跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 11:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊順涵
研究生(外文):Shun-Han Yang
論文名稱:腔內倍頻準相位匹配綠光雷射之研究
論文名稱(外文):Intra-cavity Second Harmonic Green Laser based on Periodically Poled Lithium Niobate
指導教授:彭隆瀚
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:103
中文關鍵詞:腔內倍頻綠光鈮酸鋰準相位匹配
外文關鍵詞:intra-cavitygreenLiNb)3Quasi phase matching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要可分為準相位匹配原理的介紹、週期性極化反轉鈮酸鋰晶體的製作,以及腔內倍頻準相位匹配綠光雷射系統架設等三大部分。
首先在原理部分,我們簡單的介紹了非線性頻率轉換,與準相位匹配的理論。
接著在製程部分,本文介紹了本實驗室建立的高電壓極化反轉系統,並詳細說明了改良後的光微影製程方式,目前已可以在厚度500 m的鈮酸鋰與鉭酸鋰基板上,成功的製作出綠光倍頻波段,週期分別為6.67 m與7.7 m的1D-PPCLN、2D-PPCLN與1D-PPCLT、2D-PPCLT晶體。另外,也詳細的介紹了微米小球微影術在週期性反轉鈮酸鋰上之應用,成功的製作出高深寬比的極化反轉結構。
最後在光學量測的部分,本文先以波長1064 nm脈衝雷射對週期為6.67 m的1D-PPCLN做二倍頻量測,在未做抗反射鍍膜的情況下量得30%的轉換效率,且證實有效長度已達到製作的6 mm。接著再以此1D-PPCLN晶體架設腔內倍頻準相位匹配綠光雷射,其輸出效率已達到一般以KTP製作的腔內倍頻綠光雷射的兩倍左右,證實了準相位匹配高轉換效率的機制。
This thesis is organized into three parts: (a) an introduction to the theory of Quasi-Phase Matching (QPM) theory, (b) the design and fabrication of Periodically Poled Congruent-grown Lithium Niobate (PPCLN, LiNbO3) and Lithium Tentalate (PPCLT, LiTaO3), and (c) the implementation of intra-cavity QPM green laser.
Three fabrication methods of PPLN/PPLT were investigated in this work. They include (a) an improved photo-resist poled method, (b) poling with surface domain inversion, and (c) poling with self-assembled micro-sphere lithographic patterns. Results of periodical poling through 500 m-thick CLN/CLT with a periodicity of 6.67 m/7.7 m were achieved by methods (a) and (b);whereas high aspect ratio of poled domains can be achieved in the method (c).
A single-pass second-harmonic generation (SHG) characterization of a 6 mm-long 1D-PPCLN by a Nd:YAG 1064 nm/26 ns pulsed laser exhibits a conversion efficiency of 30% at a pump intensity of 26.5 MW/cm2. For implementation of an intra-cavity SHG green laser, we achieve a continuous wave operation of QPM-SHG green PPCLN laser that emits 60 mW power at a 1W pump power from a 808 nm diode laser. This figure is about twice that of a conventional intra-cavity SHG green KTP laser tested under the same cavity structure.
第一章 緒論 - 1 -
1.1 簡介 - 1 -
1.2 常用之非線性材料的比較 - 3 -
1.3 鈮酸鋰晶體介紹 - 4 -
1.3.1 鈮酸鋰歷史簡介 - 4 -
1.3.2 鈮酸鋰的鐵電相 - 4 -
1.3.3 鈮酸鋰晶體之摻雜 - 6 -
1.4 區域反轉結構之製作方法 - 7 -
1.4.1 鋰離子外擴散法 - 8 -
1.4.2 鈦內擴散法 - 8 -
1.4.3 質子交換法 - 8 -
1.4.4 電子束掃描法與HVAFM法 - 8 -
1.4.5 層狀結構長晶法 - 9 -
1.4.6 高電壓致極化反轉法 - 9 -
1.5 論文內容概述 - 10 -
第二章 準相位匹配與雷射工作原理 - 11 -
2.1 非線性頻率轉換與相位匹配 - 11 -
2.2 雙折射相位匹配 - 14 -
2.3 一維空間的準相位匹配 - 21 -
2.4 二維空間的準相位匹配 - 23 -
2.5 雷射的基本工作原理 - 26 -
2.6 Nd:YVO4四能階雷射理論分析 - 27 -
2.7 二極體激發式倍頻雷射原理 - 31 -
2.8 腔內倍頻的工作原理 - 32 -
第三章 週期性反轉鈮酸鋰晶體的設計與製作 - 33 -
3.1 晶體週期設計 - 33 -
3.2 高電壓極化反轉製作週期性結構之實驗架構 - 35 -
3.2.1 高電壓極化反轉實驗架構 - 35 -
3.2.2 液態電極與夾具設計 - 36 -
3.2.3 電極的定義方式 - 37 -
3.2.4 極化反轉模型與高電壓波形 - 39 -
3.3 使用光阻製作週期性結構 - 41 -
3.4 使用微米小球製作週期性結構 - 46 -
3.4.1 研究動機 - 46 -
3.4.2 微米小球微影術簡介 - 47 -
3.4.3 微米小球微影術製程 - 48 -
3.4.4 微米小球顯影術在鈮酸鋰製程上之應用 - 52 -
第四章 腔內倍頻綠光雷射系統架設 - 57 -
4.1 實驗目的 - 57 -
4.2 Nd:YVO4雷射晶體 - 58 -
4.3 腔內倍頻綠光雷射設計與架設 - 61 -
4.4 腔內倍頻綠光雷射結果與分析 - 72 -
4.4.1 綠光倍頻晶體特性量測 - 72 -
4.4.2 紅外光雷射系統特性量測 - 76 -
4.4.3 腔內倍頻綠光雷射系統特性量測 - 81 -
4.5 常用非線性材料在腔內倍頻實驗的優缺點比較與討論 - 87 -
4.5.1 KTP在腔內倍頻綠光實驗中的特性量測與比較 - 87 -
4.5.2 綠光膠合晶體輸出特性量測與比較 - 90 -
第五章 結論與未來展望 - 93 -
5.1 結論 - 93 -
5.2 未來展望 - 94 -
參考文獻 - 95 -
附錄 - 99 -
1.T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature, Vol. 187, pp. 493-494, 1960.
2.D. Hargis and A. Earman, “Diode-pumped microlasers promise portable projectors,” Laser Focus World, May, 1998.
3.D. Hargis and A. Earman, “Lasers replace conventional technology in display designs,” Laser Focus World, July, 1998.
4.T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron, Vol. 24, No. 6, pp. 895-912, 1988.
5.P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Physical Review Letters, Vol. 7, p. 118, 1961.
6.J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Physical Review, Vol. 127, pp. 1918-1939, 1962.
7.V. Berger, “Nonlinear photonic crystals,” Physical Review Letters, Vol. 81, pp. 4136-4139, Nov 9 1998.
8.邱博駿, “波長轉換用鈮酸鋰晶體光纖之研製,” 國立中山大學通訊工程研究所碩士論文, 2005.
9.B. T. Matthias and J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Physical Review, Vol. 76, pp. 1886-1887, 1949.
10.A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by czochralski technique,” Journal of the American Ceramic Society, Vol. 48, p. 112, 1965.
11.R. L. Byer, J. F. Young, and Feigelso.Rs, “Growth of high-quality LiNbO3 crystals from congruent melt,” Journal of Applied Physics, Vol. 41, p. 2320, 1970.
12.H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Applied Physics Letters, Vol. 82, pp. 4062-4064, Jun 9 2003.
13.K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340 nm light in a 1.4 m periodically poled bulk MgO:LiNbO3,” Japanese Journal of Applied Physics Part 2 Letters, Vol. 42, pp. L90-L91, Feb 1 2003.
14.L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization switching of lithium niobate,” Applied Physics Letters, Vol. 81, pp. 1666-1668, Aug 26 2002.
15.S. Thaniyavarn, T. Findakly, D. Booher, and J. Moen, “Domain inversion effects in Ti-LiNbO3 integrated optical-devices,” Applied Physics Letters, Vol. 46, pp. 933-935, 1985.
16.M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched 2nd-harmonic generation in an annealed proton-exchanged LiNbO3 wave-guide,” IEEE Journal of Quantum Electronics, Vol. 30, pp. 2953-2960, Dec 1994.
17.H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron-beam writing for application of nonlinear optical processes,” Electronics Letters, Vol. 27, pp. 1221-1222, Jul 4 1991.
18.A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy,” Applied Physics Letters, Vol. 85, pp. 452-454, Jul 19 2004.
19.D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of 2nd-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Applied Physics Letters, Vol. 37, pp. 607-609, 1980.
20.I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” Journal of Applied Physics, Vol. 40, pp. 1690-1693, 1969.
21.M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “1st-order quasi-phase matched LiNbO3 wave-guide periodically poled by applying an external-field for efficient blue 2nd-harmonic generation,” Applied Physics Letters, Vol. 62, pp. 435-436, Feb 1 1993.
22.L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” Journal of the Optical Society of America B Optical Physics, Vol. 12, pp. 2102-2116, Nov 1995.
23.K. Mizuuchi and K. Yamamoto, “Harmonic blue-light generation in bulk periodically poled LiTaO3,” Applied Physics Letters, Vol. 66, pp. 2943-2945, May 29 1995.
24.Y. L. Chen, J. W. Yuan, W. G. Yan, B. B. Zhou, Y. F. Luo, and J. Guo, “Quasi-phase-matched second-harmonic-generation in bulk periodically poled LiNbO3 and optimal design,” Acta Physica Sinica, Vol. 54, pp. 2079-2083, May 2005.
25.A. Yariv, P. Yeh, “Optical Wave in Crystals,” John Wiley & Sons. Inc, New York, p. 530, 1984.
26.A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of the Optical Society of America B Optical Physics, Vol. 18, No. 11, pp. 1578-1586, 2001.
27.D. H. Jundt, “Temperature-dependent sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Optics Letters, Vol. 22, pp. 1553-1555, Oct 15 1997.
28.張永昌, “鈮酸鋰準相位匹配倍頻轉換藍、綠光雷射之研製,” 國立台灣大學光電工程學研究所碩士論文, 2001.
29.S. Nagano, M. Konishi, T. Shiomi, and M. Minakata, “Study on formation of small polarization domain inversion for high-efficiency quasi-phase-matched second-harmonic generation device,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, Vol. 42, pp. 4334-4339, Jul 2003
30.林耀東, “鉭酸鋰非線性光子晶體雷射與其高溫製程,” 國立台灣大學光電工程學研究所碩士論文, 2003.
31.林威呈, “利用高介電係數材料與高溫製程作二維非線性光子晶體,” 國立台灣大學光電工程學研究所碩士論文, 2004.
32.林承德, “利用鈮酸鋰二維非線性光子晶體倍頻產生紅、綠、藍雷射光源之研究,” 國立台灣大學光電工程學研究所碩士論文, 2006.
33.J. C. Hulteen and R. P. Vanduyne, “Nanosphere lithography - a materials general fabrication process for periodic particle array surfaces,” Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, Vol. 13, pp. 1553-1558, May-Jun 1995.
34.H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Applied Physics Letters, Vol. 41, pp. 377-379, 1982.
35.W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Physical Review B, Vol. 69, p. 165407, Apr 2004.
36.C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B, Vol. 105, pp. 5599-5611, Jun 21 2001.
37.N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir, Vol. 8, pp. 3183-3190, Dec 1992.
38.K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystals based on periodic arrays of aligned carbon nanotubes,” Nano Letters, Vol. 3, pp. 13-18, Jan 2003.
39.V. Pruneri, J. Webjorn, P. S. J. Russell, J. R. M. Barr, and D. C. Hanna, “Intracavity 2nd-harmonic generation of 0.532 m in bulk periodically poled lithium niobate,” Optics Communications, Vol. 116, pp. 159-162, Apr 15 1995.
40.R. L. Byer,“Diode laser-pumped solid-state lasers,” Science, Vol. 239, No.4841, pp. 742-747, 1988.
41.謝鴻生, “對摻釹釩酸釔之高功率腔內倍頻綠光雷射的穩定性研究,” 國立中山大學光電工程研究所碩士論文, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top