|
[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method, 3rd ed., Norwood, MA: Artech House, 2005. [2] J. Jin, The Finite Element Method in Electromagnetics, 2nd ed., New York: Wiley, 2002. [3] J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, New York: IEEE Press, 1998. [4] R. F. Harrington, Field Computation by Moment Methods, New York: Macmillan, 1968. [5] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, New York: Springer-Verlag, 1988. [6] L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: SIAM, 2000. [7] B. A. Finlayson and L. E. Scriven, “The method of weighted residuals—a review,” Appl. Mech. Rev., vol. 19, pp. 735–748, 1966. [8] J. C. Slater, “Electronic energy bands in metal,” Phys. Rev., vol. 45, pp. 794– 801, 1934. [9] L. V. Kantorovic, “On a new method of approximate solution of partial differential equations,” Dokl. Akad. Nauk SSSR, vol. 4, pp. 532–536, 1934. [10] R. A. Frazer, W. P. Jones, and S. W. Skan, “Approximation to Functions and to the Solution of Differentia1 Equations,” R&M 1799, Aeronautical Research Council, London, 1937. [11] C. Lanczos, “Trigonometric interpolation of empirical and analytical functions,” J. Math. Phys., vol. 17, pp. 123–199, 1938. [12] C. W. Clenshaw, “The numerical solution of linear differential equations in Chebyshev series,” Proc. Cambridge Philos. Soc., vol. 53, pp. 134–149, 1957. [13] C. W. Clenshaw and H. J. Norton, “The solution of nonlinear ordinary differential equations in Chebyshev series,” Comput. J., vol. 6, pp. 88–92, 1963. [14] K.Wright, “Chebyshev collocation methods for ordinary differential equations,” Comput. J., vol. 6, pp. 358–365, 1964. [15] J. V. Villadsen and W. E. Stewart, “Solution of boundary value problems by orthogonal collocation,” Chem. Eng. Sci., vol. 22, pp. 1483–1501, 1967. [16] H.-O. Kreiss and J. Oliger, “Comparison of accurate methods for the integration of hyperbolic equations,” Tellus, vol. 24, pp. 199–215, 1972. [17] S. A. Orszag, “Comparison of pseudospectral and spectral approximations,” Stud. Appl. Math., vol. 51, pp. 253–259, 1972. [18] G.-X. Fan, Q. H. Liu, and J. S. Hesthaven, “Multidomain pseudospectral timedomain method for simulation of scattering from buried objects,” IEEE Trans. Geosci. Remote Sensing, vol. 40, pp. 1366–1373, 2002. [19] Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wireless Propag. Lett., vol. 1, pp. 131–134, 2002. [20] G. Zhao and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media,” IEEE Trans. Antennas Propag., vol. 52, pp. 742–749, 2004. [21] Y. Shi, L. Li, and C. H. Liang, “Multidomain pseudospectral time-domain algorithm based on super-time-stepping method,” IEE Proc.- Microw. Antennas Propag., vol. 153, pp. 55–60, 2006. [22] Y. Shi, L. Li, and C. H. Liang, “Two dimensional multidomain pseudospectral time-domain algorithm based on alternating-direction implicit method, ” IEEE Trans. Antennas Propag., vol. 54, pp. 1207–1214, 2006. [23] L. Carleson, “On convergence and growth of partial sums of Fourier series,” Acta Math., vol. 116, pp. 135–157, 1966. [24] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965. [25] C. Temperton, “Self-sorting mixed-radix fast Fourier transforms,” J. Comput. Phys., vol. 52, pp. 1–23, 1983. [26] R. Peyret, “Introduction to Spectral Methods,” von Karman Institute Lecture Series, 1986-04, Rhode–Saint Genese, Belgium, 1986. [27] A. Brandt, S. R. Fulton, and G. D. Taylor, “Improved spectral multigrid methods for periodic elliptic problems,” J. Comput. Phys., vol. 58, 96–112, 1985. [28] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, Philadelphia: SIAM-CBMS, 1977. [29] L. Fox and I. B. Parker, Chebyshev Polynomials in Numerical Analysis, London: Oxford Univ. Press, 1968. [30] T. J. Rivlin, The Chebyshev Polynomials, New York: John Wiley & Sons, 1974. [31] D. Gottlieb, M. Y. Hussaini, and S. A. Orszag, “Theory and Applications of Spectral Methods,” in Spectral Methods for Partial Differential Equations, ed. by R. G. Voigt, D. Gottlieb, M. Y. Hussaini, Philadelphia: SIAM-CBMS, pp. 1–54, 1984. [32] A. Solomonoff and E. Turkel, “Global Collocation Methods for Approximation and the Solution of Partial Differential Equations,” ICASE Rep. No. 86-60, NASA Langley Research Center, Hampton, VA, 1986. [33] T. Ikegami, “Reflectivity of mode at facet and oscillation mode in doubleheterostructure injection laser,” IEEE J. Quantum Electron., vol. 8, pp. 470- 476, 1972. [34] Q. Liu and W. C. Chew, “Analysis of discontinuities in planar dielectric waveguides: an eigenmode propagation method,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 422-429, 1991. [35] P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, “Semiconductor laser facet reflectivities using free-space radiation modes,” IEE Proc.-J, vol. 140, pp. 49-55, 1993. [36] Y.-P. Chiou and H.-C. Chang, “Analysis of optical waveguide discontinuities using the Pad´e approximants,” IEEE Photon. Technol. Lett., vol. 9, pp. 964- 966, 1997. [37] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am., vol. 71, pp. 811–818, 1981. [38] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction—E-mode polarization and losses,” J. Opt. Soc. Am., vol. 73, pp. 451–455, 1983. [39] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A, vol. 12, pp. 1068–1086, 1995. [40] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupledwave method for TM polarization,” J. Opt. Soc. Am. A, vol. 13, pp. 779–784, 1996. [41] S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface relief gratings,” J. Opt. Soc. Am. A, vol. 12, pp. 1087–1096, 1995. [42] J. Adams, K. Parulski, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro, vol. 18, pp. 20–30, 1998. [43] P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18- μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A, vol. 20, pp. 2293–2306, 2003. [44] C.-H. Lee, “Finite-Difference Time-Domain Modeling of Three-Dimensional Metallic Photonic Crystals and Surface Plasmon Phenomena,” master’s thesis, June 2005. [45] W. K. Pratt, Digital Image Processing, 3rd ed., New York: Wiley, 2001. [46] M. A. Ordal, L. L Long, R. J. Bell, R. R. Bell, R. W.Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt., vol. 22, pp. 1099–1119, 1983. [47] H. L. Royden, Real Analysis, New York: McMillan, 1968. [48] W. Rudin, Real and Complex Analysis, New York: McGraw-Hill, 1966.
|