE1細胞株 (immunocytochemical stain)………………………………………………………… ………130
2-2-6 增殖分析測定細胞株生長速度 (proliferation assay) …131
2-2-7 統計分析 (statistical analysis)…………………………131
第三章 實驗結果………………………………………………………133
3-1 利用免疫化學染色觀察CH1 TMAs中Twist、CXCR4、CXCR6、CCR7、E-cadherin、Fibronectin與Osteopontin蛋白的表現… …133
3-2 Twist、CXCR4與CCR7表現與淋巴結轉移有正相關; 而Pairwise相關性統計分析更發現三者有相關性存在 ……………………………133
3-3 sh-RNA-Twist減低HONE1細胞內Twist表現,也造成CXCR4與CCR7表現減少……………………………………………………… ………134
3-4 CCR7與CXCR4基因啟動子區域,有E-box序列可與Twist結合..136
第四章 討論……………………………………………………………138
第五章 參考文獻………………………………………………………140
圖…………………………………………………………… …………146
表…………………………………………………………… …………156
附錄A 第一部份已發表之文章……………………………………… 161
附錄B 第二部份正在投搞之文章…………………………………… 172
Part 1

[1] Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 2002;12:421-9.
[2] Department of Health EY. Statistics of causes of death. Republic of China(TAIWAN) 2006;1-426.
[3] Liebowitz D. Nasopharyngeal carcinoma: the Epstein-Barr virus association. Semin Oncol 1994;21:376-81.
[4] Simons MJ, Day NE, Wee GB, et al. Nasopharyngeal carcinoma V: immunogenetic studies of Southeast Asian ethnic groups with high and low risk for the tumor. Cancer Res 1974;34:1192-5.
[5] Simons MJ, Wee GB, Singh D, et al. Immunogenetic aspects of nasopharyngeal carcinoma. V. Confirmation of a Chinese-related HLA profile (A2, Singapore 2) associated with an increased risk in Chinese for nasopharyngeal carcinoma. Natl Cancer Inst Monogr 1977;47:147-51.
[6] Feng BJ, Huang W, Shugart YY, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet 2002;31:395-9.
[7] Xiong W, Zeng ZY, Xia JH, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 2004;64:1972-4.
[8] Cheng YJ, Hildesheim A, Hsu MM, et al. Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control 1999;10:201-7.
[9] Henderson BE, Louie E, SooHoo JJ, Buell P, Gardner MB. Risk factors associated with nasopharyngeal carcinoma. N Engl J Med 1976;295:1101-6.
[10] Ho JH, Huang DP, Fong YY. Salted fish and nasopharyngeal carcinoma in southern Chinese. Lancet 1978;2:626.
[11] Buell P. The effect of migration on the risk of nasopharyngeal cancer among Chinese. Cancer Res 1974;34:1189-91.
[12] Buell P. Race and place in the etiology of nasopharyngeal cancer: a study based on California death certificates. Int J Cancer 1973;11:268-72.
[13] Old LJ, Boyse EA, Oettgen HF, et al. PRECIPITATING ANTIBODY IN HUMAN SERUM TO AN ANTIGEN PRESENT IN CULTURED BURKITT''S LYMPHOMA CELLS. Proc Natl Acad Sci U S A 1966;56:1699-704.
[14] Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 2002;12:431-41.
[15] Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 2003;22:5108-21.
[16] Huang DP, Ho JH, Ng MH. Morphological transformation of nasopharyngeal epithelial cells in vitro by Epstein-Barr virus from B95-8 cells. IARC Sci Publ 1978;359-68.
[17] K Shanmugaratnam and LH Sobin. Histological typing of tumours of the upper respiratory tract and ear. WHO, Geneva; 1991. Report No.: 9.
[18] Lee AW, Foo W, Law SC, et al. Staging of nasopharyngeal carcinoma: from Ho''s to the new UICC system. Int J Cancer 1999;84:179-87.
[19] Lee AW, Poon YF, Foo W, et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985: overall survival and patterns of failure. Int J Radiat Oncol Biol Phys 1992;23:261-70.
[20] Marks JE, Phillips JL, Menck HR. The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma. Cancer 1998;83:582-8.
[21] Qin DX, Hu YH, Yan JH, et al. Analysis of 1379 patients with nasopharyngeal carcinoma treated by radiation. Cancer 1988;61:1117-24.
[22] Cheng SH, Jian JJ, Tsai SY, et al. Prognostic features and treatment outcome in locoregionally advanced nasopharyngeal carcinoma following concurrent chemotherapy and radiotherapy. Int J Radiat Oncol Biol Phys 1998;41:755-62.
[23] Ma J, Mai HQ, Hong MH, et al. Results of a prospective randomized trial comparing neoadjuvant chemotherapy plus radiotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma. J Clin Oncol 2001;19:1350-7.
[24] Fandi A, Altun M, Azli N, Armand JP, Cvitkovic E. Nasopharyngeal cancer: epidemiology, staging, and treatment. Semin Oncol 1994;21:382-97.
[25] Teo PM, Kwan WH, Lee WY, Leung SF, Johnson PJ. Prognosticators determining survival subsequent to distant metastasis from nasopharyngeal carcinoma. Cancer 1996;77:2423-31.
[26] Bajetto A, Bonavia R, Barbero S, Schettini G. Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 2002;82:1311-29.
[27] Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610-21.
[28] Taub DD. Chemokine-leukocyte interactions. The voodoo that they do so well. Cytokine Growth Factor Rev 1996;7:355-76.
[29] Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12:121-7.
[30] Baggiolini M. Chemokines and leukocyte traffic. Nature 1998;392:565-8.
[31] Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med 1998;338:436-45.
[32] Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610-21.
[33] Rollins BJ. Inflammatory chemokines in cancer growth and progression. Eur J Cancer 2006;42:760-7.
[34] Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4:540-50.
[35] Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 2006;79:639-51.
[36] Engers R, Gabbert HE. Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol 2000;126:682-92.
[37] Stetler-Stevenson WG. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am 2001;10:383-92, x.
[38] Liotta LA. An attractive force in metastasis. Nature 2001;410:24-5.
[39] Liotta LA, Saidel MG, Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 1976;36:889-94.
[40] Nicolson GL. Molecular mechanisms of cancer metastasis: tumor and host properties and the role of oncogenes and suppressor genes. Curr Opin Oncol 1991;3:75-92.
[41] Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-72.
[42] Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50-6.
[43] Zlotnik A. Chemokines and cancer. Int J Cancer 2006;119:2026-9.
[44] Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4:540-50.
[45] Reiland J, Furcht LT, McCarthy JB. CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 1999;41:78-88.
[46] Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002;62:2937-41.
[47] Ramjeesingh R, Leung R, Siu CH. Interleukin-8 secreted by endothelial cells induces chemotaxis of melanoma cells through the chemokine receptor CXCR1. FASEB J 2003;17:1292-4.
[48] Cabioglu N, Yazici MS, Arun B, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res 2005;11:5686-93.
[49] Dellacasagrande J, Schreurs OJ, Hofgaard PO, et al. Liver metastasis of cancer facilitated by chemokine receptor CCR6. Scand J Immunol 2003;57:534-44.
[50] Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science 1999;286:481-6.
[51] Hake SB, Xiao A, Allis CD. Linking the epigenetic ''language'' of covalent histone modifications to cancer. Br J Cancer 2004;90:761-9.
[52] Santos-Reboucas CB, Pimentel MM. Implication of abnormal epigenetic patterns for human diseases. Eur J Hum Genet 2007;15:10-7.
[53] Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2''-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 1994;91:11797-801.
[54] Curradi M, Izzo A, Badaracco G, Landsberger N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 2002;22:3157-73.
[55] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415-28.
[56] Mori T, Kim J, Yamano T, et al. Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res 2005;65:1800-7.
[57] Sato N, Matsubayashi H, Fukushima N, Goggins M. The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther 2005;4:70-6.
[58] Lin CT, Wong CI, Chan WY, et al. Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest 1990;62:713-24.
[59] Lin CT, Chan WY, Chen W, et al. Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 1993;68:716-27.
[60] Yao KT, Zhang HY, Zhu HC, et al. Establishment and characterization of two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus and derived from nasopharyngeal carcinomas. Int J Cancer 1990;45:83-9.
[61] Liao SK, Perng YP, Shen YC, Chung PJ, Chang YS, Wang CH. Chromosomal abnormalities of a new nasopharyngeal carcinoma cell line (NPC-BM1) derived from a bone marrow metastatic lesion. Cancer Genet Cytogenet 1998;103:52-8.
[62] Colantonio L, Iellem A, Clissi B, et al. Upregulation of integrin alpha6/beta1 and chemokine receptor CCR1 by interleukin-12 promotes the migration of human type 1 helper T cells. Blood 1999;94:2981-9.
[63] Nakayama T, Fujisawa R, Izawa D, Hieshima K, Takada K, Yoshie O. Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5. J Virol 2002;76:3072-7.
[64] Ebert LM, McColl SR. Coregulation of CXC chemokine receptor and CD4 expression on T lymphocytes during allogeneic activation. J Immunol 2001;166:4870-8.
[65] Merry C, Puri P, Reen DJ. Phosphorylation and the actin cytoskeleton in defective newborn neutrophil chemotaxis. Pediatr Res 1998;44:259-64.
[66] Carulli G, Sbrana S, Minnucci S, et al. Actin polymerization in neutrophils from patients affected by myelodysplastic syndromes--a flow cytometric study. Leuk Res 1997;21:513-8.
[67] Connolly DT, Knight MB, Harakas NK, Wittwer AJ, Feder J. Determination of the number of endothelial cells in culture using an acid phosphatase assay. Anal Biochem 1986;152:136-40.
[68] Kubarek L, Jagodzinski PP. Epigenetic up-regulation of CXCR4 and CXCL12 expression by 17 beta-estradiol and tamoxifen is associated with formation of DNA methyltransferase 3B4 splice variant in Ishikawa endometrial adenocarcinoma cells. FEBS Lett 2007;581:1441-8.
[69] Wang N, Wu QL, Fang Y, et al. Expression of chemokine receptor CXCR4 in nasopharyngeal carcinoma: pattern of expression and correlation with clinical outcome. J Transl Med 2005;3:26.
[70] Hu J, Deng X, Bian X, et al. The expression of functional chemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma. Clin Cancer Res 2005;11:4658-65.
[71] Shimaoka T, Nakayama T, Kume N, et al. Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain. J Immunol 2003;171:1647-51.
[72] Shimaoka T, Kume N, Minami M, et al. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 2000;275:40663-6.
[73] Wilbanks A, Zondlo SC, Murphy K, et al. Expression cloning of the STRL33/BONZO/TYMSTRligand reveals elements of CC, CXC, and CX3C chemokines. J Immunol 2001;166:5145-54.
[74] Pabst O, Ohl L, Wendland M, et al. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med 2004;199:411-6.
[75] Kunkel EJ, Campbell JJ, Haraldsen G, et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 2000;192:761-8.
[76] Heydtmann M, Lalor PF, Eksteen JA, Hubscher SG, Briskin M, Adams DH. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 2005;174:1055-62.
[77] Kim CH, Kunkel EJ, Boisvert J, et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J Clin Invest 2001;107:595-601.
[78] Sato T, Thorlacius H, Johnston B, et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J Immunol 2005;174:277-83.
[79] Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005;3:e113.
[80] Agostini C, Cabrelle A, Calabrese F, et al. Role for CXCR6 and its ligand CXCL16 in the pathogenesis of T-cell alveolitis in sarcoidosis. Am J Respir Crit Care Med 2005;172:1290-8.
[81] Morgan AJ, Guillen C, Symon FA, et al. Expression of CXCR6 and its ligand CXCL16 in the lung in health and disease. Clin Exp Allergy 2005;35:1572-80.
[82] Scala S, Giuliano P, Ascierto PA, et al. Human melanoma metastases express functional CXCR4. Clin Cancer Res 2006;12:2427-33.
[83] Wang J, Xi L, Hunt JL, et al. Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res 2004;64:1861-6.
[84] Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 2005;23:2744-53.
[85] Ding Y, Shimada Y, Maeda M, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res 2003;9:3406-12.
[86] Helbig G, Christopherson KW, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 2003;278:21631-8.
[87] Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 2002;62:7203-6.
[88] Jourdan P, Vendrell JP, Huguet MF, et al. Cytokines and cell surface molecules independently induce CXCR4 expression on CD4+ CCR7+ human memory T cells. J Immunol 2000;165:716-24.
[89] Nanki T, Shimaoka T, Hayashida K, Taniguchi K, Yonehara S, Miyasaka N. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum 2005;52:3004-14.
[90] Nagase H, Miyamasu M, Yamaguchi M, et al. Expression of CXCR4 in eosinophils: functional analyses and cytokine-mediated regulation. J Immunol 2000;164:5935-43.
[91] Mehta SA, Christopherson KW, Bhat-Nakshatri P, et al. Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 2007;26:3329-37.
[92] Lo KW, Mok CH, Huang DP, et al. p53 mutation in human nasopharyngeal carcinomas. Anticancer Res 1992;12:1957-63.
[93] Agaoglu FY, Dizdar Y, Dogan O, et al. P53 overexpression in nasopharyngeal carcinoma. In Vivo 2004;18:555-60.
[94] Chang KP, Hao SP, Lin SY, et al. A lack of association between p53 mutations and recurrent nasopharyngeal carcinomas refractory to radiotherapy. Laryngoscope 2002;112:2015-9.
[95] Chakrani F, Armand JP, Lenoir G, et al. Mutations clustered in exon 5 of the p53 gene in primary nasopharyngeal carcinomas from southeastern Asia. Int J Cancer 1995;61:316-20.
[96] Sun Y, Hegamyer G, Cheng YJ, et al. An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 1992;89:6516-20.
[97] Sun Y, Nakamura K, Wendel E, Colburn N. Progression toward tumor cell phenotype is enhanced by overexpression of a mutant p53 tumor-suppressor gene isolated from nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 1993;90:2827-31.
[98] Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 2003;425:307-11.
[99] Sierra MD, Gasperini P, McCormick P, Zhu J, Tosato G. Transcription factor Gfi-1 induced by G-CSF is a negative regulator of CXCR4 in myeloid cells. Blood 2007.
[100] Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004;5:429-41.
[101] Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 2004;5:405-6.
[102] Bernards R. Cancer: cues for migration. Nature 2003;425:247-8.
[103] Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis. Cancer Metastasis Rev 2004;23:293-310.
Part 2
[1] Hardisson D. Molecular pathogenesis of head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2003;260:502-8.
[2] Mao L, Hong WK, Papadimitrakopoulou VA. Focus on head and neck cancer. Cancer Cell 2004;5:311-6.
[3] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-30.
[4] Department of Health, the Executive Yuan, Republic of China. Statistics of causes of death. Taiwan; 2006 Aug.
[5] Ho PS, Ko YC, Yang YH, Shieh TY, Tsai CC. The incidence of oropharyngeal cancer in Taiwan: an endemic betel quid chewing area. J Oral Pathol Med 2002;31:213-9.
[6] Maier H, Dietz A, Gewelke U, Heller WD, Weidauer H. Tobacco and alcohol and the risk of head and neck cancer. Clin Investig 1992;70:320-7.
[7] Goldenberg D, Lee J, Koch WM, et al. Habitual risk factors for head and neck cancer. Otolaryngol Head Neck Surg 2004;131:986-93.
[8] Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. N Engl J Med 2001;345:1890-900.
[9] Mamelle G, Pampurik J, Luboinski B, Lancar R, Lusinchi A, Bosq J. Lymph node prognostic factors in head and neck squamous cell carcinomas. Am J Surg 1994;168:494-8.
[10] Thisse B, el MM, Perrin-Schmitt F. The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 1987;15:3439-53.
[11] Ip YT, Park RE, Kosman D, Bier E, Levine M. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev 1992;6:1728-39.
[12] Murre C, McCaw PS, Vaessin H, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 1989;58:537-44.
[13] Villavicencio EH, Yoon JW, Frank DJ, Fuchtbauer EM, Walterhouse DO, Iannaccone PM. Cooperative E-box regulation of human GLI1 by TWIST and USF. Genesis 2002;32:247-58.
[14] Alexander NR, Tran NL, Rekapally H, Summers CE, Glackin C, Heimark RL. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res 2006;66:3365-9.
[15] Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007;67:1979-87.
[16] Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117:927-39.
[17] Hoek K, Rimm DL, Williams KR, et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 2004;64:5270-82.
[18] van DR, Dijkman R, Vermeer MH, et al. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. Cancer Res 2004;64:5578-86.
[19] Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 2002;161:1881-91.
[20] Maestro R, Dei Tos AP, Hamamori Y, et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev 1999;13:2207-17.
[21] Kwok WK, Ling MT, Lee TW, et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 2005;65:5153-62.
[22] Song LB, Liao WT, Mai HQ, et al. The clinical significance of twist expression in nasopharyngeal carcinoma. Cancer Lett 2006;242:258-65.
[23] Valsesia-Wittmann S, Magdeleine M, Dupasquier S, et al. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 2004;6:625-30.
[24] Taub DD. Chemokine-leukocyte interactions. The voodoo that they do so well. Cytokine Growth Factor Rev 1996;7:355-76.
[25] Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12:121-7.
[26] Takanami I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer 2003;105:186-9.
[27] Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002;62:2937-41.
[28] Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50-6.
[29] Liotta LA. An attractive force in metastasis. Nature 2001;410:24-5.
[30] Cabioglu N, Yazici MS, Arun B, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res 2005;11:5686-93.
[31] Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 2005;11:1743-50.
[32] Murakami T, Maki W, Cardones AR, et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 2002;62:7328-34.
[33] Kaifi JT, Yekebas EF, Schurr P, et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 2005;97:1840-7.
[34] Kodama J, Hasengaowa, Kusumoto T, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol 2007;18:70-6.
[35] Scala S, Ottaiano A, Ascierto PA, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 2005;11:1835-41.
[36] Gunther K, Leier J, Henning G, et al. Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. Int J Cancer 2005;116:726-33.
[37] Seidl H, Richtig E, Tilz H, et al. Profiles of chemokine receptors in melanocytic lesions: de novo expression of CXCR6 in melanoma. Hum Pathol 2007;38:768-80.
[38] Ou DL, Chen CL, Lin SB, Hsu CH, Lin LI. Chemokine receptor expression profiles in nasopharyngeal carcinoma and their association with metastasis and radiotherapy. J Pathol 2006;210:363-73.
[39] Jawhari AU, Farthing MJ, Pignatelli M. The E-cadherin/epidermal growth factor receptor interaction: a hypothesis of reciprocal and reversible control of intercellular adhesion and cell proliferation. J Pathol 1999;187:155-7.
[40] Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998;153:333-9.
[41] Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 1993;5:806-11.
[42] Gould VE, Koukoulis GK, Virtanen I. Extracellular matrix proteins and their receptors in the normal, hyperplastic and neoplastic breast. Cell Differ Dev 1990;32:409-16.
[43] Kaspar M, Zardi L, Neri D. Fibronectin as target for tumor therapy. Int J Cancer 2006;118:1331-9.
[44] Nagai H, Isemura M, Arai H, et al. Pattern of fibronectin distribution in human lung cancer. J Cancer Res Clin Oncol 1986;112:1-5.
[45] Pietruszewska W, Kobos J, Bojanowska-Pozniak K, Durko M, Gryczynski M. [Immunohistochemical analysis of the fibronectin expression and its prognostic value in patients with laryngeal cancer]. Otolaryngol Pol 2006;60:697-702.
[46] Ioachim E, Charchanti A, Briasoulis E, et al. Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic value and role in tumour invasion and progression. Eur J Cancer 2002;38:2362-70.
[47] Lan HY, Yu XQ, Yang N, et al. De novo glomerular osteopontin expression in rat crescentic glomerulonephritis. Kidney Int 1998;53:136-45.
[48] Oldberg A, Franzen A, Heinegard D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A 1986;83:8819-23.
[49] Bao LH, Sakaguchi H, Fujimoto J, Tamaya T. Osteopontin in metastatic lesions as a prognostic marker in ovarian cancers. J Biomed Sci 2007;14:373-81.
[50] Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 2001;1:621-32.
[51] Rittling SR, Chambers AF. Role of osteopontin in tumour progression. Br J Cancer 2004;90:1877-81.
[52] Rudland PS, Platt-Higgins A, El-Tanani M, et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res 2002;62:3417-27.
[53] El-Tanani M, Barraclough R, Wilkinson MC, Rudland PS. Metastasis-inducing dna regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4. Cancer Res 2001;61:5619-29.
[54] El-Tanani MK, Campbell FC, Kurisetty V, Jin D, McCann M, Rudland PS. The regulation and role of osteopontin in malignant transformation and cancer. Cytokine Growth Factor Rev 2006;17:463-74.
[55] Connolly DT, Knight MB, Harakas NK, Wittwer AJ, Feder J. Determination of the number of endothelial cells in culture using an acid phosphatase assay. Anal Biochem 1986;152:136-40.
[56] Ip YT, Park RE, Kosman D, Yazdanbakhsh K, Levine M. dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes Dev 1992;6:1518-30.
[57] Song LB, Liao WT, Mai HQ, et al. The clinical significance of twist expression in nasopharyngeal carcinoma. Cancer Lett 2006.
[58] Lee TK, Poon RT, Yuen AP, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 2006;12:5369-76.
[59] Sosic D, Richardson JA, Yu K, Ornitz DM, Olson EN. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 2003;112:169-80.
[60] Horikawa T, Yang J, Kondo S, et al. Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res 2007;67:1970-8.
[61] Kukreja P, bdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 2005;65:9891-8.
[62] Helbig G, Christopherson KW, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 2003;278:21631-8.
[63] Hopken UE, Foss HD, Meyer D, et al. Up-regulation of the chemokine receptor CCR7 in classical but not in lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood 2002;99:1109-16.
[64] Lee YM, Park T, Schulz RA, Kim Y. Twist-mediated activation of the NK-4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements. J Biol Chem 1997;272:17531-41.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top