1. T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature, Vol. 187, p. 493, 1960.
2. P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett., Vol. 7, p. 118, 1961.
3. J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., Vol. 127, p. 1918, 1962.
4. J. Knittel and A. H. Kung, “Fourth harmonic generation in a resonant ring cavity,” IEEE J. Quantum Electron., Vol. 33, p. 2021, 1997.
5. S. Somekh, and A. Yariv, “Phase matching by periodic modulation of the nonlinear optical properties,” Opt. Comm., Vol. 6, p. 301, 1972.
6. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett., Vol. 11, p. 653, 1999.
7. O. Tadanaga, M. Asobe, H. Miyazawa, Y. Nishida, and H. Suzuki, “Efficient 1.55μm-band quasi-phase-matched ZnO-doped LiNbO3 wavelength converter with high damage resistance,” Electron. Lett., Vol. 39, p. 1525, 2003.
8. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett., Vol. 7, p. 1049, 2005.
9. M. Marangoni, M. Lobino, R. Ramponi, E. Cianci, and V. Foglietti, “High quality buried waveguides in stoichiometric LiTaO3 for nonlinear frequency conversion,” Opt. Exp., Vol. 14, p. 248, 2006.
10. M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, “Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications,” Opt. Lett., Vol. 29, p.1775, 2004.
11. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett., Vol. 22, p. 1214, 1997.
12. A. Ashkin, G. D. Boyd, J. M. Dziedzic, and R. G. Simth, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett, Vol. 9, p. 72, 1996.
13. G. L. Tangonan, M.K. Barnoski, J. F. Lotspeich, and A. Lee, “High optical power capabilities od Ti-diffused LiTaO3 waveguide modulator structures,” Appl. Phys. Lett., Vol. 30, p. 238, 1977.
14. 陳威霖, “鎳擴散式鉭酸鋰光波導之研製,” 國立台灣大學電機工程研究所博士論文, 1995.15. K. Kitamura and Y. Furukawa, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett., Vol. 73, p. 3073, 1998.
16. B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure,” Phys. Rev., Vol. 76, p. 1886, 1949.
17. K. Nassau, H. J. Levinstein, and G.. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids, Vol. 27, p. 983, 1966.
18. M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials,” Clarendon Press, Oxford, 1977.
19. A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., Vol. 48, p. 112, 1965.
20. S. C. Abrahams, W. C. Hamilton, and J. L. Bernstein,“Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 °C,” J. Phys. Chem. Solids, Vol. 27, p. 997, 1966.
21. S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 °C,” J. Phys. Chem. Solids, Vol. 27, p. 1013, 1966.
22. S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1200°C,” J. Phys. Chem. Solids, Vol. 27, p. 1019, 1966.
23. 黃小芳, “鉭酸鋰晶體之生長與拉曼光譜研究,” 國立中山大學物理研究所碩士論文, 1993.24. 蔡孟璋, “週期性區域極化反轉鈮酸鋰晶體光纖之研製,” 國中山大學光電工程研究所碩士論文, 2006.25. D. N. Nikogosyan, “Nonlinear Optical Crystals: A Complete Survey,” Springer- Science, 2005.
26. M. J. Weber, “Handbook of Laser Science and Technology, Supplement 2: Optical Materials,” CRC Press, p. 3, Boca Raton, 1995.
27. A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, F. N. Strizhevskaya, V. V. Tchkalova, and M. P. Shaskolskaya, “Acoustic Crystals,” Nauka, Moscow, 1982.
28. Y. S. Kuzminov, “Lithium Niobate and Lithium Tantalate. Materials for Nonlinear Optics,” Nauka, Moscow, 1975.
29. Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate crystals,” J. Appl. Phys. Vol. 40, p. 4637, 1969.
30. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamara, “Quasi-phasematched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett., Vol. 25, p. 651, 2000.
31. G. Ravi, R. Jayavel, S. Takekawa, M. Nakamura, and K. Kitamura, “Effect of niobium substitution in stoichiometric lithium tantalate (SLT) single crystals,” J. Cryst. Growth, Vol. 250, p. 146, 2003.
32. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys., Vol. 41, part 2, No. 4B, L465, 2002.
33. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett., Vol. 28, p.194, 2003.
34. A. Bruner, D. Eger, M. Oron, P. Blau, M. Katz, and S. Ruschin, “Refractive index dispersion measurements of congruent and stoichiometric LiTaO3,” Proc. SPIE, Vol. 4628, p. 66, 2002.
35. S. Miyazawa and H. Iwaski, J., “Congruent melting composition of lithium metatantalate,” J. Cryst. Growth, Vol. 10, p. 276, 1971.
36. A. Prokhorov and Y. Kuz’minov, “Physics and Chemistry of Crystalline Lithium Niobate,” The Adam Hilger, 1990.
37. 翁德欽, “鉭酸鋰鐵電域電場反轉特性分析,” 國立清華大學電機工程學系碩士班固態組碩士論文, 1997.
38. S. Chao, W. Davis, D. D. Tuschel, R. Nichols, M. Gupta, and H. C. Cheng, “Time dependence of ferroelectric coercive field after domain inversion for lithium-tantalate crystal,” Appl. Phys., Vol. 67, p.1066, 1995.
39. S. Chao, and C. C. Hung, “Large photoinduced ferroelectric coercive field increase and photodefined domain pattern in lithium-tantalate crystal,” Appl. Phys. Lett., Vol. 69, p.3803, 1996.
40. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys., Vol. 28, p. 1747, 1995.
41. J. F. Shackelford and R. L. Holman, “Nonstoichiometry in ABO3 compounds similar to PbTiO3,” J. Appl. Phys., Vol. 46, p. 1429, 1975.
42. L. Tian, V. Gopalana, and L. Galambos, “Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration,” Appl. Phys. Lett., Vol. 85, p. 4445, 2004.
43. F. Holtmann, J. Imbrock, Ch. Bäumer, H. Hesse, E. Krätzig, and D. Kip, “Photorefractive properties of undoped lithium tantalate crystals for various composition,” J. Appl. Phys., Vol. 96, p.7455, 2004.
44. L. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” Proc. SPIE, Vol. 3610, p. 44, 1999.
45. M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics, Vol. 273, p. 199, 2002.
46. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys., Vol. 101, p. 093108, 2007.
47. Y. Furukawa, K. Kitamura, E. Suzuki, K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth, Vol. 197, p. 889, 1999.
48. D. Xue, and K. Kitamura, “An estimation of nonlinear optical oroperties of lithium niobate family ferroelectrics by the chemical bond model,” Jpn. J. Appl. Phys., Vol. 42, Part 1, No. 9B, p. 6230, 2003.
49. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett., Vol. 25, p. 651, 2000.
50. F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, “Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystal,” Jpn. J. Appl. Phys., Vol. 34, Part I, No. 3, p. 1546, 1995.
51. A. Brunera, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys., Vol. 96, p.7445, 2004.
52. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped stoichiometric LiTaO3,” Appl. Phys. Lett., Vol. 85, p.5135, 2004.
53. S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” Appl. Phys. B, Vol. 81, p. 1049, 2005.
54. M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett., Vol. 31, p. 83, 2006.
55. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett., Vol. 90, p. 051115, 2007.
56. S. C. Pei, L. M. Lee, D. F. Lin, M. C. Tsai, D. H. Sun, S. L. Huang, and A. H. Kung, “Tunable blue/green light source by self-cascaded x(2) nonlinearity in ZnO:PPLN crystal fiber,” Conference on Lasers and Electro-Optics, 2007, paper CThC4, Baltimore, MD, U.S.A.
57. 林德峰, “使用鈮酸鋰晶體光纖產生波長轉換之模擬與量測,” 國立中山大學通訊工程研究所碩士論文, 2006.
58. A. Yariv and P. Yeh, “Photonics: Optical Electronics in Modern Communications,” 6th ed., Oxford University Press, 2007.
59. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett., Vol. 8, p. 21, 1962.
60. J. A. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett., Vol. 8, p. 19, 1962.
61. Y. L. Lu, L. Mao, and N. Ming, “Blue light generation by frequency doubling of an 810 nm cw GaAlAs diode laser in a quasi-phase-matched LiNbO3 crystal,” Opt. Lett., Vol. 14, p. 1037, 1994.
62. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B, Vol. 14, p. 2269, 1997.
63. X. Zhu, “Theoretical model of fiber coupling diode end-pumped intra-cavity frequency-doubling laser,” Journal of the GCPD e.V. 6, p. 18, 2000.
64. J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., Vol. 42, p. 1846, 1971.
65. C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,“ IEEE Photon. Technol. Lett., Vol. 4, p. 872, 1992.
66. Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., Vol. 65, p. 558, 1994.
67. D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, p. 607, 1980.
68. P. T. Brown, G. W. Ross, R. W. Eason, and A. R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commu., Vol. 163, p. 310, 1999.
69. H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., Vol. 27, p. 1221, 1991.
70. I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” J. Appl. Phys., Vol. 40, p. 1690, 1969.
71. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., Vol. 62, p. 435, 1993.
72. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3“, J. Opt. Soc. Am. B., Vol. 12, p. 2102, 1995.
73. K. Mizuuchi and K. Yamamoto, “Harmonic blue light generation in bulk periodically poled LiTaO3,” Appl. Phys. Lett., Vol. 66, p. 2943, 1995.
74. 林耀東, “鉭酸鋰非線性光子晶體雷射與高溫製程,” 國立台灣大學光電工程研究所碩士論文, 2003.75. 林子加, “先進週期電場極化反轉技術:理論、製程與非線性光學效率分析;以鈮酸鋰與氧化鎂離子摻雜鈮酸鋰為例之探討,” 國立清華大學電機工程學系碩士論文, 2002.76. A. A. Ballman and H. Brown, “Ferroelectric domain reversal in lithium metatantalate,” Ferroelectrics, Vol. 4, p. 189, 1972.
77. A. Brenier, G. Foulon, M. Ferriol, and G. Boulon, “The laser-heated-pedestal growth of LiNbO3:MgO crystal fibres with ferroelectric domain inversion by in-situ electric field poling,” J. Phys. D: Appl. Phys., Vol. 30, L37–L39., 1997.
78. 賴彥志, “雜質與組成對鈮酸鋰晶纖生長以及結構之影響,” 國立中央大學機械工程研究所博士論文, 2000.79. R. S. Feigelson, “Pulling optical fibers,” J. Crystal Growth., Vol. 79, p. 669, 1986.
80. D. H. Yoon and T. Fukuda, “Characterization of micro single crystals grown by the micro-pulling down method,” J. Crystal Growth, Vol. 144, p. 201, 1994.
81.H. Oguri, H. Yamamura and T. Orito, “Growth of MgO doped LiNbO3 single-crystal fibers by a novel drawing down method,” J. Cryst. Growth, Vol. 110, p. 669, 1991.
82. N. Ohnishi and T. Yao, “A novel growth technique for single-crystal fibers - the micro-czochralski (Mu-Cz) method,” Jap. J. Appl. Phys., Part 2, Vol. 28, L278, 1989.
83. 塗時雨, “掺鉻釔鋁石榴石晶體光纖雷射之研製,” 國立中山大學光電工程研究所碩士論文, 2003.
84. C. A. Burrus and J. Stone, “Sigle-crystal fiber optical devices: a Nd:YAG fiber laser,“ Appl. Phys. Lett., Vol. 26, p.318, 1975.
85. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., Vol. 56, p. 108, 1990.
86. L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Opt. Lett., Vol. 13, p. 877, 1988.
87. R. S. Feigenlson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by laser-heated pedestal growth method,” Science, Vol. 240, p.1642, 1988.
88. D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” J. of Materials Sci., Vol. 5, p. 100, 1970.
89. S. Uda and W. A. Tiller, “The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3,” J. Cryst. Growth, Vol. 121, p. 93, 1992.
90. Y. K. Su, S. J. Chang, L. W. Ji, C. S, Chang, L. W. Wu, W. C. Lai, T. H. Fang and K. T. Lam, “InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semicond. Sci. Technol., Vol. 19, p. 389, 2004.
91.W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett., Vol. 56, p. 2291, 1990.
92.Z. Ye, Q. Lou, J. Dong, Y. Weim, and L. Lin, “Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals,” Opt. Lett., Vol. 30, Iss. 1, p. 73, 2005.
93.P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett., Vol. 29, p. 95, 2004.
94.Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Exp., Vol. 11, p. 2813, 2003.
95. W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Comm., Vol. 216, p. 239, 2003.
96. X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron., Vol. 38, p. 1225, 2002.
97. Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, and C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted grating,“ Opt. Comm., Vol. 204, p. 407, 2002.
98. S. Gao, C. Yang, X. Xiao, and G. Jin, “Broadband and multiple-channel visible laser generation by use of segmented quasi-phase-matching gratings,” Opt. Comm., Vol. 233, p. 205, 2004.
99. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys., Vol. 39, p.3798, 1968.