跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳禎祐
研究生(外文):Chen-You Chen
論文名稱:非對稱性長週期光纖光柵之製法及其光學特性
論文名稱(外文):Asymmetric corrugated Long Period Fiber Grating Fabrication and their Optical Characterization
指導教授:王倫
指導教授(外文):Lon A Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:長週期光纖光柵非對稱鋸齒狀光纖光柵SU8
外文關鍵詞:Long period fiber gratingasymmetric corrugated fiber gratingSU8
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
先前本實驗室所提出的鋸齒狀光纖光柵 (corrugated fiber grating) 克服了傳統上大多需要感光光纖才能來製作長週期光纖光柵 (LPFG) 的限制。此外,鋸齒狀光纖光柵更表現出對於光共振性質和耦合強度的可調性。雖然鋸齒狀光纖展示出優於傳統光纖光柵的特點,但在以往利用熱蒸鍍金屬膜的方式仍然有許多的不便而且效率也不高。因此一種利用微影製程在光纖上製作鋸齒狀結構的方法於2006年七月提出。本論文承襲此種製作方式,並利用在半導體產業廣為利用之V-凹槽(V-groove)圖案來協助製作。方式為將光纖置於V-凹槽中,並利用負光阻SU8完全擋住氫氟酸蝕刻其下半部,而光纖的上半部再利用半導體製程製作出週期性結構,進而做出非對稱性之鋸齒狀光纖光柵。除此之外,針對此種製程為了增加非對稱性之鋸齒狀光纖光柵之結構強度及良率,本論文也利用三層蝕刻的方式取代一般的蝕刻方式。
除了先前證實的光學特性之外,此種非對稱性鋸齒狀光纖光柵在受到應力的情形之下,會因為結構的非對稱使得兩個不同波長的光由纖核模態(core mode)耦合到具有兩個互相垂直的極化方向低階纖殼模態(cladding mode),我們利用極化分析儀以及光譜分析儀可以看到這個現象。
此種微影製程的方法製作出非對稱性鋸齒狀光纖光柵,除了其獨特光學特性,我們也進一步對其極化特性作研究,相信在光纖通信和光纖感測兩領域的應用上深具潛力。
The prior proposed corrugated fiber gratings overcome the limitation of conventional fabrication methods which is most cases require photosensitive fiber for making conventional long period fiber gratings. Besides, the corrugated structures enable the flexibility of tuning coupling strength and resonant conditions. However, making a corrugated structure on a fiber by thermal coating is not convenient and inefficient. Hence, a new lithography method was proposed in July 2006. To this thesis contains the previously proposed lithography method, but take advantage of V-grooves which are commonly used in the industry. We set a fiber in a V-groove and coat it with negative photoresist SU8 to protect the bottom of fiber. Then we make a periodic structure on the top of fiber. To finalize the fabrication of a asymmetric corrugated fiber grating. Besides, we use 3-layer etching method to improve the strength gratings and yield of fabrication of fiber.
In addition to proving the tunable optical properties, The asymmetric corrugated fiber grating is found capable of coupling two wavelengths from core mode to cladding modes of two orthogonal polarization states when a mechanical force is applied. We use a polarization analyzer and an optical spectrum analyzer to characterize this phenomenon.
Asymmetric corrugated fiber gratings made by employing the lithographic method exhibits unique optical characteristics. According to our analysis, it is believed that such fiber gratings may find may applications in optical fiber communication and fiber sensing.
Contents
Chapter 1. Introduction…………………………...1
1-1 Characteristic of conventional LPFGs…………………………….....4
1-2 Prior fabrication method of LPFGs……………………….……….....9
1-3 Introduction of silicon V-groove chip……………...……………….12
1-4 Organization of the thesis…………………………………………...13
Chapter 2 Theoretical Modeling………………...14
2-1 Photo-elastic theory…………………………………………………17
2-2 Coupled mode theory for corrugated fiber grating under varying
tensile strains…………...………………………..………………...20
2-3 Optical characteristics of an asymmetric structure…………………29
2-4 Summary……………………………………………………………34
Chapter 3. Experiment setups…………………...35
3-1 Fabrication of a Silicon V-groove substrate………………………..36
3-2 Characterizes of SU8 photoresist……………………………..…….38
3-3 Fabrication of asymmetric corrugated fiber structure ……………...40
3-4 Summary ……………………………………………...……………56
Chapter 4. Optical characteristics of asymmetric corrugated Long period fiber grating
…………………………….57
4-1 Optical characteristics under tensile strain……………………….…58
4-2 Optical characteristics under varying torsion……………………….62
4-3 Optical polarization characteristics………………..……………….65
4-4 Summary……………………………………………………………68
Chapter 5 Conclusion……………………………69
References……………………………...71
1.Hill, K.O., et al., "Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication.", Applied Physics Letters, 1978. 32(10): pp. 647-649.
2.Meltz, G., W.W. Morey, and W.H. Glenn, "Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method.", Optics Letters, 1989. 14(15): pp. 823-825.
3.Vengsarkar, A.M., et al., "Long-period fiber gratings as band-rejection filters.", Journal of Lightwave Technology, 1996. 14(1): pp. 58-65.
4.B. J. Eggleton, R.E.S., J. B. Judkins, J. B. Stark, and A. M. and Vengsarkar, "All-optical switching in long-period fiber gratings.", Opt.Lett, 1997. 22(12): pp. 883-885.
5.Winful, V.E.P.a.H.G., "Nonlinear pulse switching using longperiod fiber gratings.", J. Lightwave Technol., 2000. 18: pp. 329-333.
6.M. Harumoto, M.S., and H. Suganuma, "Gain-flattening filter using long-period fiber gratings.", J. Lightwave Technol., 2002. 20: pp. 1027-1033.
7.Kersey, A.D., et al., "Fiber grating sensors.", Journal of Lightwave Technology, 1997. 15(8): pp. 1442-1463.
8.Davis, D.D., et al.," Long-period fibre grating fabrication with focused CO2 laser pulses.", Electronics Letters, 1998. 34(3):pp. 302-303.
9.Fujimaki, M., et al., "Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings.", APPLIED OPTICS, 2000. 88(10): pp. 5534-5537.
10.Starodubov, D.S., V. Grubsky, and J. Feinberg,"All-fiber bandpass filter with adjustable transmission using cladding-mode coupling.", Ieee Photonics Technology Letters, 1998. 10(11): pp. 1590-1592.
11.林品仲, "鋸齒狀長週期光纖光柵之新製法及其對光學特性的影響.", 碩士論文, 2006. 國立台灣大學光電工程學研究所.
12.S. G. Lee, e.a., "Fabrication of a Side-Polished Fiber Polarizer With a Birefringent Polymer Overlay.", Optics Letters, 1997. 22: pp. 606.
13.Kyoungwoo Jo, G.H.S., Un-chul Paek, and Won-Taek Han, "Fabrication and numerical analysis of D-shaped optical fiber polarizer coated with chromium film.", OSA, 2000.
14.Erdogan, T., "Cladding-mode resonances in short- and long-period fiber grating filters.", Journal of the Optical Society of America a-Optics Image Science and Vision, 1997. 14(8): pp. 1760-1773.
15.Davis, D.D., et al., "Long-period fibre grating fabrication with focused CO2 laser pulses.", Electronics Letters, 1998. 34(3): pp. 302-303.
16.Hill, K.O., Malo, B., Bilodeau, F., Johnson, D. C., and Albert, J.,, "Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure through a Phase Mask.", Applied Physics Letters, 1993. 62(10): pp. 1035-1037.
17.林俊彥, "鋸齒狀長週期光纖光柵在軸向應變,扭轉及彎曲下之光學特性研究.", 博士論文 國立台灣大學光電工程學研究所,2001.
18.Nye, J.F., "Physical Properties of Crystals: Their Representation by Tensors and Matrices.", Oxford University Press,New York, 1957.
19.B. Ortega, L.D., W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, V. N. Bagratashvili, and R. I. Laming, "High-Performance Optical Fiber Polarizers Based on Long-Period Gratings in Birefringent Optical Fibers.", IEEE PHOTONICS TECHNOLOGY LETTERS, 1997. 9(10): pp. 1370-1372.
20.A.S. Kurkov, M.D., 0. Duhem, B. Leleu, and J.F.B.a.L.R. J.F. Henninot, "Long-period fibre grating as a wavelength selective polarisation element.", ELECTRONICS LETTERS, 1997. 33(7): pp. 616-617.
21.Yu-Lung Lo *, B.-R.C., Shao-Hong Xu, "Fiber torsion sensor demodulated by a high-birefringence fiber Bragg grating.", Optics Communications, 2004. 230: pp. 287-295.
22.S. Savin, M.J.F.D., G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings.", OPTICS LETTERS, 2000. 25(10): pp. 710-712.
23.Takashi Yokouchi, Y.S., Kiyoshi Nakagawa, Makoto Yamauchi, and Y.M. Masanori Kimura, Susumu Kimura, and Seiki Ejima, "Thermal tuning of mechanically induced long-period fiber grating.", APPLIED OPTICS, 2005. 44(24): pp. 5024-5028.
24.Erdogan, T., "Fiber grating spectra.", Lightwave Technology, Journal of, 1997. 15(8): pp. 1277-1294.
25.Chern, G.W., L.A. Wang, and C.Y. Lin, "Transfer-matrix approach based on modal analysis for modeling corrugated long-period fiber gratings.", Applied Optics, 2001. 40(25): pp. 4476-4486.
26.MicroChem, "Allows easy stripping of hard to remove photoresists and other materials plus improved adhesion."
27.MicroChem, "NANO TM SU8-2000 Negtive tone photoresist formulations", pp. 2002-2025.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top