跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施乃元
研究生(外文):Nai-Yuan Shih
論文名稱:多區域假譜頻域法及其在光電結構模擬上之應用
論文名稱(外文):The Multidomain Pseudospectral Frequency-domain Method and Its Application in Modeling of Photonic Structures
指導教授:邱奕鵬
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:117
中文關鍵詞:假譜頻域多區域光柵色光濾波器
外文關鍵詞:pseudospectralfrequency-domainmultidomaingratingcolor filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
傳統的頻域演算法或多或少存在有收斂性和效率方面的問題;
為了克服這些困擾, 本篇論文提出一種稱為多區域假譜頻域法的替代方案。
其優越的 "譜準度" 特性大大降低了對於離散化密度的要求,
而多區域法能夠良好地接合不同的材料。透過一些實際範例的實作,
這種方法用於光電結構模擬與設計的實用性及潛力得到了驗證。
Conventional frequency-domain algorithms suffer more or less from
convergence and efficiency problems; to overcome these headaches,
an alternative called the multidomain pseudospectral frequency-domain
method is presented in this thesis. The superior "spectral
accuracy" greatly reduces the requirement for discretization density for
smooth functions, and the multidomain approach patches distinct
materials together properly. Via implementation of some practical
examples, the utility and potential of the method for modeling and design
of photonic structures are verified.
1 Introduction 7
2 Theory 13
2.1 The Fourier System [5] . . . . . . . . . . . . . . . . . . . . . . ..14
2.1.1 The Continuous Fourier Expansion . . . . . . . . . . . . . . . . . . . . 14
2.1.2 The Discrete Fourier Expansion . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Differentiation . . . . . . . . . . . . . . 25
2.2 Orthogonal Polynomials in (−1, 1) [5] . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Sturm-Liouville Problems . . . . . . . . . . . . . . . . . . . ..29
2.2.2 Orthogonal Systems of Polynomials . . . . . 30
2.2.3 Gauss-Type Quadratures and Discrete Polynomial Transforms 32
2.3 Chebyshev Polynomials [5] . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Basic Formulas . . . . . . . . . . . . . . . . . . . . .36
2.3.2 Differentiation . . . . . . . . . . . . . . 39
2.4 The Multidomain Pseudospectral Frequency-domain (PSFD) Method 42
2.4.1 Source-free Wave Equations . . . . . . . . . . . . . . . . . . . . 42
2.4.2 The Multidomain Approach . . . . . . . . . . . . . . . . . . . . 44
3 Numerical Examples and Results 49
3.1 Laser Facet . . . . . . . . . . . . .. . . . . . . . . .50
3.2 Convergence for Grating Modeling . . . . . . . . . . . . . . . . . . . . .56
3.3 Metallic Gratings as Color Filters . . . . . . . . . . . . . . . . . . . ... 61
3.4 Rectangular Channel Waveguide End . . . . . . . . . . . . . . . . . .. . .. . . 94
4 Conclusion 99
A Hilbert and Banach Spaces 100
B Functions of Bounded Variation and the Riemann(-Stieltjes) Integral
104
C The Lebesgue Integral and Lp-spaces 107
References 111
[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-
Difference Time-Domain Method, 3rd ed., Norwood, MA: Artech House, 2005.
[2] J. Jin, The Finite Element Method in Electromagnetics, 2nd ed., New York:
Wiley, 2002.
[3] J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for
Electromagnetics, New York: IEEE Press, 1998.
[4] R. F. Harrington, Field Computation by Moment Methods, New York: Macmillan,
1968.
[5] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods
in Fluid Dynamics, New York: Springer-Verlag, 1988.
[6] L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: SIAM, 2000.
[7] B. A. Finlayson and L. E. Scriven, “The method of weighted residuals—a review,”
Appl. Mech. Rev., vol. 19, pp. 735–748, 1966.
[8] J. C. Slater, “Electronic energy bands in metal,” Phys. Rev., vol. 45, pp. 794–
801, 1934.
[9] L. V. Kantorovic, “On a new method of approximate solution of partial differential
equations,” Dokl. Akad. Nauk SSSR, vol. 4, pp. 532–536, 1934.
[10] R. A. Frazer, W. P. Jones, and S. W. Skan, “Approximation to Functions and
to the Solution of Differentia1 Equations,” R&M 1799, Aeronautical Research
Council, London, 1937.
[11] C. Lanczos, “Trigonometric interpolation of empirical and analytical functions,”
J. Math. Phys., vol. 17, pp. 123–199, 1938.
[12] C. W. Clenshaw, “The numerical solution of linear differential equations in
Chebyshev series,” Proc. Cambridge Philos. Soc., vol. 53, pp. 134–149, 1957.
[13] C. W. Clenshaw and H. J. Norton, “The solution of nonlinear ordinary differential
equations in Chebyshev series,” Comput. J., vol. 6, pp. 88–92, 1963.
[14] K.Wright, “Chebyshev collocation methods for ordinary differential equations,”
Comput. J., vol. 6, pp. 358–365, 1964.
[15] J. V. Villadsen and W. E. Stewart, “Solution of boundary value problems by
orthogonal collocation,” Chem. Eng. Sci., vol. 22, pp. 1483–1501, 1967.
[16] H.-O. Kreiss and J. Oliger, “Comparison of accurate methods for the integration
of hyperbolic equations,” Tellus, vol. 24, pp. 199–215, 1972.
[17] S. A. Orszag, “Comparison of pseudospectral and spectral approximations,”
Stud. Appl. Math., vol. 51, pp. 253–259, 1972.
[18] G.-X. Fan, Q. H. Liu, and J. S. Hesthaven, “Multidomain pseudospectral timedomain
method for simulation of scattering from buried objects,” IEEE Trans.
Geosci. Remote Sensing, vol. 40, pp. 1366–1373, 2002.
[19] Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational
electromagnetics,” IEEE Antennas Wireless Propag. Lett., vol. 1, pp.
131–134, 2002.
[20] G. Zhao and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm
for inhomogeneous conductive media,” IEEE Trans. Antennas Propag.,
vol. 52, pp. 742–749, 2004.
[21] Y. Shi, L. Li, and C. H. Liang, “Multidomain pseudospectral time-domain algorithm
based on super-time-stepping method,” IEE Proc.- Microw. Antennas
Propag., vol. 153, pp. 55–60, 2006.
[22] Y. Shi, L. Li, and C. H. Liang, “Two dimensional multidomain pseudospectral
time-domain algorithm based on alternating-direction implicit method, ” IEEE
Trans. Antennas Propag., vol. 54, pp. 1207–1214, 2006.
[23] L. Carleson, “On convergence and growth of partial sums of Fourier series,”
Acta Math., vol. 116, pp. 135–157, 1966.
[24] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965.
[25] C. Temperton, “Self-sorting mixed-radix fast Fourier transforms,” J. Comput.
Phys., vol. 52, pp. 1–23, 1983.
[26] R. Peyret, “Introduction to Spectral Methods,” von Karman Institute Lecture
Series, 1986-04, Rhode–Saint Genese, Belgium, 1986.
[27] A. Brandt, S. R. Fulton, and G. D. Taylor, “Improved spectral multigrid methods
for periodic elliptic problems,” J. Comput. Phys., vol. 58, 96–112, 1985.
[28] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory
and Applications, Philadelphia: SIAM-CBMS, 1977.
[29] L. Fox and I. B. Parker, Chebyshev Polynomials in Numerical Analysis, London:
Oxford Univ. Press, 1968.
[30] T. J. Rivlin, The Chebyshev Polynomials, New York: John Wiley & Sons, 1974.
[31] D. Gottlieb, M. Y. Hussaini, and S. A. Orszag, “Theory and Applications of
Spectral Methods,” in Spectral Methods for Partial Differential Equations, ed.
by R. G. Voigt, D. Gottlieb, M. Y. Hussaini, Philadelphia: SIAM-CBMS, pp.
1–54, 1984.
[32] A. Solomonoff and E. Turkel, “Global Collocation Methods for Approximation
and the Solution of Partial Differential Equations,” ICASE Rep. No. 86-60,
NASA Langley Research Center, Hampton, VA, 1986.
[33] T. Ikegami, “Reflectivity of mode at facet and oscillation mode in doubleheterostructure
injection laser,” IEEE J. Quantum Electron., vol. 8, pp. 470-
476, 1972.
[34] Q. Liu and W. C. Chew, “Analysis of discontinuities in planar dielectric waveguides:
an eigenmode propagation method,” IEEE Trans. Microwave Theory
Tech., vol. 39, pp. 422-429, 1991.
[35] P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson,
“Semiconductor laser facet reflectivities using free-space radiation modes,” IEE
Proc.-J, vol. 140, pp. 49-55, 1993.
[36] Y.-P. Chiou and H.-C. Chang, “Analysis of optical waveguide discontinuities
using the Pad´e approximants,” IEEE Photon. Technol. Lett., vol. 9, pp. 964-
966, 1997.
[37] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating
diffraction,” J. Opt. Soc. Am., vol. 71, pp. 811–818, 1981.
[38] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of grating
diffraction—E-mode polarization and losses,” J. Opt. Soc. Am., vol. 73, pp.
451–455, 1983.
[39] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation
for stable and efficient implementation of the rigorous coupled-wave analysis of
binary gratings,” J. Opt. Soc. Am. A, vol. 12, pp. 1068–1086, 1995.
[40] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupledwave
method for TM polarization,” J. Opt. Soc. Am. A, vol. 13, pp. 779–784,
1996.
[41] S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave
analysis for surface relief gratings,” J. Opt. Soc. Am. A, vol. 12, pp. 1087–1096,
1995.
[42] J. Adams, K. Parulski, and K. Spaulding, “Color processing in digital cameras,”
IEEE Micro, vol. 18, pp. 20–30, 1998.
[43] P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18- μm complementary
metal oxide semiconductor technology,” J. Opt. Soc. Am. A, vol. 20,
pp. 2293–2306, 2003.
[44] C.-H. Lee, “Finite-Difference Time-Domain Modeling of Three-Dimensional
Metallic Photonic Crystals and Surface Plasmon Phenomena,” master’s thesis,
June 2005.
[45] W. K. Pratt, Digital Image Processing, 3rd ed., New York: Wiley, 2001.
[46] M. A. Ordal, L. L Long, R. J. Bell, R. R. Bell, R. W.Alexander, Jr., and C.
A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd,
Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt., vol. 22, pp.
1099–1119, 1983.
[47] H. L. Royden, Real Analysis, New York: McMillan, 1968.
[48] W. Rudin, Real and Complex Analysis, New York: McGraw-Hill, 1966.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 盧雪梅(2004)。從技術面談九年一貫課程能力指標建構:美國學習標準建構的啟示。教育研究資訊,12:2,3-34。
2. 聞祝達、石慶得(1999)。資訊時代的地圖教育,地圖,10,1-14。
3. 廖慧意、賴進貴(2001)。地圖技能能力指標之研究。地圖,11,29-40。
4. 鄧國雄(1999)。國中小階段地理課程的學力指標分析。國教新知,45:5,2-6。
5. 黃朝恩(2000)。教改聲中談地理能力的養成。人文及社會學科教學通訊,10(6):6-19。
6. 陳慧芳、石慶得、聞祝達(2004)。九年一貫國民小學地圖教材內容之探討。地圖,14,195-205。
7. 郭金水(1993)。從美國地理教育復興運動的內涵論地理教育的一貫銜接問題-以中小學地理學習目標的內容為中心。人文及社會學科教學通訊,4(2),173-200。
8. 賴進貴(1999)。中小學生地圖認知之研究。地圖,10,49-58。
9. 賴進貴(1997)。我國地圖教育發展之探討研究。地圖,8,85-96。
10. 陳慧芳、石慶得、聞祝達(2003)。學童地圖使用能力與地圖學習課程之研究-兒童之地圖學系列研究(三)。地圖,13,25-44。
11. 陳慧芳、石慶得、聞祝達(2002)。國小地圖教材與學童用圖能力分析。市師社教學報,1,73-93。
12. 張春蘭(2004)。我國碩博士論文於地圖研究發展之趨勢,中華地圖學會會刊,14:63-70。
13. 李明燕(1999)地形圖在高中教學之實驗研究。中華地圖學會會刊,10:25–40。
14. 江碧貞(2000)。我國國小課本的地圖教材-橫向聯繫與縱向銜接之探討。國立僑生大學先修班學報,8,347-379。
15. 石慶得、蘇永生(1997)。兒童對地圖符號認知之地圖學研究-兒童地圖學系列研究之(二)。地圖,8,1-14。