跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳憲昌
研究生(外文):Cen-Shawn Wu
論文名稱:單電子電晶體的應用與聚合物光子晶體之研究
論文名稱(外文):Single-electron transistor applications and Polymer-based photonic crystals
指導教授:林清富林清富引用關係
指導教授(外文):Chih-Fu Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:125
中文關鍵詞:單電子電晶體庫倫阻斷電荷能單電子記憶單元單電子差分電壓放大器聚合物光子晶體電子束微影術
外文關鍵詞:Single-electron transistorCoulomb blockadeCharge energySET memorySET differential voltage amplifierPolymer photonic crystalE-beam lithography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單電子電晶體與光子晶體分別是下一個世代十分具有潛力的奈米電子與光學元件。此論文主要是研究單電子電晶體的應用與聚合物型態之光子晶體。本論文主要分為兩部份,第一部份專注於單電子電晶體之應用並利用先進製程技術提昇單電子電晶體之工作溫度。在單電子電晶體應用方面,首先我們結合電子束微影術與奈米材料合成方法,成功的製作出單電子記憶體元件。同時我們也提出利用耦合的單電子電晶體可以當作差分電壓放大器並且具備良好之共模拒斥之特性。更進一步,我們利用高能量之電子束微影術與雙角度蒸鍍技術製作出只有20奈米金屬島之鋁單電子電晶體,根據庫倫阻斷電壓可以估計出電荷能大約為8.22mev相當於95K。而論文第二部份則是提出一個新穎且簡單的方法製作聚合物型態之懸浮準三維光子晶體和三維光子晶體。這個獨特的製程技術只利用單一道電子束微影曝光技術並且可以克服目前製作三維光子晶體的瓶頸,對於實現多功能光子積體電路具有相當程度的突破。
Single-electron transistor (SET) and photonic crystal (PC) are potential candidates for the next generation of nano-electronic and optical devices. This thesis work is to investigate experimentally the potential applications of single-electron transistor and polymer based photonic crystal. This thesis is divided into two parts. The first part is devoted to the single-electron transistor applications and development of the fabrication technique toward high-temperature operation of SET. Combining advanced electron-beam lithography and nanophased-material synthesis techniques, we have successfully prepared and measured single electron transistors with memory cell. In addition, we have proposed and demonstrated an SET differential amplifier with good common mode noise rejection characteristics. In an attempt towards high-operating temperature SETs, we have made Al-based SETs with an island with nominal 20nm in diameter utilizing high-energy electron-beam lithography and two-angle shadow evaporation. Judging from the maximum Coulomb blockade voltage, a charging energy of 8.22 meV (~95 K) was achieved.
In the second part of this thesis, we propose a simple and novel method to fabricate polymer based suspended quasi-3D photonic slab and 3D PCs. The unprecedented fabrication method utilizes only a single-step electron-beam lithography process, and thus overcomes difficulties encountered by the existing 3D PC techniques. This is a significant leap forward to the realization of multifunctional PC integrated circuits.
Table of Contents
Acknowledgement i
Chinese Abstract ii
Abstract iii
Table of Contents v
List of Figures viii
List of Tables xv
Chapter 1 Introduction 1
Reference 8
Chapter 2 Basic concepts 10
2.1 Concept of single electron devices 10
2.1.1 Single-electron charging energy 11
2.1.2 Coulomb Blockade Effect 13
2.1.3 Single electron transistor 15
2.2 Fundamental of Photonic crystal 22
2.2.1 Maxwell’s Equations in Periodic Media 23
2.2.2 Bloch waves and Brillouin zones 25
2.2.3 The origin of the photonic band gap 27
Reference 33
Chapter 3 Experimental Techniques 35
3.1 The sample layout 35
3.2 Electron beam lithography 36
3.3 Shadow evaporation technique 41
3.4 Cryogenics 45
3.5 Electrical measurement setup 45
3.6 Optical measurement setup 47
Reference 48
Chapter 4 SET and memory cell with Au Colloidal Islands 49
4.1 Introduction 49
4.2 Sample preparation 51
4.3 Electrical measurement results 58
4.4 Memory effect 62
4.5 Conclusion 67
Reference 68
Chapter 5 Coupled single electron transistors as a differential voltage amplifier 70
5.1 Introduction 70
5.2 Sample fabrication 72
5.3 Current-voltage characteristics 74
5.4 Charge state of parallel-coupled SETs 75
5.5 Differential voltage amplifiers 80
5.6 Possible applications of Quantum computing 81
5.7 Conclusion 84
Reference 85
Chapter 6 Fabrication of high operating temperature all-aluminum
Single-electron transistors 88
6.1 Introduction 88
6.2 High-energy e-beam lithography technique 90
6.3 Electrical measurement results 95
6.4 Conclusion 101
Reference 102
Chapter 7 Polymer-based photonic crystals fabricated with single-step electron beam lithography 104
7.1 Introduction 104
7.2 Polymer-based photonic crystals 106
7.3 Suspended quasi-3D PC structure 107
7.4 3D PC structure 114
7.5 Conclusion 117
Reference 119
Chapter 8 Conclusions 121
1-1.M. H. Devoret and Robert J. Schoelkopf, Nature, 406, 1039,(2000)
1-2.M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science, 278,252,(1997)
1-3.J. Park, A. N. Pasupathy, J. I. Goldsmith,Connie Chang, Yuval Yaish, Jason R. Petta, Marie Rinkoski,James P. Sethna, He´ctor D. Abrun˜a, Paul L. McEuen, and Daniel C. Ralph, Nature, 417, 722,(2002)
1-4.Wenjie Liang, Matthew P. Shores, Marc Bockrath, Jeffrey R. Long and Hongkun Park, Nature, 417, 725,(2002)
1-5.Averin, D. V. and Likharev, K. K., J. Low Temp. Phys., 62, 345, (1986)
1-6.Fulton, T. A. and Dolan, G. J., Phys. Rev. Lett. , 59, 109, (1987).
1-7.Meirav U., Kastner, M. A. and Wind, S. J., Phys. Rev. Lett. 65, 771, (1990).
1-8.Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. and Prober, D., Science 280, 1238–1242 (1998).
1-9.C. D. Chen, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett., 71, 2038 (1997)
1-10.A. Aassime, G. Johansson, G. Wendin, R. J. Schoelkopf, and P. Delsing, Phys. Rev. Lett. 86, 3376, (2001).
1-11.S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).
1-12.Joannopoulos JD, Meade RD, and Winn JN (1995) Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press.
1-13. Johnson SG, Ibanescu M, Skorobogatiy M, Weisberg O, Joannopoulos JD, and Fink Y, Phys. Rev. E, 65, 066611.(2002)
1-14.Nakamura, Y., Pashkin, Yu. A. & Tsai, J. S., Nature, 398, 786 (1999).
1-15.Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y.Nakamura,
D. V. Averin, and J. S. Tsai, Nature, 421, 823,(2003)
1-16.T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, J. S. Tsai, Nature, 425, 941,(2003)
2-1J. Weis, Lect. Notes Phys. 658, 87–121 (2005)
2-2. Single Charge Tunneling, volume B 294 of NATO ASI Series, ed. by H. Grabert,M.H. Devoret (Plenum Press, New York 1992)
2-3.K.K Likharev: ‘Single-electron devices and their applications’. Proceedings of the IEEE 87, 606 (1999)
2-4. U. Meirav, E.B. Foxman: ‘Single-electron phenomena in semiconductors’. Semicond.Sci. Technol. 10, 255 (1995)
2-5. L.P. Kouwenhoven, Ch.M. Marcus, P.L. McEuen, S. Tarucha, R.M Westerwelt,N.S. Wingreen: ‘Electron transport in quantum dots’. In: Mesoscopic Electron
Transport, ed. by L.L. Sohn et al. (Kluwer Academic Publishers, Dordrecht 1997)
2-6. L.P. Kouwenhoven, D.G. Austing, S. Tarucha: ‘Few-electron quantum dots’. Rep.Prog. Phys. 64, 701 (2001)
2-7. T. Chakraborty: Quantum Dots – A survey of the properties of artificial atoms(North-Holland, Amsterdam 1999)
2-8. G. Schon: ‘Single-electron tunneling’. In: Quantum Transport and Dissipation, ed.by T. Dittrich, P. H‥anggi, G. Ingold, G. Kramer, B. Sch‥on, W. Zwerger (VCH,Weinheim 1997) chapter 3
2-9. H. Schoeller: ‘Transport theory of interacting quantum dots’. In: Mesoscopic
Electron Transport, ed. by L.L. Sohn et al. (Kluwer Academic Publishers, Dordrecht 1997)
2-10. Z. Phys. B 85 (1991)
2-11. D.V. Averin, K.K. Likharev: J. Low Temp. Phys. 62, 345 (1986)
2-12. K.K. Likharev: IEEE Transactions on Magnetics 23, 1142 (1987)
2-13. D.A. Averin, A.N. Korotkov, K.K. Likharev: Phys. Rev. B 44, 6199 (1991)
2-14 S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Kluwer, 2002).
2-15. Joannopoulos JD, Meade RD, and Winn JN (1995) Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press.
2-16 Johnson SG, Ibanescu M, Skorobogatiy M, Weisberg O, Joannopoulos JD, and Fink Y, Phys. Rev. E, 65, 066611.(2002)
2-17. Sakoda K, Phys.Rev. E, 62, 5672–5677(2001)
3-1. G. J. Dolan, Appl. Phys. Lett. 31, 337 (1977)
3-2. T. A. Fulton and G. J. Dolan, Phys. Rev. Lett, 59, 109, 1987
4-1. David. L. Klein, Richard Roth, Andrew. K. L. Lim, A. Paul Alivisatos and Paul McEuen,Nature, 389, 699 (1997).
4-2. A. Bezyadin, C. Dekker and G. Schmid, Appl. Phys. Lett. , 71, 1273 (1997).
4-3. Kitsuta, K. Chem. Abs., 49, 8300, (1955)
4-4. Sheng-Ming Shih, Wei-Fang Su, Yuh-Jiuan Lin, Cen- Shawn Wu, and Chii-Dong Chen, Langmuir, 18, 3332-3335, 2002.
4-5. T. Sato, H. Ahmed, D. Brown and B. F. G. Johnson, J. Appl. Phys., 82, 696 (1997).
4-6. S. H. M. Persson, L. Olofsson and L. Gunnarsson, Appl. Phys. Lett., 74, 2546 (1999).
4-7. W. Chen, H. Ahmed and K. Nakazoto, Appl. Phys. Lett., 66, 3383 (1995).
4-8. For the computer program algorithm, see H. Dalsgaard Jensen and John M. Martinis, Phys. Rev. B, 46, 13407 (1992).
4-9. See, for instance, D. V. Averin and K.K. Likharev in Mesoscopic Phenomena in Solids, edited by B.L. Alshuler, P.A. Lee, and R.A. Webb, Ch. 6 (North-Holland, Amsterdam, 1991).
4-10 D. V. Averin and K. K. Likharev, in Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, Ch. 9 (Plenum, New York, 1992).
4-11 P. D. Dresselhaus, L. Ji, S. Han, J. E. Lukens and K. K. Likharev, Phys. Rev. Lett., 72, 3226 (1994); A. Dutta, S. P. Lee, S. Hatatani and S. Oda, Appl. Phys. Lett., 75, 1422 (1999); K. Matsumoto, Y. Gotoh, T. Maeda, J. A. Dagata and J. S. Harris, Appl. Phys. Lett., 76, 239 (2000).
4-12. C. D. Chen, Y. Nakamura, and J. S. Tsai, Appl. Phys. Lett., 71, 2038 (1997)
5-1. Yasuo Takahashi ,Akira Fujiwara,Kenji Yamazaki,Hideo Namatsu, and Katsumi Murase, Appl. Phys. Lett., 76, 637,(2000)
5-2. Yukinori Ono, Yasuo Takahashi, Kenji Yamazaki, Masao Nagase, Hideo Namatsu, Kenji Kurihara, and Katsumi Murase., Appl. Phys. Lett., 76, 3121,(2000)
5-3. C. S. Wu, C.D Chen, S.M Shih and W.F Su, Appl. Phys. Lett., 81, 4595,(2002)
5-4. Tetsuya Kitade, Kensaku Ohkura, and Anri Nakajima, Appl. Phys. Lett., 86, 123118,(2005)
5-5. A.N. Korotkov, Phys. Rev. B, 49, 10381,(1994)
5-6. A. N. Korotkov and M. A. Paalanen, App. Phys. Lett., 74, 4052,(1999)
5-7. A. Aassime, D. Gunnarsson,K. Bladh, P. Delsing and R. Schoelkopf, Appl. Phys. Lett., 79, 4031,(2001)
5-8. R.J Schoelkopf, P.Wahlgren, A.A.kozhevnikov, P.Delsing,and D.E.Prober, Science,280, 1238,(1998)
5-9. A. Aassime, G. Johansson,G. Wendin,R.J. Schoelkopf,and P.Delsing, Phys. Rev. Lett., 86, 3376,(2001)
5-10. Jonas Bylander, T. Duty, and P.Delsing, Nature, 434, 361, (2005)
5-11. I.H.Chan,R. M. Westervelt, K. D. Maranowski and A. C. Gossard, Appl. Phys. Lett.,80,1818,(2002)
5-12. Alexander W.Holleitner, Robert H. Blicket , and Karl Eberlal, Appl. Phys. Lett., 82, 1887,(2003)
5-13. R. Brenner, Andrew D. Greentree, and A. R. Hamilton, Appl. Phys. Lett., 83, 4640,(2003)
5-14. T. A. Fulton and G. J. Dolan et al, Phys. Rev.Lett., 59, 109,(1987)
5-15. P. Delsing, T. Claeson, K. K. Likharev, and L. S. Kuzmin, Phys. Rev. B, 42, 7439,(1990)
5-16. Y. Nakamura, C. D. Chen, and J. S. Tsai, Phys. Rev. B., 53, 8234,(1996)
5-17. F. Hofmann, T. Heinzel, D. A. Wharam, J. P. Kotthaus, G. Bohm, W. Klein, G. Trankle and G. Weimann, Phys. Rev. B., 51, 13872,(1995)
5-18. For the computer program algorithm, see H. Dalsgaard Jensen and John M. Martinis, Phys. Rev. B, 46, 13407,(1992)
5-19. See, for instance, D. V. Averin and K.K. Likharev in Mesoscopic Phenomena in Solids, edited by B.L. Alshuler, P.A. Lee, and R.A. Webb, Ch. 6 (North-Holland, Amsterdam, 1991).
5-20. A.Shnirman, Y. Makhlin and G. Schon, Phys. Rev. Lett., 79, 2371,(1997)
5-21. Bladh K, Gunnarsson D, Johansson G, Käck A, Wendin G, Aassime A, Taslakov M and Delsing P , Phys. Scr. T, 102, 167,(2002)
5-22. K Bladh, T Duty, D Gunnarsson, P Delsing, New J. Phys., 7, 180,(2005)
5-23. Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, Nature, 421, 823,(2003)
6-1. E. Leobandung, L. Guo, Y. Wang, and S. Y. Chou, Appl. Phys. Lett.,67,938 (1995).
6-2. Y. Takahashi, H. Namatsu, K. Kurihara, K. Iwadate, M. Nagase, and K..Murase, IEEE Trans. Electron Devices 43, 1213 (1996)
6-3. H. Fukuda, J. L. Hoyt, M. A. McCord, and R. F. W. Pease, Appl. Phys.Lett. 70, 333 (1997)
6-4. H. Ishikuro, T. Fujii, T. Saraya, G. Hashiguchi, T. Hiramoto, and T.Ikoma, Appl. Phys. Lett., 68, 3585 (1996).
6-5. J. Gondermann, T. Ro¨wer, B. Hadam, T. Ko¨ster, J. Stein, B. Spangenberg,H. Rokos, and H. Kurz, J. Vac. Sci. Technol. B 14, 4042 (1996)
6-6. K. Kurihara, H. Namatsu, M. Nagase, and T. Makino, Jpn. J. Appl. Phys.,Part 1 ,35, 6668 (1996).
6-7. K. Matsumoto, M. Ishii, K. Sagawa, Y. Oka, B. J. Vartanian, and J. S.Harris, Appl. Phys. Lett., 68, 34 (1996)
6-8. A. Ohata and A. Toriumi, IEICE Trans. Electron. E79-C, 1586 (1996)
6-9. D. V. Averin and K. K. Likharev, in Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, Ch. 9 (Plenum, New York, 1992).
6-10. T. A. Fulton and G. J. Dolan, Phys. Rev. Lett., 59, 109 (1987)
6-11. T. H. P. Chang, J. Vac. Sci. Technol., 12, 1271, (1975)
7-1.S.Noda, A.Chutinan and M. Imada, Nature,407,608,(2000)
7-2.H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science,305, 1444,(2004)
7-3.B. S. Song, S. Noda, and T. Asano, Science,300, 1537,(2003)
7-4.Y. W. Su, C. S. Wu, C. C. Chen, and C. D. Chen, Advanced Materials, 15, 49,(2003)
7-5.S.Takayama, H.Kitagawa,Y.Tanaka,T. Asano, and S. Noda, Appl. Phys. Lett ., 87, 061107,( 2005)
7-6.Y. A. Vlasov, X-Z. Bo, J. G. Strum, and D. J. Norris, Nature, 414, 289 ,(2001)
7-7.M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, Nature, 404, 53 ,( 2000)
7-8.J. S. King, E. Graugnard ,O. M. Roche ,D.N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield and C. J. Summers, Advanced Materials, 18, 1561,( 2006)
7-9.K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, Appl. Phys. Lett., 88, 221101,(2006)
7-10.Jesper Serbin and Min Gu, Advanced Materials, 18, 221,(2006)
7-11.Kennedy, S. R.; Brett, M. J.; Toader, O.; John, S. Nano Lett., 2; 59,(2002)
7-12.M. Qi, E. Lidorikis, Peter T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, H. I. Smith, Nature,429,538,(2004)
7-13.G. Böttger, C. Liguda, M. Schmidt, and M. Eich, Appl. Phys. Lett., 81, 2517,(2002)
7-14.C.S Kee, S.P. Han, K. B. Yoon, C.G. Choi, H. K. Sung ,S. S. Oh , H. Y. Park ,S. Park and Helmut Schift, Appl. Phys. Lett., 86, 051101,(2005)
7-15.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, andW. R. Salaneck, Nature,397,121,(1999)
7-16.F. Hide, M. A. Díaz-García, Benjamin J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, Science ,273,1833,(1996)
7-17.Alternate Lithography: Unleashing the Potentials of Nanotechnology” edited by Clivia M Sotomayor Torres, Kluwer Academic, Plenum publishers, New York, 2004.
7-18.Roberto R. Panepucci, Bryan H. Kim, Vilson R. Almeida, and Matthew D. Jones, J. Vac. Sci. Technol. B,22,3348,(2004)
7-19.S.G. Johnson, S. Fan, P.R. Villeneuve, and J. D. Joannopoulos, Phys.Rev.B,60 ,5751,(1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王瑞宏(2001)。從學校組織再造觀點談國小補校組織的革新。教育研究資訊,9 (6),頁153-168。
2. 王嘉陵(2002)。學校本位課程發展的省思—一所國民小學之個案研究。教育研究資訊,10(2),頁105-124。
3. 呂金燮(2003)。創造力教學的本質與陷阱。資優教育季刊,86,頁01-09。
4. 林文生(1999)。學校為本位的課程發展-以一所學校課程發展的經驗為例。教育資料與研究雙月刊,26,頁28-32。
5. 林佩璇(2001)。學校本位課程評鑑。教育研究資訊,9(4),頁83-96。
6. 翁福元、吳毓真(2002,11月)。後殖民主義與教育研究。教育研究月刊,103,頁88-99。
7. 陳木金(1996)。混沌現象(Chaos)對學校行政的啟示。教育資料與研究,9,頁69-75。
8. 陳木金(2000)。從奇異吸子裡論談新世紀的學校行政革新。學校行政雙月刊,5,頁30-44。
9. 郭昭佑、陳美如(2002)。課程評鑑典範的轉移。教育研究月刊,96,頁95-106。郭昭佑、陳美如(2003)。學校本位課程評鑑概念與基礎探究。國立台北師範學
10. 曾榮華(2001)。以全面品質管理觀點提升學校本位課程發展品質。教育研究資訊,9(1),頁55-75。
11. 蔡清田(2004,3月)。「課程即研究假設」對教師專業之啟示。教育資料與研究:教育論壇,57,頁2-7。
12. 顧瑜君(2004)。知識經濟趨勢下邊陲地區弱勢教育工作者專業發展之策略。教育研究資訊,12(1),頁3-28。