跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫得皓
研究生(外文):De-Hao Sun
論文名稱:週期性區域極化反轉鉭酸鋰晶體光纖之研製
論文名稱(外文):Study and Fabrication of Periodically Poled Lithium Tantalate Crystal Fiber
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:151
中文關鍵詞:鉭酸鋰非線性光學波長轉換頻率轉換極化反轉共焦倍頻顯微週期漸變
外文關鍵詞:Litao3PPLTNonlinear opticswavelength conversionfrequency conversiondomain inversepolingSH microscopyconfocalsecond harmonicfiber gratingchirp
相關次數:
  • 被引用被引用:1
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在非線性光學領域中,波長轉換器為高效率光傳輸系統中最重要的一項技術。於光纖傳輸中,當傳輸訊號量超過10 Giga Bytes時,全光波長轉換器比起傳統之電光-光電轉換器有著更大的優勢;此外,利用波長轉換器產生的藍綠光光源,可應用在密度光學儲存、影像顯示、生物分析與水下通訊方面,皆為其最重要的技術之一。利用非線性晶體配合準相位匹配週期設計,可達到諸如上述各種不同之應用,其中關鍵則是非線性晶體之優劣性以及準相位匹配週期之準確與均勻性。

本論文探討以雷射加熱基座法(LHPG)生長出鉭酸鋰晶體光纖,外加以週期性變換之高壓電場,製作出波長轉換用的週期性區域極化反轉之鉭酸鋰晶體光纖。在製作的過程中,我們藉以改變外加電場之參數,以利於增進極化反轉之形成,並分析找出最佳化之製程條件,用於日後自動化流程之晶體生長。在週期檢測方面,我們利用倍頻顯微術觀察實際上極化反轉之週期,設計週期為20.67 um的PPLTCF其掃描後分析後,其週期為21.33 um,與理論值僅有3.2%的誤差。並針對倍頻掃描之影像,由實驗結果建立理論模型,假設在極化反轉交界處之偶極矩極化為正負隨機分布,進而利用Fortran程式來模擬,可成功地解釋倍頻影像下極化反轉邊界處有較強倍頻的成因。
而在光學實驗上我們以平均功率100 mW,波長1524.24 nm之基頻光入射時,可量測到0.77 uW的倍頻輸出,成功地實現了以PPLTCF作為倍頻轉換元件的初步目標。

文中更介紹以串接式倍頻/和頻理論設計可調式藍綠光之波長轉換器,由我們新提出之非均勻式漸變週期法設計出元件,其基頻光有著225.52 nm的3 dB頻寬,對應至藍綠光輸出3 dB頻寬為75.17 nm,範圍由460.25 nm至535.42 nm,且比起相同晶體長度下的傳統均勻式漸變週期設計方式有著更寬以及更平坦的頻寬。
Wavelength converters based on nonlinear optics is one of the most important techniques in high efficienct optical communication systems. For fiber communication, especially when the capability of transmission is over 10 Gb/s, all-optical wavelength converters have advantages than traditional electrical-optical-electrical converters. Besides, blue/green light generation due to wavelength conversion plays a great role in many applications, such as high-density-optical storage, display, biomedical analysis, and under-water communications. Various applications can be achieved by designing quasi-phase-matching (QPM) period no nonlinear-optical crystals. The key factors to achieve high conversion efficiency are crystal quality and pitch uniformity.

In this thesis, periodically poled Lithium Tantalate crystal fiber (PPLTCF) for wavelength conversion was grown by laser heated pedestal (LHPG) growth method with additional high-electric field bias. During the process of fabrication, parameters of applied E-field were optimized in order to achieve domain inversion with high uniformity and process automation. To examine domain pitch of PPLTCF, a confocal second harmonic (SH) microscopy was used. The analyzed SH pattern showed that the 21.33-um domain pitch had only a 3.2% deviation from the 20.67-um designed pitch. It was unexpected that the SH sigal at the domain interface is stronger than that in the +Z and –Z domains. To examine this, a randomly distributed polarization model was established, and compared with the experimental result with good agreement.

In the optical experiment, the SH signal was measured to be 0.77 uW at 1524.24-nm fundamental wavelength with an 100-mW pump power. Accordingly, a PPLTCF SHG device made by LHPG method was experimentally demonstrated. Besides, a wavelength-conversion design for generating tunable blue/green light was proposed by means of self-cascaded SH generation and Sun frequency generation effect. Based on the nonlinear-chirped-grating design, the simulation showed an extended 225.25 nm 3-dB bandwidth for fundamental wavelength. It corresponds to a blue/green bandwidth of 75.17 nm in the range from 460.25 nm to 535.42 nm. With the same crystal length, the spectrum width was broader and more flattened by nonlinear chirp than that by linear chirp.
口試委員會審定書.............................i
致謝...................................................iii
中文摘要............................................v
Abstract.............................................vii
目錄....................................................ix
表目錄................................................xii
圖目錄...............................................xiii

第一章 緒論...................................................1
1.1 簡介...........................................................1
1.2 非線性材料之選擇與比較.......................5
1.3 鉭酸鋰晶體介紹.......................................7
1.3.1 鉭酸鋰晶體結構....................................7
1.3.2 鉭酸鋰之晶體特性................................9
1.3.3 鉭酸鋰鐵電特性分析...........................11
1.3.4 鉭酸鋰組成對晶體特性之影響...........15
1.3.5 鉭酸鋰之摻雜對晶體特性之影響.......22
1.4 論文內容概述..........................................27

第二章 相位匹配原理以及週期性區域極化反轉機制....29
2.1 非線性頻率轉換與相位匹配.......................................29
2.2 雙折射相位匹配法.......................................................40
2.3 準相位匹配法...............................................................46
2.4 週期性區域極化反轉之機制.......................................51
2.4.1 高溫鋰離子外擴散法................................................51
2.4.2 鈦的內層擴散法........................................................52
2.4.3 質子交換法................................................................52
2.4.4 層狀結構長晶控制法................................................53
2.4.5 光照區域反轉法........................................................53
2.4.6 電子束掃描法............................................................54
2.4.7 高壓電場反轉法........................................................54
2.4.8 鎳擴散與高壓區域反轉混合法................................55
2.4.9 高溫真空法................................................................56
2.4.10 雷射加熱基座長晶加壓法......................................56

第三章 準相位匹配晶體光纖之研製..............57
3.1 晶纖生長法之簡介.....................................57
3.2 LHPG系統架構.............................................62
3.3 極化反轉電極架構.....................................67
3.4 生長系統之自動控制.................................70
3.5 製程參數探討.............................................73
3.6 元件製作.....................................................78

第四章 數值模擬及實驗結果分析..................81
4.1 串接式二階非線性效應之數值模擬.........81
4.1.1 準相位匹配單一週期產生藍光..............82
4.1.2 均勻漸變式週期實現頻寬拓寬..............89
4.1.3 非均勻漸變式週期實現頻寬拓寬..........97
4.2 元件反轉區域之觀測...............................105
4.2.1 反射式共焦倍頻顯微系統....................105
4.2.2 PPLTCF共焦倍頻顯微術量測結果.........108
4.2.3 倍頻影像結果討論.................................111
4.3 以可調波長做倍頻量測............................119

第五章 結論.................................123
5.1 總結........................................123
5.2 未來展望................................125

參考文獻.......................................127

附錄........................................................................................137
串接式倍頻/和頻模擬程式碼(線性漸變週期設計).............137
串接式倍頻/和頻模擬程式碼(非線性漸變週期設計).........142
共焦式倍頻功率模擬程式碼(隨機極化區塊物理模型).......148
1. T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature, Vol. 187, p. 493, 1960.

2. P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett., Vol. 7, p. 118, 1961.

3. J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., Vol. 127, p. 1918, 1962.

4. J. Knittel and A. H. Kung, “Fourth harmonic generation in a resonant ring cavity,” IEEE J. Quantum Electron., Vol. 33, p. 2021, 1997.

5. S. Somekh, and A. Yariv, “Phase matching by periodic modulation of the nonlinear optical properties,” Opt. Comm., Vol. 6, p. 301, 1972.

6. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett., Vol. 11, p. 653, 1999.

7. O. Tadanaga, M. Asobe, H. Miyazawa, Y. Nishida, and H. Suzuki, “Efficient 1.55μm-band quasi-phase-matched ZnO-doped LiNbO3 wavelength converter with high damage resistance,” Electron. Lett., Vol. 39, p. 1525, 2003.

8. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett., Vol. 7, p. 1049, 2005.

9. M. Marangoni, M. Lobino, R. Ramponi, E. Cianci, and V. Foglietti, “High quality buried waveguides in stoichiometric LiTaO3 for nonlinear frequency conversion,” Opt. Exp., Vol. 14, p. 248, 2006.

10. M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett., Vol. 29, p.1775, 2004.

11. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett., Vol. 22, p. 1214, 1997.

12. A. Ashkin, G. D. Boyd, J. M. Dziedzic, and R. G. Simth, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett, Vol. 9, p. 72, 1996.

13. G. L. Tangonan, M.K. Barnoski, J. F. Lotspeich, and A. Lee, “High optical power capabilities od Ti-diffused LiTaO3 waveguide modulator structures,” Appl. Phys. Lett., Vol. 30, p. 238, 1977.

14. 陳威霖, “鎳擴散式鉭酸鋰光波導之研製,” 國立台灣大學電機工程研究所博士論文, 1995.

15. K. Kitamura and Y. Furukawa, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett., Vol. 73, p. 3073, 1998.

16. B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure,” Phys. Rev., Vol. 76, p. 1886, 1949.

17. K. Nassau, H. J. Levinstein, and G.. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids, Vol. 27, p. 983, 1966.

18. M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials,” Clarendon Press, Oxford, 1977.

19. A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., Vol. 48, p. 112, 1965.

20. S. C. Abrahams, W. C. Hamilton, and J. L. Bernstein,“Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 °C,” J. Phys. Chem. Solids, Vol. 27, p. 997, 1966.

21. S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 °C,” J. Phys. Chem. Solids, Vol. 27, p. 1013, 1966.

22. S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1200°C,” J. Phys. Chem. Solids, Vol. 27, p. 1019, 1966.

23. 黃小芳, “鉭酸鋰晶體之生長與拉曼光譜研究,” 國立中山大學物理研究所碩士論文, 1993.

24. 蔡孟璋, “週期性區域極化反轉鈮酸鋰晶體光纖之研製,” 國中山大學光電工程研究所碩士論文, 2006.

25. D. N. Nikogosyan, “Nonlinear Optical Crystals: A Complete Survey,” Springer- Science, 2005.

26. M. J. Weber, “Handbook of Laser Science and Technology, Supplement 2: Optical Materials,” CRC Press, p. 3, Boca Raton, 1995.

27. A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, F. N. Strizhevskaya, V. V. Tchkalova, and M. P. Shaskolskaya, “Acoustic Crystals,” Nauka, Moscow, 1982.

28. Y. S. Kuzminov, “Lithium Niobate and Lithium Tantalate. Materials for Nonlinear Optics,” Nauka, Moscow, 1975.

29. Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. Vol. 40, p. 4637, 1969.

30. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamara, “Quasi-phasematched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett., Vol. 25, p. 651, 2000.

31. G. Ravi, R. Jayavel, S. Takekawa, M. Nakamura, and K. Kitamura, “Effect of niobium substitution in stoichiometric lithium tantalate (SLT) single crystals,” J. Cryst. Growth, Vol. 250, p. 146, 2003.

32. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Vol. 41, part 2, No. 4B, L465, 2002.

33. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett., Vol. 28, p.194, 2003.

34. A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE, Vol. 4628, p. 66, 2002.

35. S. Miyazawa and H. Iwaski, J., “Congruent melting composition of lithium metatantalate,” J. Cryst. Growth, Vol. 10, p. 276, 1971.

36. A. Prokhorov and Y. Kuz’minov, “Physics and Chemistry of Crystalline Lithium Niobate,” The Adam Hilger, 1990.

37. 翁德欽, “鉭酸鋰鐵電域電場反轉特性分析,” 國立清華大學電機工程學系碩士班固態組碩士論文, 1997.

38. S. Chao, W. Davis, D. D. Tuschel, R. Nichols, M. Gupta, and H. C. Cheng, “Time dependence of ferroelectric coercive field after domain inversion for lithium-tantalate crystal,” Appl. Phys., Vol. 67, p.1066, 1995.

39. S. Chao, and C. C. Hung, “Large photoinduced ferroelectric coercive field increase and photodefined domain pattern in lithium-tantalate crystal,” Appl. Phys. Lett., Vol. 69, p.3803, 1996.

40. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys., Vol. 28, p. 1747, 1995.

41. J. F. Shackelford and R. L. Holman, “Nonstoichiometry in ABO3 compounds similar to PbTiO3,” J. Appl. Phys., Vol. 46, p. 1429, 1975.

42. L. Tian, V. Gopalana, and L. Galambos, “Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration,” Appl. Phys. Lett., Vol. 85, p. 4445, 2004.

43. F. Holtmann, J. Imbrock, Ch. Bäumer, H. Hesse, E. Krätzig, and D. Kip, “Photorefractive properties of undoped lithium tantalate crystals for various composition,” J. Appl. Phys., Vol. 96, p.7455, 2004.

44. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE, Vol. 3610, p. 44, 1999.

45. M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics, Vol. 273, p. 199, 2002.

46. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys., Vol. 101, p. 093108, 2007.

47. Y. Furukawa, K. Kitamura, E. Suzuki, K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth, Vol. 197, p. 889, 1999.

48. D. Xue, and K. Kitamura, “An estimation of nonlinear optical oroperties of lithium niobate family ferroelectrics by the chemical bond model,” Jpn. J. Appl. Phys., Vol. 42, Part 1, No. 9B, p. 6230, 2003.

49. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett., Vol. 25, p. 651, 2000.

50. F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystal,” Jpn. J. Appl. Phys., Vol. 34, Part I, No. 3, p. 1546, 1995.

51. A. Brunera, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys., Vol. 96, p.7445, 2004.

52. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett., Vol. 85, p.5135, 2004.

53. S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B, Vol. 81, p. 1049, 2005.

54. M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett., Vol. 31, p. 83, 2006.

55. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett., Vol. 90, p. 051115, 2007.

56. S. C. Pei, L. M. Lee, D. F. Lin, M. C. Tsai, D. H. Sun, S. L. Huang, and A. H. Kung, “Tunable blue/green light source by self-cascaded x(2) nonlinearity in ZnO:PPLN crystal fiber,” Conference on Lasers and Electro-Optics, 2007, paper CThC4, Baltimore, MD, U.S.A.

57. 林德峰, “使用鈮酸鋰晶體光纖產生波長轉換之模擬與量測,” 國立中山大學通訊工程研究所碩士論文, 2006.

58. A. Yariv and P. Yeh, “Photonics: Optical Electronics in Modern Communications,” 6th ed., Oxford University Press, 2007.

59. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett., Vol. 8, p. 21, 1962.

60. J. A. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett., Vol. 8, p. 19, 1962.

61. Y. L. Lu, L. Mao, and N. Ming, “Blue light generation by frequency doubling of an 810 nm cw GaAlAs diode laser in a quasi-phase-matched LiNbO3 crystal,” Opt. Lett., Vol. 14, p. 1037, 1994.

62. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B, Vol. 14, p. 2269, 1997.

63. X. Zhu, “Theoretical model of fiber coupling diode end-pumped intra-cavity frequency-doubling laser,” Journal of the GCPD e.V. 6, p. 18, 2000.

64. J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., Vol. 42, p. 1846, 1971.

65. C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,“ IEEE Photon. Technol. Lett., Vol. 4, p. 872, 1992.

66. Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., Vol. 65, p. 558, 1994.

67. D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, p. 607, 1980.

68. P. T. Brown, G. W. Ross, R. W. Eason, and A. R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commu., Vol. 163, p. 310, 1999.

69. H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., Vol. 27, p. 1221, 1991.

70. I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” J. Appl. Phys., Vol. 40, p. 1690, 1969.

71. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., Vol. 62, p. 435, 1993.

72. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3“, J. Opt. Soc. Am. B., Vol. 12, p. 2102, 1995.

73. K. Mizuuchi and K. Yamamoto, “Harmonic blue light generation in bulk periodically poled LiTaO3,” Appl. Phys. Lett., Vol. 66, p. 2943, 1995.

74. 林耀東, “鉭酸鋰非線性光子晶體雷射與高溫製程,” 國立台灣大學光電工程研究所碩士論文, 2003.

75. 林子加, “先進週期電場極化反轉技術:理論、製程與非線性光學效率分析;以鈮酸鋰與氧化鎂離子摻雜鈮酸鋰為例之探討,” 國立清華大學電機工程學系碩士論文, 2002.

76. A. A. Ballman and H. Brown, “Ferroelectric domain reversal in lithium metatantalate,” Ferroelectrics, Vol. 4, p. 189, 1972.

77. A. Brenier, G. Foulon, M. Ferriol, and G. Boulon, “The laser-heated-pedestal growth of LiNbO3:MgO crystal fibres with ferroelectric domain inversion by in-situ electric field poling,” J. Phys. D: Appl. Phys., Vol. 30, L37–L39., 1997.

78. 賴彥志, “雜質與組成對鈮酸鋰晶纖生長以及結構之影響,” 國立中央大學機械工程研究所博士論文, 2000.

79. R. S. Feigelson, “Pulling optical fibers,” J. Crystal Growth., Vol. 79, p. 669, 1986.

80. D. H. Yoon and T. Fukuda, “Characterization of micro single crystals grown by the micro-pulling down method,” J. Crystal Growth, Vol. 144, p. 201, 1994.

81.H. Oguri, H. Yamamura and T. Orito, “Growth of MgO doped LiNbO3 single-crystal fibers by a novel drawing down method,” J. Cryst. Growth, Vol. 110, p. 669, 1991.

82. N. Ohnishi and T. Yao, “A novel growth technique for single-crystal fibers - the micro-czochralski (Mu-Cz) method,” Jap. J. Appl. Phys., Part 2, Vol. 28, L278, 1989.

83. 塗時雨, “掺鉻釔鋁石榴石晶體光纖雷射之研製,” 國立中山大學光電工程研究所碩士論文, 2003.

84. C. A. Burrus and J. Stone, “Sigle-crystal fiber optical devices: a Nd:YAG fiber laser,“ Appl. Phys. Lett., Vol. 26, p.318, 1975.

85. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., Vol. 56, p. 108, 1990.

86. L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Opt. Lett., Vol. 13, p. 877, 1988.

87. R. S. Feigenlson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by laser-heated pedestal growth method,” Science, Vol. 240, p.1642, 1988.

88. D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” J. of Materials Sci., Vol. 5, p. 100, 1970.

89. S. Uda and W. A. Tiller, “The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3,” J. Cryst. Growth, Vol. 121, p. 93, 1992.

90. Y. K. Su, S. J. Chang, L. W. Ji, C. S, Chang, L. W. Wu, W. C. Lai, T. H. Fang and K. T. Lam, “InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semicond. Sci. Technol., Vol. 19, p. 389, 2004.

91.W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett., Vol. 56, p. 2291, 1990.

92.Z. Ye, Q. Lou, J. Dong, Y. Weim, and L. Lin, “Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals,” Opt. Lett., Vol. 30, Iss. 1, p. 73, 2005.

93.P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett., Vol. 29, p. 95, 2004.

94.Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Exp., Vol. 11, p. 2813, 2003.

95. W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Comm., Vol. 216, p. 239, 2003.

96. X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron., Vol. 38, p. 1225, 2002.

97. Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted grating,“ Opt. Comm., Vol. 204, p. 407, 2002.

98. S. Gao, C. Yang, X. Xiao, and G. Jin, “Broadband and multiple-channel visible laser generation by use of segmented quasi-phase-matching gratings,” Opt. Comm., Vol. 233, p. 205, 2004.

99. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys., Vol. 39, p.3798, 1968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王德威(1997),〈老靈魂前世今生-朱天心的小說〉,《聯合文學》,13:8=152,頁 34-45。重刊於朱天心(1997),《古都》,頁9-32。
2. 林玉萍(2005),〈另一種族譜-「正氣新村」村史撰寫紀實〉,《高縣文獻》,24,頁233-240。
3. 林聰賢(2004),〈黑色星期五-對自我、他者及法律之觀察〉,《中原財經法學》,12,頁121-160。
4. 洪秋芬(2004),〈日治時期殖民政府和地方宗教信仰中心關係之探討 - 豐原慈濟宮的個案研究 -〉,《思與言》,42:2,頁1-41。
5. 徐千惠(2003),〈日治時期台人旅外遊記析論-以李春生、連橫、林獻堂、吳濁流遊記為分析場域〉,《國立臺灣師範大學國文研究所集刊》,47,頁425-634。
6. 翁健誠(1999),〈歷史與現實的拔河-四四南村的前世與今生〉,《臺灣史料研究》,13,頁196-200。
7. 張世瑛(2001),〈異域孤軍外一章-桃園縣忠貞新村口述訪談工作紀要〉,《國史館館刊》,31,頁12-17。
8. 張惠珍(2005),〈他者之域的文化想像與國族論述-林獻堂《環球遊記》析論〉,《臺灣文學學報》,6,頁89-120。
9. 許雪姬(1998a),〈林獻堂著《環球遊記》研究〉,《臺灣文獻》,49:2,頁1-33。
10. 許雪姬(1998b),〈張麗俊先生《水竹居主人日記》的史料價值〉,《中縣文獻》,6,頁1-30。重刊於張麗俊(2000a),《水竹居主人日記(一)》,頁1-51。
11. 陳昭如(2002),〈創造性別平等、抑或與父權共謀?關於台灣法律近代西方化的女性主義考察〉,《思與言》,40:1,頁183-248。
12. 陳翠英(2006),〈桃源的失落與重構-朱天心〈古都〉的敘事特質與多重義旨〉,《臺大中文學報》,24,頁271-318。
13. 曾美雲(2003),〈從眷村到臺灣-朱天心小說中的眷村圖像與族群意識〉,《國立新竹師範學院語文學報》,10,頁135-171。
14. 楊雙福(2005),〈岡山軍眷村發展史(1945-2005)〉,《高縣文獻》,24,頁199-231。
15. 劉脩如(1977),〈社區發展在臺灣地區的回顧與展望〉,《社區發展季刊》,4,頁35-37。