跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 15:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳季瑾
研究生(外文):Chi-Chin Wu
論文名稱:大鼠腸阻塞之黏膜組織受損及上皮屏障喪失的機制:腸道上皮肌凝蛋白輕鏈激酶之角色
論文名稱(外文):Role of Myosin Light Chain Kinase in Mucosal Injuries and Epithelial Barrier Defects Induced by Intestinal Obstruction in Rats
指導教授:余佳慧余佳慧引用關係
指導教授(外文):Linda Chia-Hui Yu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:79
中文關鍵詞:腸道阻塞細菌轉移現象肌凝蛋白輕鏈激酶腸道上皮細胞屏障功能山葵過氧化酶
外文關鍵詞:intestinal obstructionbacterial translocationmyosin light chain kinaseintestinal epithelial barrier functionhorseradish peroxidase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腸道機械性阻塞是一種導致腹部病痛一個很重要的因素。目前已有研究指出,腸道阻塞會導致細菌轉移現象 (bacterial translocation, BT)的發生,表示腸道上皮細胞屏障已遭受破壞。已知腸道上皮細胞之肌凝蛋白輕鏈激酶 (myosin light chain kinase, MLCK)將肌凝蛋白輕鏈 (myosin light chain, MLC)磷酸化, 使圍連結肌動肌凝蛋白環 (perijunctional actinomyosin ring, PAMR)收縮, 導致細胞間通透性增加。本研究主要目的在探討MLCK是否有參與大鼠腸道機械性阻塞引起腸道黏膜組織受損及上皮細胞屏障喪失的機制。

方法與材料:本研究所使用的實驗動物為Wistar品系的雄性大鼠。分別在給予迴腸阻塞手術之前的24、12、1小時以及之後的12小時投予MLCK之抑制劑 ML-7 (1 mg/kg, i.p.)或是其載液,並且和假手術處理的大鼠做比較。迴腸阻塞手術是將大鼠的迴腸 (盲腸之前的10 cm處)綁一死結作為迴腸阻塞的實驗模組;假手術處理的組別,則是接受腹腔手術但是不給予迴腸阻塞的大鼠。手術之後的24小時,分別取出五段腸段 (十二指腸、空腸、迴腸、近端大腸以及遠端大腸)進行實驗分析。實驗的分析包括組織型態觀察、腺窩深度相對絨毛長度比值、細胞凋亡偵測、腸道骨髓過氧化酶活性測量、嗜中性白血球染色、Ussing Chamber Systems測定組織對於大分子蛋白質山葵過氧化酶 (horseradish peroxidase, HRP)的通透性,以及肝臟和脾臟組織中菌落數的量化。另外利用西方轉漬的技術偵測黏膜組織中MLC磷酸化的程度。

結果:結果顯示,迴腸阻塞會導致迴腸絨毛變寬變短以及增加腺窩深度相對於絨毛長度的比值,而絨毛頂端以及剝落在管腔中的細胞有細胞凋亡的現象。然而,迴腸阻塞和假手術處理組的大鼠之腸道骨髓過氧化酶活性以及嗜中性白血球染色並無顯著差異。此外,迴腸阻塞會導致迴腸以及近端大腸對於管腔面HRP之通透性增加,在肝臟以及脾藏也觀察到有細菌生長,證實BT的現象。迴腸阻塞後會導致迴腸黏膜中MLC的磷酸化增加,預先投與ML-7,則可以降低MLC的磷酸化及部分改善由迴腸阻塞所導致之黏膜組織傷害,並且有效抑制迴腸對於HRP
過度的通透性,然而對近端大腸通透性以及BT卻沒有影響。

總結:本篇研究探討腸道阻塞導致上皮細胞屏障破壞的分子機制,由結果可知,迴腸機械性阻塞會導致腸黏膜傷害包括絨毛變短、腺窩增生、細胞凋亡以及屏障功能的破壞,包括上皮細胞通透性增加以及腸內細菌轉移體內的現象。抑制MLCK的活化,則可以改善組織型態並且降低迴腸對大分子的通透性,表示腸阻塞引起的大分子通透性是經由上皮細胞間的途徑。而細菌轉移體內的機制則與
MLCK之活化無關。
Mechanical intestinal obstruction is one of the most common causes of abdominal emergencies. Enteric bacterial translocation (BT) has been reported in experimental obstruction models, suggesting disruption of epithelial barrier. Myosin light chain kinase (MLCK) is involved in the contraction of perijunctional actinomyosin ring (PAMR) in enterocytes and increases the transepithelial permeability via a paracellular route. The aim of this study was to investigate the role of MLCK in the mechanism of mucosal injuries and epithelial barrier defects induced by intestinal obstruction.

METHODS: Male Wistar rats (200-300g) received MLCK inhibitor ML-7 (1 mg/kg, i.p.) or vehicle at 24, 12 and 1 hr before and 12hrs after ileal obstruction. Sham-operated controls received ML-7 or vehicle but without obstruction. Obstruction animals underwent ligation of the ileum 10 cm proximal to the cecal junction. After 24 hrs post-obstruction, the duodenum, jejunum, ileum, proximal colon and distal colon were collected. Histological slides were used for the evaluation of mucosal structures and measurement of crypt/villi ratio. The level of cell apoptosis was detected by TUNEL staining, and the level of mucosal inflammation was determined by myeloperoxidase (MPO) activity and neutrophils staining. Transepithelial permeability was measured by mucosal-to-serosal horseradish peroxidase (HRP) flux on Ussing chambers. The presence of bacteria in the spleen and liver was examined using fresh blood agar culturing for BT. The phosphorylation level of MLC in protein extracts from ileal mucosal scrapings was detected by western blotting techniques.

RESULT: Intestinal obstruction induced villi shortening and widening associated with increased crypt/villi ratio in the ileum. Disrupted villi tip and increased apoptotic epithelial cells were seen in the ileal lumen after obstruction. However, the MPO level and neutrophil staining in intestinal segments of obstructive rats were not different from those in sham groups. Ileal obstruction increased the HRP flux in the ileum and proximal colon, whereas no changes were seen in other segments. The bacterial colony forming unit (CFU) in the liver and spleen in obstruction animals were significantly higher than those without obstruction, suggesting enteric bacterial translocation. In addition, obstruction resulted in the phosphorylation of MLC in ileal mucosa, that is inhibitable by ML-7 pretreatment. Pretreatment with ML-7 partially protected the tissues from obstruction-induced mucosal injuries, and inhibited the increase of HRP flux in the ileum, but not in the proximal colon. Moreover, administration of ML-7 had no effect on the enhanced BT induced by obstruction.

CONCLUSIONS: Intestinal obstruction causes villous shortening, crypt proliferation, increased mucosal cell apoptosis, and epithelial barrier defects, i.e. enhanced epithelial permeability and bacterial translocation. Inhibition of MLCK reduced the increased HRP flux in the ileum, suggesting that obstruction-induced increase of transepithelial macromolecular permeability is mediated via a paracellular route. Bacterial translocation induced by ileal obstruction is MLCK-independent. The understanding of the molecular mechanism in epithelial barrier defects may shed light to the development of therapeutic intervention for intestinal obstructive injuries.
口試委員會審定書-------------------------------------------------------Ⅰ
致謝-------------------------------------------------------------------------Ⅱ
中英文縮寫名詞對照表-------------------------------------------------Ⅲ
中文摘要-------------------------------------------------------------------Ⅳ
英文摘要-------------------------------------------------------------------Ⅵ

壹、文獻回顧--------------------------------------------------------------1
一、 腸阻塞----------------------------------------------------------------1
1.1 腸阻塞之臨床症狀及診斷------------------------------------------1
1.2 腸阻塞之動物模式及病理現象------------------------------------3
二、 腸道屏障功能--------------------------------------------------------5
2.1 物理性屏障 (physical barrier)-------------------------------------6
2.2 化學性 (chemical barrier)及免疫性屏障 (immune
barrier)------------------------------------------------------------------------12
三、 目的---------------------------------------------------------------------13

貳、材料與方法-------------------------------------------------------------15
一、 實驗動物---------------------------------------------------------------15
二、 實驗設計---------------------------------------------------------------15
三、 迴腸阻塞手術過程---------------------------------------------------16
四、 肌凝蛋白輕鏈激酶 (MLCK)抑制劑的藥物投予---------------17
五、 細菌轉移現象 (bacterial translocation, BT)測定-------------17
六、 組織切片及染色------------------------------------------------------18
6.1 檢體的製備--------------------------------------------------------------18
6.2 蘇木紫-伊紅染色 (Haematoxylin and Eosin Staining)--------18
6.3 組織損傷評量 (histological damage scoring)-------------------19
6.4 絨毛長度及腺窩深度測量---------------------------------------------19
6.5 細胞凋亡染色------------------------------------------------------------19
6.6 嗜中性白血球 (neutrophils)染色------------------------------------20
七、 上皮組織電生理儀器 (Ussing Chamber System)-------------21
7.1 腸組織架設---------------------------------------------------------------21
7.2 腸道上皮組織電生理測定---------------------------------------------21
7.3 腸道上皮組織通透性測定---------------------------------------------22
八、 腸道組織骨髓過氧化酶(myeloperoxidase, MPO)活性測定-23
九、 磷酸化肌凝蛋白輕鏈蛋白 (pMLC)的西方轉漬法--------------24
9.1 黏膜層蛋白質萃取-------------------------------------------------------24
9.2 總蛋白質定量-------------------------------------------------------------24
9.3 電泳-------------------------------------------------------------------------24
9.4 免疫轉漬------------------------------------------------------------------25
十、 統計分析-----------------------------------------------------------------25

參、結果------------------------------------------------------------------------.27
第一部分實驗:迴腸阻塞 (IO)對於腸道的影響------------------------27
一、 腸道組織型態-----------------------------------------------------------27
二、 細胞凋亡程度-----------------------------------------------------------27
三、 腸道骨髓過氧化酶活性以及嗜中性白血球數量-----------------28
3.1 腸道骨髓過氧化酶活性-------------------------------------------------28
3.2 嗜中性白血球的偵測----------------------------------------------------28
四、 迴腸阻塞對於腸道上皮細胞屏障功能的影響--------------------28
4.1 腸道上皮組織之電生理------------------------------------------------.28
4.2 腸道上皮組織之通透性-------------------------------------------------29
五、 迴腸阻塞對於細菌轉移現象 (BT)的影響-------------------------29

第二部分實驗:肌凝蛋白輕鏈激酶 (MLCK)抑制劑對於迴腸阻塞腸
道的影響。----------------------------------------------------------------------29
一、 MLCK抑制劑對於腸道組織型態的影響---------------------------29
二、 MLCK抑制劑對細胞凋亡程度的影響------------------------------30
三、 MLCK抑制劑對於迴腸之上皮細胞屏障喪失的影響------------30
3.1 腸道上皮組織之電生理--------------------------------------------------30
3.2 腸道上皮組織之通透性--------------------------------------------------30
四、 MLCK抑制劑對於迴腸阻塞導致BT現象的影響----------------31
五、 磷酸化肌凝蛋白輕鏈 (pMLC)的表現-------------------------------31

肆、討論--------------------------------------------------------------------------32

圖表及說明-----------------------------------------------------------------------.40

參考文獻---------------------------------------------------------------------------60
Adibi SA. Regulation of expression of the intestinal oligopeptide transporter (Pept-1) in health and disease. Am J Physiol Gastrointest Liver Physiol 285: G779-G788, 2003.

Akcay MN, Capan MY, Gundogdu C, Polat M and Oren D. Bacterial translocation in experimental intestinal obstruction. J Int Med Res 24: 17-26, 1996.

Akin ML, Uluutku H, Erenoglu C, Ilicak EN, Elbuken E, Erdemoglu A and Celenk T. Hyperbaric oxygen ameliorates bacterial translocation in rats with mechanical intestinal obstruction. Dis Colon Rectum 45: 967-972, 2002.

Aksoyek S, Cinel I, Avlan D, Cinel L, Ozturk C, Gurbuz P, Nayci A and Oral U. Intestinal ischemic preconditioning protects the intestine and reduces bacterial translocation. Shock 18: 476-480, 2002.

Akyildiz M, Ersin S, Oymaci E, Dayangac M, Kapkac M and Alkanat M. Effects of somatostatin analogues and vitamin C on bacterial translocation in an experimental intestinal obstruction model of rats. J Invest Surg 13: 169-173, 2000.

Aldemir M, Kokoglu OF, Geyik MF and Buyukbayram H. Effects of octreotide acetate and Saccharomyces boulardii on bacterial translocation in an experimental intestinal loop obstruction model of rats. Tohoku J Exp Med 198: 1-9, 2002.

Alexander JW, Boyce ST, Babcock GF, Gianotti L, Peck MD, Dunn DL, Pyles T, Childress CP and Ash SK. The process of microbial translocation. Ann Surg 212: 496-510, 1990.

Atisook K, Carlson S and Madara JL. Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia. Am J Physiol 258: C77-C85, 1990.

Baev D, Li XS, Dong J, Keng P and Edgerton M. Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect Immun 70: 4777-4784, 2002.

Balda MS and Matter K. Tight junctions. J Cell Sci 111 ( Pt 5): 541-547, 1998.

Bals R, Wang X, Zasloff M and Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95: 9541-9546, 1998.

Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, Peeters H, Bommelaer G, Desreumaux P, Colombel JF and Darfeuille-Michaud A. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 117: 1566-1574, 2007.

Barocelli E, Ballabeni V, Ghizzardi P, Cattaruzza F, Bertoni S, Lagrasta CA and Impicciatore M. The selective inhibition of inducible nitric oxide synthase prevents intestinal ischemia-reperfusion injury in mice. Nitric Oxide 14: 212-218, 2006.

Barreau F, Ferrier L, Fioramonti J and Bueno L. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut 53: 501-506, 2004.

Basuroy S, Sheth P, Kuppuswamy D, Balasubramanian S, Ray RM and Rao RK. Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer. J Biol Chem 278: 11916-11924, 2003.

Baumgart DC and Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care 5: 685-694, 2002.

Beall DP, Regan F and Nguyen B. Small bowel obstruction caused by intussusception after the ingestion of a plastic clip. Md Med J 48: 23-25, 1999.

Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol 3: 149-154, 1995.

Berglund JJ, Riegler M, Zolotarevsky Y, Wenzl E and Turner JR. Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport. Am J Physiol Gastrointest Liver Physiol 281: G1487-G1493, 2001.

Berkes J, Viswanathan VK, Savkovic SD and Hecht G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52: 439-451, 2003.

Bijlsma PB, Kiliaan AJ, Scholten G, Heyman M, Groot JA and Taminiau JA. Carbachol, but not forskolin, increases mucosal-to-serosal transport of intact protein in rat ileum in vitro. Am J Physiol 271: G147-G155, 1996.

Blair SL, Chu DZ and Schwarz RE. Outcome of palliative operations for malignant bowel obstruction in patients with peritoneal carcinomatosis from nongynecological cancer. Ann Surg Oncol 8: 632-637, 2001.

Bodiga VL, Boindala S, Putcha U, Subramaniam K and Manchala R. Chronic low intake of protein or vitamins increases the intestinal epithelial cell apoptosis in Wistar/NIN rats. Nutrition 21: 949-960, 2005.

Bojarski C, Weiske J, Schoneberg T, Schroder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R and Huber O. The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 117: 2097-2107, 2004.

Boudeau J, Glasser AL, Masseret E, Joly B and Darfeuille-Michaud A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn''s disease. Infect Immun 67: 4499-4509, 1999.

Boudry G, Jury J, Yang PC and Perdue MH. Chronic psychological stress alters epithelial cell turn-over in rat ileum. Am J Physiol Gastrointest Liver Physiol 292: G1228-G1232, 2007.

Boyle EC, Brown NF and Finlay BB. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol 8: 1946-1957, 2006.

Bras AM and Ketley JM. Transcellular translocation of Campylobacter jejuni across human polarised epithelial monolayers. FEMS Microbiol Lett 179: 209-215, 1999.

Brown-Guttovz H. Intussusception. Nursing 37: 80, 2007.

Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA and Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19: 923-933, 2005.

Bullen TF, Forrest S, Campbell F, Dodson AR, Hershman MJ, Pritchard DM, Turner JR, Montrose MH and Watson AJ. Characterization of epithelial cell shedding from human small intestine. Lab Invest 86: 1052-1063, 2006.

Burant CF, Takeda J, Brot-Laroche E, Bell GI and Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267: 14523-14526, 1992.

Cameron HL and Perdue MH. Muscarinic acetylcholine receptor activation increases transcellular transport of macromolecules across mouse and human intestinal epithelium in vitro. Neurogastroenterol Motil 19: 47-56, 2007.

Cheadle WG, Garr EE and Richardson JD. The importance of early diagnosis of small bowel obstruction. Am Surg 54: 565-569, 1988.

Chen LW, Hsu CM, Cha MC, Chen JS and Chen SC. Changes in gut mucosal nitric oxide synthase (NOS) activity after thermal injury and its relation with barrier failure. Shock 11: 104-110, 1999.

Chen YY, Yen HH and Hsu YT. Intestinal pseudo-obstruction as the initial presentation of systemic lupus erythematosus: the need for enteroscopic evaluation. Gastrointest Endosc 62: 984-987, 2005.

Chin AC and Parkos CA. Neutrophil transepithelial migration and epithelial barrier function in IBD: potential targets for inhibiting neutrophil trafficking. Ann N Y Acad Sci 1072: 276-287, 2006.

Chin AC, Teoh DA, Scott KG, Meddings JB, Macnaughton WK and Buret AG. Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70: 3673-3680, 2002.

Clark E, Hoare C, Tanianis-Hughes J, Carlson GL and Warhurst G. Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology 128: 1258-1267, 2005.

Clarke LL, Gawenis LR, Bradford EM, Judd LM, Boyle KT, Simpson JE, Shull GE, Tanabe H, Ouellette AJ, Franklin CL and Walker NM. Abnormal Paneth cell granule dissolution and compromised resistance to bacterial colonization in the intestine of CF mice. Am J Physiol Gastrointest Liver Physiol 286: G1050-G1058, 2004.

Clayburgh DR, Rosen S, Witkowski ED, Wang F, Blair S, Dudek S, Garcia JG, Alverdy JC and Turner JR. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem 279: 55506-55513, 2004.

De Smet K and Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27: 1337-1347, 2005.

Deitch EA. Simple intestinal obstruction causes bacterial translocation in man. Arch Surg 124: 699-701, 1989.

Deitch EA, Bridges WM, Ma JW, Ma L, Berg RD and Specian RD. Obstructed intestine as a reservoir for systemic infection. Am J Surg 159: 394-401, 1990.

Deitch EA, Winterton J, Li M and Berg R. The gut as a portal of entry for bacteremia. Role of protein malnutrition. Ann Surg 205: 681-692, 1987.

Farquhar MG and Palade GE. Junctional complexes in various epithelia. J Cell Biol 17: 375-412, 1963.

Fasano A and Nataro JP. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 56: 795-807, 2004.

Ferrier L, Mazelin L, Cenac N, Desreumaux P, Janin A, Emilie D, Colombel JF, Garcia-Villar R, Fioramonti J and Bueno L. Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology 125: 795-804, 2003.

Fontaine N, Meslin JC, Lory S and Andrieux C. Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. Br J Nutr 75: 881-892, 1996.

Frager DH, Baer JW, Rothpearl A and Bossart PA. Distinction between postoperative ileus and mechanical small-bowel obstruction: value of CT compared with clinical and other radiographic findings. AJR Am J Roentgenol 164: 891-894, 1995.

Fukuya T, Hawes DR, Lu CC, Chang PJ and Barloon TJ. CT diagnosis of small-bowel obstruction: efficacy in 60 patients. AJR Am J Roentgenol 158: 765-769, 1992.

Ganz T. Defensins and host defense. Science 286: 420-421, 1999.

Ganz T. Paneth cells--guardians of the gut cell hatchery. Nat Immunol 1: 99-100, 2000.

Gerard MP, Blikslager AT, Roberts MC, Tate LP, Jr. and Argenzio RA. The characteristics of intestinal injury peripheral to strangulating obstruction lesions in the equine small intestine. Equine Vet J 31: 331-335, 1999.

Gitter AH, Bendfeldt K, Schulzke JD and Fromm M. Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. FASEB J 14: 1749-1753, 2000.

Grisham MB, Jourd''Heuil D and Wink DA. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites:implications in inflammation. Am J Physiol 276: G315-G321, 1999.

Grulke S, Benbarek H, Caudron I, Deby-Dupont G, Mathy-Hartert M, Farnir F, Deby C, Lamy M and Serteyn D. Plasma myeloperoxidase level and polymorphonuclear leukocyte activation in horses suffering from large intestinal obstruction requiring surgery: preliminary results. Can J Vet Res 63: 142-147, 1999.

Gurleyik E and Gurleyik G. Small bowel volvulus: a common cause of mechanical intestinal obstruction in our region. Eur J Surg 164: 51-55, 1998.

Gurleyik G, Ozturk E, Adaleti R, Gunes P, Guran M, Peker O and Saglam A. Effects of prostaglandin E1 and E2 analogues on mucosal injury-induced, and on bacterial translocation promoted by, experimental intestinal obstruction. J Invest Surg 17: 127-134, 2004.

Guttman JA, Li Y, Wickham ME, Deng W, Vogl AW and Finlay BB. Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol 8: 634-645, 2006.

Hacioglu A, Algin C, Pasaoglu O, Pasaoglu E and Kanbak G. Protective effect of leptin against ischemia-reperfusion injury in the rat small intestine. BMC Gastroenterol 5: 37, 2005.

Han X, Fink MP and Delude RL. Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19: 229-237, 2003.

Hase K, Eckmann L, Leopard JD, Varki N and Kagnoff MF. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70: 953-963, 2002.

Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L and Kagnoff MF. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology 125: 1613-1625, 2003.

Hecht G, Pestic L, Nikcevic G, Koutsouris A, Tripuraneni J, Lorimer DD, Nowak G, Guerriero V, Jr., Elson EL and Lanerolle PD. Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am J Physiol 271: C1678-C1684, 1996.

Hediger MA, Coady MJ, Ikeda TS and Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330: 379-381, 1987.

Helmerhorst EJ, Breeuwer P, van''t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC, Amerongen AV and Abee T. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274: 7286-7291, 1999.

Heyman M, Crain-Denoyelle AM and Desjeux JF. Endocytosis and processing of protein by isolated villus and crypt cells of the mouse small intestine. J Pediatr Gastroenterol Nutr 9: 238-245, 1989.

Hirano K, Phan BC and Hartshorne DJ. Interactions of the subunits of smooth muscle myosin phosphatase. J Biol Chem 272: 3683-3688, 1997.

Hirase T, Kawashima S, Wong EY, Ueyama T, Rikitake Y, Tsukita S, Yokoyama M and Staddon JM. Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J Biol Chem 276: 10423-10431, 2001.

Hollander D. The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn''s disease. Scand J Gastroenterol 27: 721-726, 1992.

Ihedioha U, Alani A, Modak P, Chong P and O''Dwyer PJ. Hernias are the most common cause of strangulation in patients presenting with small bowel obstruction. Hernia 10: 338-340, 2006.

Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B and Gudmundsson G. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7: 180-185, 2001.

Ivanov AI, Nusrat A and Parkos CA. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 15: 176-188, 2004.

Joiner KA, Ganz T, Albert J and Rotrosen D. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J Cell Biol 109: 2771-2782, 1989.

Kabaroudis A, Papaziogas B, Koutelidakis I, Kyparissi-Kanellaki M, Kouzi-Koliakou K and Papaziogas T. Disruption of the small-intestine mucosal barrier after intestinal occlusion: a study with light and electron microscopy. J Invest Surg 16: 23-28, 2003.

Katouli M, Bark T, Ljungqvist O, Svenberg T and Mollby R. Composition and diversity of intestinal coliform flora influence bacterial translocation in rats after hemorrhagic stress. Infect Immun 62: 4768-4774, 1994.

Katouli M, Nettebladt CG, Muratov V, Ljungqvist O, Bark T, Svenberg T and Mollby R. Selective translocation of coliform bacteria adhering to caecal epithelium of rats during catabolic stress. J Med Microbiol 46: 571-578, 1997.

Kayano T, Burant CF, Fukumoto H, Gould GW, Fan YS, Eddy RL, Byers MG, Shows TB, Seino S and Bell GI. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem 265: 13276-13282, 1990.

Keita AV, Gullberg E, Ericson AC, Salim SY, Wallon C, Kald A, Artursson P and Soderholm JD. Characterization of antigen and bacterial transport in the follicle-associated epithelium of human ileum. Lab Invest 86: 504-516, 2006.

Keljo DJ and Hamilton JR. Quantitative determination of macromolecular transport rate across intestinal Peyer''s patches. Am J Physiol 244: G637-G644, 1983.

Kiliaan AJ, Saunders PR, Bijlsma PB, Berin MC, Taminiau JA, Groot JA and Perdue MH. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol 275: G1037-G1044, 1998.

Kimmich GA and Randles J. Sodium-sugar coupling stoichiometry in chick intestinal cells. Am J Physiol 247: C74-C82, 1984.

Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A and Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245-248, 1996.

Kirshtein B, Roy-Shapira A, Lantsberg L, Avinoach E and Mizrahi S. Laparoscopic management of acute small bowel obstruction. Surg Endosc 19: 464-467, 2005.

Kitamura T, Brauneis U, Gatmaitan Z and Arias IM. Extracellular ATP, intracellular calcium and canalicular contraction in rat hepatocyte doublets. Hepatology 14: 640-647, 1991.

Koch AD and Schoon EJ. Extensive jejunal diverticulosis in a family, a matter of inheritance? Neth J Med 65: 154-155, 2007.

Koshlukova SE, Araujo MW, Baev D and Edgerton M. Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun 68: 6848-6856, 2000.

Lahti AM, Cassuto J, Yregard L and Nellgard P. Effect of inositol-trisphosphate on fluid transport and protein extravasation in the obstructed small bowel. Scand J Gastroenterol 37: 1417-1421, 2002.

Larrick JW, Hirata M, Balint RF, Lee J, Zhong J and Wright SC. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63: 1291-1297, 1995.

Lee HR and Pimentel M. Bacteria and irritable bowel syndrome: the evidence for small intestinal bacterial overgrowth. Curr Gastroenterol Rep 8: 305-311, 2006.

Li XS, Reddy MS, Baev D and Edgerton M. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278: 28553-28561, 2003.

Lindemann B. Fluctuation analysis of sodium channels in epithelia. Annu Rev Physiol 46: 497-515, 1984.

Liu Z, Li N and Neu J. Tight junctions, leaky intestines, and pediatric diseases. Acta Paediatr 94: 386-393, 2005.

Lu RH, Chang TM, Yen MH and Tsai LM. Involvement of superoxide anion in the pathogenesis of simple mechanical intestinal obstruction. J Surg Res 115: 184-190, 2003.

Luckey A, Livingston E and Tache Y. Mechanisms and treatment of postoperative ileus. Arch Surg 138: 206-214, 2003.

MacKay BJ, Pollock JJ, Iacono VJ and Baum BJ. Isolation of milligram quantities of a group of histidine-rich polypeptides from human parotid saliva. Infect Immun 44: 688-694, 1984.

Madara JL. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol 116: 177-184, 1990.

Marcial MA, Carlson SL and Madara JL. Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships. J Membr Biol 80: 59-70, 1984.

Markogiannakis H, Messaris E, Dardamanis D, Pararas N, Tzertzemelis D, Giannopoulos P, Larentzakis A, Lagoudianakis E, Manouras A and Bramis I. Acute mechanical bowel obstruction: clinical presentation, etiology, management and outcome. World J Gastroenterol 13: 432-437, 2007.

Marshman E, Ottewell PD, Potten CS and Watson AJ. Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. J Pathol 195: 285-292, 2001.

Matsuda M, Kubo A, Furuse M and Tsukita S. A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117: 1247-1257, 2004.

Matter K and Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4: 225-236, 2007.

McConnico RS, Weinstock D, Poston ME and Roberts MC. Myeloperoxidase activity of the large intestine in an equine model of acute colitis. Am J Vet Res 60: 807-813, 1999.

Menzies D. Postoperative adhesions: their treatment and relevance in clinical practice. Ann R Coll Surg Engl 75: 147-153, 1993.

Menzies D and Ellis H. Intestinal obstruction from adhesions--how big is the problem? Ann R Coll Surg Engl 72: 60-63, 1990.

Mills SD and Finlay BB. Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells. Microb Pathog 17: 409-423, 1994.

Mirza MH, Oliver JL, Seahorn TL, Hosgood G and Moore RM. Detection and comparison of nitric oxide in clinically normal horses and those with naturally acquired small intestinal strangulation obstruction. Can J Vet Res 63: 230-240, 1999.

Moriez R, Salvador-Cartier C, Theodorou V, Fioramonti J, Eutamene H and Bueno L. Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 167: 1071-1079, 2005.

Munoz MT and Solis Herruzo JA. [Chronic intestinal pseudo-obstruction]. Rev Esp Enferm Dig 99: 100-111, 2007.

Naito Y, Katada K, Takagi T, Tsuboi H, Kuroda M, Handa O, Kokura S, Yoshida N, Ichikawa H and Yoshikawa T. Rosuvastatin reduces rat intestinal ischemia-reperfusion injury associated with the preservation of endothelial nitric oxide synthase protein. World J Gastroenterol 12: 2024-2030, 2006.

Nash S, Stafford J and Madara JL. Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest 80: 1104-1113, 1987.

Nazli A, Yang PC, Jury J, Howe K, Watson JL, Soderholm JD, Sherman PM, Perdue MH and McKay DM. Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol 164: 947-957, 2004.

Nellgard P and Cassuto J. Inflammation as a major cause of fluid losses in small-bowel obstruction. Scand J Gastroenterol 28: 1035-1041, 1993.

Nellgard P, Jonsson A, Bojo L, Tarnow P and Cassuto J. Small-bowel obstruction and the effects of lidocaine, atropine and hexamethonium on inflammation and fluid losses. Acta Anaesthesiol Scand 40: 287-292, 1996.

Nusrat A, Eichel-Streiber C, Turner JR, Verkade P, Madara JL and Parkos CA. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 69: 1329-1336, 2001.

Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P and Madara JL. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A 92: 10629-10633, 1995.

Olivera DS, Boggs SE, Beenhouwer C, Aden J and Knall C. Cellular mechanisms of mainstream cigarette smoke-induced lung epithelial tight junction permeability changes in vitro. Inhal Toxicol 19: 13-22, 2007.

Phillips AD, Navabpour S, Hicks S, Dougan G, Wallis T and Frankel G. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer''s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47: 377-381, 2000.

Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS, Banting G, Ratcliff R, Evans MJ and Colledge WH. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393: 79-82, 1998.

Platt V. Malignant bowel obstruction: so much more than symptom control. Int J Palliat Nurs 7: 547-554, 2001.

Plusczyk T, Bolli M and Schilling M. [Ileus disease]. Chirurg 77: 898-903, 2006.

Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F and Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res 140: 12-19, 2007.

Potten CS and Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110: 1001-1020, 1990.

Powell DW. Barrier function of epithelia. Am J Physiol 241: G275-G288, 1981.

Ramachandran A, Madesh M and Balasubramanian KA. Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 15: 109-120, 2000.

Ramadori G, Lindhorst A and Armbrust T. Colorectal tumors with complete obstruction--endoscopic recovery of passage replacing emergency surgery? A report of two cases. BMC Gastroenterol 7: 14, 2007.

Rao RK, Basuroy S, Rao VU, Karnaky Jr KJ and Gupta A. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368: 471-481, 2002.

Robertson AM and Wright DP. Bacterial glycosulphatases and sulphomucin degradation. Can J Gastroenterol 11: 361-366, 1997.

Rosenblatt J, Raff MC and Cramer LP. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 11: 1847-1857, 2001.

Sagar PM, MacFie J, Sedman P, May J, Mancey-Jones B and Johnstone D. Intestinal obstruction promotes gut translocation of bacteria. Dis Colon Rectum 38: 640-644, 1995.

Saitoh M, Ishikawa T, Matsushima S, Naka M and Hidaka H. Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem 262: 7796-7801, 1987.

Salvalaggio PR, Neto CZ, Tolazzi AR, Gasparetto EL, Coelho JC and Campos AC. Oral glutamine does not prevent bacterial translocation in rats subjected to intestinal obstruction and Escherichia coli challenge but reduces systemic bacteria spread. Nutrition 18: 334-337, 2002.

Samel S, Keese M, Kleczka M, Lanig S, Gretz N, Hafner M, Sturm J and Post S. Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo--a new animal model. BMC Surg 2: 6, 2002.

Samel S, Keese M, Lanig S, Kleczka M, Gretz N, Hafner M, Sturm J and Post S. Supplementation and inhibition of nitric oxide synthesis influences bacterial transit time during bacterial translocation in rats. Shock 19: 378-382, 2003.

Sanderson IR and Walker WA. Uptake and transport of macromolecules by the intestine: possible role in clinical disorders (an update). Gastroenterology 104: 622-639, 1993.

Schwarz NT, Beer-Stolz D, Simmons RL and Bauer AJ. Pathogenesis of paralytic ileus: intestinal manipulation opens a transient pathway between the intestinal lumen and the leukocytic infiltrate of the jejunal muscularis. Ann Surg 235: 31-40, 2002.

Shifflett DE, Clayburgh DR, Koutsouris A, Turner JR and Hecht GA. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab Invest 85: 1308-1324, 2005.

Simonovic I, Rosenberg J, Koutsouris A and Hecht G. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol 2: 305-315, 2000.

Soderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM and Perdue MH. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 123: 1099-1108, 2002.

Somlyo AP and Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522 Pt 2: 177-185, 2000.

Somlyo AP and Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83: 1325-1358, 2003.

Soriani M, Santi I, Taddei A, Rappuoli R, Grandi G and Telford JL. Group B Streptococcus crosses human epithelial cells by a paracellular route. J Infect Dis 193: 241-250, 2006.

Spitz J, Yuhan R, Koutsouris A, Blatt C, Alverdy J and Hecht G. Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am J Physiol 268: G374-G379, 1995.

Srinivas SP, Satpathy M, Guo Y and Anandan V. Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells. Invest Ophthalmol Vis Sci 47: 4011-4018, 2006.

Stechmiller JK, Treloar D and Allen N. Gut dysfunction in critically ill patients: a review of the literature. Am J Crit Care 6: 204-209, 1997.

Sugawara M, Kato M, Kobayashi M, Iseki K and Miyazaki K. Mechanism of the inhibitory effect of imipramine on the Na+-dependent transport of L-glutamic acid in rat intestinal brush-border membrane. Biochim Biophys Acta 1370: 252-258, 1998.

Tapparelli E, Russo S and D''Alessio L. [Clinical experience with the use of injectable cephalexin in obstetric and gynecologic pathology]. Minerva Ginecol 33: 851-856, 1981.

Tsukita S, Furuse M and Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285-293, 2001.

Turner JR. ''Putting the squeeze'' on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol 11: 301-308, 2000.

Turner JR, Angle JM, Black ED, Joyal JL, Sacks DB and Madara JL. PKC-dependent regulation of transepithelial resistance: roles of MLC and MLC kinase. Am J Physiol 277: C554-C562, 1999.

Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ and Madara JL. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 273: C1378-C1385, 1997.

Unno N, Wang H, Menconi MJ, Tytgat SH, Larkin V, Smith M, Morin MJ, Chavez A, Hodin RA and Fink MP. Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology 113: 1246-1257, 1997.

Ussing HH and Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23: 110-127, 1951.

Venkatraman A, Ramakrishna BS, Pulimood AB, Patra S and Murthy S. Increased permeability in dextran sulphate colitis in rats: time course of development and effect of butyrate. Scand J Gastroenterol 35: 1053-1059, 2000.

Vijayalakshhmi B, Sesikeran B, Udaykumar P, Kalyanasundaram S and Raghunath M. Effects of vitamin restriction and supplementation on rat intestinal epithelial cell apoptosis. Free Radic Biol Med 38: 1614-1624, 2005.

Watson AJ, Chu S, Sieck L, Gerasimenko O, Bullen T, Campbell F, McKenna M, Rose T and Montrose MH. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 129: 902-912, 2005.

Wehner S, Behrendt FF, Lyutenski BN, Lysson M, Bauer AJ, Hirner A and Kalff JC. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56: 176-185, 2007.

White SH, Wimley WC and Selsted ME. Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5: 521-527, 1995.

Willy C, Dahouk S, Starck C, Kaffenberger W, Gerngross H and Plappert UG. DNA damage in human leukocytes after ischemia/reperfusion injury. Free Radic Biol Med 28: 1-12, 2000.

Won KJ, Suzuki T, Hori M and Ozaki H. Motility disorder in experimentally obstructed intestine: relationship between muscularis inflammation and disruption of the ICC network. Neurogastroenterol Motil 18: 53-61, 2006.

Yang PC, Jury J, Soderholm JD, Sherman PM, McKay DM and Perdue MH. Chronic psychological stress in rats induces intestinal sensitization to luminal antigens. Am J Pathol 168: 104-114, 2006.

Yu LC, Flynn AN, Turner JR and Buret AG. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J 19: 1822-1835, 2005.

Yuhan R, Koutsouris A, Savkovic SD and Hecht G. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113: 1873-1882, 1997.

Zhang P, Summer WR, Bagby GJ and Nelson S. Innate immunity and pulmonary host defense. Immunol Rev 173: 39-51, 2000.

Zimmerman BJ, Grisham MB and Granger DN. Role of oxidants in ischemia/reperfusion-induced granulocyte infiltration. Am J Physiol 258: G185-G190, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文