跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔俊達
研究生(外文):Chun-Ta Kung
論文名稱:螢光生命週期顯微術之原理及應用
論文名稱(外文):Fluorescence lifetime imaging microscopy principles and applications
指導教授:孫啟光孫啟光引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:88
中文關鍵詞:螢光螢光生命週期肝細胞癌肺腺癌時域單光子計數
外文關鍵詞:fluorescencefluorescence lifetimehepatocellular carcinomalung adenocarcinomaTCSPC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1394
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本篇論文中,我們成功架設了多光子螢光生命週期顯微系統(fluorescence lifetime imaging microscopy, FLIM),提供螢光波長(或頻率)以外另一維度,使得各種不同的螢光可以藉由系統展現不同的生命週期特性,尤其對於生物體內本身的自發螢光,在同樣的雷射光源激發下常常擁有類似發射波段,這時螢光生命週期顯微系統尤其發揮了重要的功能,提供時域上的資訊,作為生物研究應用上,資訊交叉分析比對的重要基礎,而在實際應用時,我們採用的Cr:forsterite 近紅外光雷射光源,有著相對於採用Ti:Sapphire雷射更為簡單明確的結果,因為在Ti:Sapphire 雷射所激發的生物體自發螢光種類多而繁複,作為特定問題的分析反而形成阻礙;另外Cr:forsterite雷射還有著較深的穿透深度和相對低侵入的光破壞(photodamage),更適合進行生物樣本的觀察,而且利用Cr:forsterite近紅外光1230奈米波段的特性,我們還整合了實驗室發展的非線性二倍頻及三倍頻顯微系統,觀察進行時就可以配合高數值孔徑的物鏡,同時地取得高解析度的螢光強度、螢光生命週期、二倍頻以及三倍頻的豐富影像訊息,形成一個深入分子層級的生物研究平台,可用來解決某些特定相對複雜的生物議題。
螢光生命週期是每個分子的專有特性,因此螢光生命週期顯微術是研究分子影像很適合的工具,作為分子影像領域的開端,我們測量了多種細胞胞器中代表性的分子,得到其螢光光譜以及生命週期,作為分辨次細胞結構的基本依據。 同時比對實際組織中的螢光,對可能的分子來源提供非常有利的證據,甚或作為某些胞器的指標,對於次細胞等級的資訊分析有著相當的影響,對未來分子層級的生物醫學影像觀察具有相當大的幫助。
癌症長達25年佔據國人十大死因的首位,而肺癌和肝癌則佔據第一和第二大癌症死因,長期以來一直持續威脅人類的生命,因此我們利用前段所提及的多模態光學資訊,針對正常以及癌症的樣本進行觀察,藉由這些資訊我們進行交叉比對分析,藉著各種定量的指標,我們可以有相當高的機率成功判別生物的樣本是否有癌症的發生,而且先天的光學切片能力相較於傳統的切片染色更為迅速而方便,接下來可以持續評估其作為切除手術引導之可行性,做為判別癌症的臨床依據之一。
螢光生命週期顯微系統,結合實驗室已發展的倍頻顯微術,提供了多維度的光學資訊,更直接或間接地激發不同維度的分析方式,可以有效率地進行某些特定的生物研究,進一步分析各種複雜的醫學議題。
In this thesis, we successfully implement the fluorescence lifetime imaging microscopy (FLIM), which maps the fluorescence lifetime distribution and thus provides a new dimension for observation in addition to frequency or wavelength. Disparate fluorescent molecules can be inherently discriminated with different fluorescence lifetime; with the help of additional time-resolved information, biological issues can be analyzed accurately. The inherent contrast in fluorescence lifetime is especially significant for the endogenous fluorescence, where different molecules often have highly overlapping spectra under the same excitation source.
According to many published studies, the Ti:sapphire laser is known to excite fluorescence from numerous kinds of molecules, which is advantageous in some applications but may form an obstacle for specific biological studies since unwanted fluorescence shows up as well. So an infrared Cr:forsterite laser is used instead and the endogenous fluorescence appears simpler and more definite in contrast with that from a Ti:sapphire laser. Besides, the Cr:forsterite provides good penetration depth and the least invasive observation due to low absorption at the wavelength by biological tissues. Its infrared working wavelength also enables us to integrate FLIM with our developed second and third harmonic generation microscopy; multi-modality information, including fluorescence, SHG and THG, are thus obtained simultaneously. With abundant optical information, the FLIM-integrated multi-modality laser scanning system has become a powerful tool for biological studies to solve certain relatively complicated issues
Fluorescence lifetime is a specific property of a fluorescent molecule, and therefore, molecular imaging can be realized with fluorescence lifetime imaging. As an initial study, several typical and essential molecules are selected to measure their fluorescence spectra and lifetime, which could be taken as a data base for molecular imaging. We then compare them with the autofluorescence in real human tissues, and possible fluorescent origins are found with the help of the fluorescence lifetime and spectra.
Cancer has been the leading cause of death for 25 years, and lung cancer and liver cancer are the first and the second place, respectively, in all kinds of cancer. Using the FLIM-integrated multi-modality system, we perform quantitative analysis on normal and abnormal samples and diagnose the occurrence of liver cancer with a high accuracy. In the case of lung cancer, the specific kind of adenocarcinoma is identified using fluorescence lifetime. In contrast to conventional tedious biopsy, the technique is very potential in clinical diagnosis of cancer and in serving as guidance for tumor removal surgery.
FLIM, combined with the developed harmonic generation microscopy in our group, provides multi-dimensional information, and creates a solid basis for cross analysis for biological studies. More complicated medical issues can be further studied using the FLIM-integrated multi-modality optical system, which could also be modified depending on different demands.
Contents
致謝 I
摘要 VI
Abstract VIII
Chapter 1 Introduction 1
1.1 Historical review 1
1.2 Review of cancer diagnosis with optical techniques 7
1.3 scope of this thesis 16
Chapter 2 Basic principles 18
2.1 TCSPC-FLIM 18
2.1.1 Measurement principle 18
2.1.2 TCSPC module 19
2.2.3 Limitations of TCSPC 22
2.3. Two-photon fluorescence (TPF) 25
Chapter 3 TCSPC-multiphoton FLIM 29
3.1 Laser source selection 29
3.2 Multi-modality laser scanning system, TCSPC- FLIM and harmonic generation microscopy 34
Chapter 4 Applications of FLIM-integrated 40
4.1 Preliminary study for molecular imaging 40
4.2 Applications in hepatocellular carcinoma (HCC) 41
4.2.1 Preliminary studies of HCC 41
4.2.2 Quantitative analysis on normal and HCC liver using MFSI 44
4.2.3 Quantitative analysis on normal and HCC liver using autofluorescence intensity 46
4.2.4 Quantitative analysis on normal and HCC liver using FLIM 49
4.2.5 Conclusion of the studies on human liver 51
4.3 Applications on human lung adenocarcinoma 51
4.3.1 Preliminary study of lung adenocarcinoma 51
4.3.2 Analysis on normal and adenocarcinoma lung using MFSI 54
4.3.4 Analysis on normal and adenocarcinoma lung using THG microscopy and FLIM 56
4.3.5 Conclusions of the studies on human lung 62
4.4 Fluorescent molecular origin 62
Chapter 5 Summary and future works 76
Reference 80
Alfano RR, Tang GC, Pradhan A, LamW, Choy DSJ, Opher E. (1987) IEEE J. Quantum Electron. 23:1806–11

Alfano RR, Tata DB, Cordero J, Tomashefsky P, Longo FW, Alfano MA. (1984) IEEE J. Quantum Electron. 20:1507–11

Alsabti EA (1979) Serum lipids in hepatoma. Oncology, 36(1):11-14.
Anderson RR, Parish JA, (1981) The optics of human skin. J Invest Dermat 77:13
Andersson-Engels S, Canti G, Cubeddu R, Eker C, Klinteberg C, Pifferi A, Svanberg K, Svanberg S, Taroni P,Valentini G,Wang I (2000) Lasers Surg Med 26:76

Becker & Hickl: http://www.becker-hickl.de

Bennet RG (1960) Rev Sci Instrum 31:1275
Bouma BE, Tearney GJ, Bilinsky IP, Golubovic B, Fujimoto JG (1996) Self phase-modulated Kerr-lens mode locked Cr:forsterite laser source for optical coherence tomography. Opt Lett 21:1839
Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK. (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9: 796-800

Brown, E. B., Campbell, R. B., Tsuzuki, Y., Xu, L., Carmeliet, P., Fukumura, D. & Jain, R. K. (2001) Nat. Med. 7, 866–870.
C Y Dong, P T So, T French, and E Gratton (1995) Biophys J., 69(6): 2234–2242.
Chen IH, Chu SW, Sun CK, Cheng PC, Lin BL (2002) Wavelength dependent cell damages in multi-photon confocal microscopy. Opt Quan Electron 34:1251
Cheng PC, Lin BL, Kao FJ, Gu M, Xu MG, Gan X, Huang MK, Wang YS (2001) Multi-photon fluorescence microscopy – the response of plant cells to high intensity illumination.Micron 32:661
Cheng PC, Pan SJ, Shih A, Kim KS, Liou WS, Park MS (1998) Highly efficient upconverters for multiphoton fluorescence microscopy. J Microscopy 189:199
Christoph Arens, Hiltrud Glanz, Joachim Wonckhaus, Karin Hersemeyer, Marcel Kraft (2007) Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging, Eur Arch Otorhinolaryngol 264:645–649
Chu SW, Chen IH, Liu TM, Cheng PC, Sun CK, Lin BL (2001) Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt Lett 26:1909
Chu SW, Chen IS, Liu TM, Sun CK, Lee SP, Lin BL, Cheng PC, Kuo MX, Lin DJ, Liu HL (2002) Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy. J Microscopy 208:190
Chu SW, Chen SY, Chern GW, Tsai TH, Chen YC, Lin BL, Sun CK (2004) Studies of X(2)/ X(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophys J 86:1
Chu SW, Chen SY, Tsai TH, Liu TM, Lin CY, Tsai HJ, Sun CK (2003B) In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt Express 11:3093
Chu SW, Liu TM, Sun CK, Lin CY, Tsai HJ (2003A) Real-time second-harmonic-generation microscopy based on a 2-GHZ repetition rate Ti: sapphire laser. Opt Express 11:933
Cicognani C, Malavolti M, Morselli-Labate AM, Zamboni L, Sama C, Barbara L (1997) Serum lipid and lipoprotein patterns in patients with liver cirrhosis and chronic active hepatitis. Arch Intern Med 1997, 157(7):792-796

Cremazy F, Manders E, Bastiaens P, Hager G, Van Munster E, Gadella T, van Driel R (2004) (submitted for publication)

Cubeddu R, Canti G, Taroni P,Valentini G (1993) Photochem Photobiol 57:480

D.V. O’Connor, D. Phillips (1984) Time Correlated Single Photon Counting, Academic Press, London

D’Hallewin MA, Baert L, Vanherzeele. (1994) J. Am. Paraplegia Soc. 17:161–64

Delphine Débarre, Willy Supatto, Ana-Maria Pena, Aurélie Fabre, Thierry Tordjmann, Laurent Combettes, Marie-Claire Schanne-Klein & Emmanuel Beaurepaire (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy, Nature Methods 3, 47 - 53

Denk, W., Strickler, J.H., Webb, W.W., (1990) Two-photon laser scanning fluorescence microscopy. Science 248, 73–76.

Erik B. van munster, Theodorus W.J,Gadella (2005) fluorescence lifetime imaging microscopy(FLIM), adv biochemEngin/Biotechnol 95:143-175

G. A. Wagnieres, W. M. Star, and B. C. Wilson (1998) In vivo fluorescence spectroscopy and imaging for oncological applications, Photochem. Photobiol. 68, 603–632

Ganem D, Prince AM. (2004) Hepatitis B virus infection–natural history and clinical consequences. N Engl J Med; 350: 1118–1129.

Haussinger K, Becker H, Stanzel F, Kreuzer A, Schmidt B, Strausz J, et al. (2005) Autofluorescence bronchoscopy with white light bronchoscopy compared with white light bronchoscopy alone for the detection of precancerous lesions: a European randomized controlled multicentre trial. Thorax 2005;60:496—503.

Heinz Fehrenbach (2001) Alveolar epithelial type II cell: defender of the alveolus revisited, Respiratory Research Vol 2 No 1 Fehrenbach
Hills BA (1999) An alternative view of the role(s) of surfactant and the alveolar model. J Appl Physiol 1999, 87:1567–1583.

Hughes WE, Larijani B, Parker PJ (2002) J Biol Chem 277:22974

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson,
C. Dunsby, M. A. A. Neil, M. J. Lever, G. W. H. Stamp, and P. M. W. French (2005) Journal of Biomedical Optics vol. 10 5 051403

K. Carlsson, J.P. Philip (2002) Theoretical investigation of the signal-to-noise ratio for different fluorescence lifetime imaging techniques. SPIE Conference 4622A, BIOS 2002, San Jose 2002

K. KONIG, A. EHLERS, I. RIEMANN, S. SCHENKL, R. BUCKLE, AND M. KAATZ (2007) Clinical Two-Photon Microendoscopy, MICROSCOPY RESEARCH AND TECHNIQUE 70:398–402 (2007)

Kent Bottles, M.D., and Michael B. Cohen, M.D. (2003) An Approach to Fine-Needle Aspiration Biopsy Diagnosis of Hepatic Masses, Diagnostic Cytopathology, Vol 7, No2

Konig K, Riemann I (2003) J Biomed Opt 8:432

Konig K, So PT,Mantulin WW, Tromberg BJ,Gratton E (1996) J Microsc 183(3):197
König K, So PTC, Mantulin WW, Gratton E (1997) Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt Lett 22:135
Lam S, T Kennedy, M Unger, YE Miller, D Gelmont, V Rusch, B Gipe, D Howard, JC LeRiche, A Coldman and AF Gazdar (1998) Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest 1998;113:696—702.

Larijani B,Hume AN, Tarafder AK, Seabra MC (2003) J Biol Chem 278:46798

Lin BL, Cheng PC, Sun CK (2001) Absorption and multiphoton excited fluorescent properties of maize tissues. Maize Genetics Cooperation News Letters 75:61
Liu TM, Chu SW, Sun CK, Lin BL, Cheng PC, Johnson I (2001) Multi-photon confocal microscopy using a femtosecond Cr:forsterite laser. Scanning 23:249

Lohmann W, Hirzinger B, Braun J, Schwemmle K, Muhrer K, Schulz A. 1990. Z. Naturforsch. 45C:1063–66

Lohmann W, Mussmann J, Lohmann C, Kunzel W. 1989. Eur. J. Obstet. Gynecol. Reprod. Biol. 31:249–53

Lycette RM, Leslie RB. 1965. Lancet 2:436

Maria M. Romanas, M.D., Ph.D., Rachel Cherian, M.D., Douglas H. McGregor, M.D., Yaping Wu, Corrie L. May, M.D., and Joaquina C. Baranda, M.D. (2004) Hepatocellular Carcinoma Diagnosed by Fine-Needle Aspiration of the Parotid Gland, Diagnostic Cytopathology, Vol 30, No 6

Masters BR, So PT,Gratton E (1998) Ann NY Acad Sci 838:58

Mazen Sidani, Jeffrey Wyckoff, Chengsen Xue, Jeffrey E. Segall, John Condeelis (2006) Probing the Microenvironment of Mammary Tumors Using Multiphoton Microscopy, J Mammary Gland Biol Neoplasia 11: 151–163

Minna, John D (2005). Harrison''s Principle''s of Internal Medicine, 506.

Moro-Sibilot, MD, Michel Jeanmart, MD, Sylvie Lantuejoul, MD, François Arbib, MD, Marie Hélène Laverrière, MD, Elizabeth Brambilla, MD and Christian Brambilla, MD, FCCP (2002) Cigarette smoking, preinvasive bronchial lesions, and autofluorescence bronchoscopy. Chest 2002:1902—8.

Motta M, Giugno I, Ruello P, Pistone G, Di Fazio I, Malaguarnera M (2001) Lipoprotein (a) behaviour in patients with hepatocellular carcinoma. Minerva Med, 92(5):301-305.


Nakashima, R. A., Paggi, M. G., and Pedersen, P. L. (1984) Cancer Res. 44,5702-5706

Ng T, Squire A, Hansra G, Bornancin F, Prevostel C, Hanby A, Harris W, Barnes D, Schmidt S,Mellor H, Bastiaens PI, Parker PJ (1999) Science 283:2085

Nijssen A, Bakker Schut TC, Heule F, Caspers PJ, Hayes DP, Neumann MHA, Puppels GJ. (2002) Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J Invest Dermatol 119:64-69.

O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press,New York

Ooi K, Shiraki K, Sakurai Y, Morishita Y, Nobori T (2005) Clinical significance of abnormal lipoprotein patterns in liver diseases. Int J Mol Med 2005, 15(4):655-660.

Paolo P Provenzano, Kevin W Eliceiri, Jay M Campbell, David R Inman, John G White and Patricia J Keely (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion, BMC Medicine 2006, 4:38

Petra Wilder-Smith, Tatiana Krasieva, Woong-Gyu Jung, Jun Zhang, Zhongping Chen , Katherine Osann, Bruce Tromberg (2005) Noninvasive imaging of oral premalignancy and malignancy, Journal of Biomedical Optics 10_5_, 051601 _September/October 2005

Rebecca Richards-Kortum, Eva Sevick-Muraca (1996) QUANTITATIVE OPTICAL SPECTROSCOPY FOR TISSUE DIAGNOSIS, Annu. Rev. Phys. Chem. 1996. 47:555–606

Richards-Kortum R, Rava RP, Petras RE, Fitzmaurice M, Sivak M, Feld MS. (1991) Photochem. Photobiol. 53:777–86

Sanders R, Gerritsen HC,Draaijer A,Houpt PM, Levine YK (1994) SPIE Proc 2197:56
Sauter EG (1996) Nonlinear optics, John Wiley & Sons, Hoboken, NJ, USA
Squirell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763
Squirrell, J.M.,Wokosin, D.L.,White, J.G., Bavister, B.D., (1999) Long-term, two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17, 763–767.

Straub M,Hell SW (1998) Appl Phys Lett 73:1769

S. -J. Lin, S. -H. Jee, C. -J. Kuo, R. -J. Wu, W. -C. Lin, J. -S. Chen, Y. -H. Liao, C. -J. Hsu, T. -F. Tsai, Y. -F. Chen, and C. -Y. Dong (2006) Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging, OPTICS LETTERS / Vol. 31, No. 18 / September 15, 2006

Systsma J,Vroom JM, De Grauw CJ,Gerritsen HC (1998) J Microsc 191:39

Tadrous PJ, Siegel J, French PM,Shousha S,Lalani N,Stamp GW (2003) J Pathol 199:309

Takuji Torimura, Takato Ueno, Sadataka Inuzuka, Yoshio Kimura, Ponhe Ko, Motoaki Kin, Tomoaki Minetoma, Yasuo Majima, Michio Sata, Hirohiko Abe and Kyuichi Tanikawa (1993), Ultrastructural observation on hepatocellular carcinoma, Medical Electron Microscopy Volume 26, Number 1 / 1993
Tirlapur UK, König K (2002) Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. Plant J 31:365
Tirlapur UK, König K, Peuckert C, Krieg R, Halbhuber JJ (2001) Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Exp Cell Research 263:88

Vermylen P, Pierard P, Roufosse C, Bosschaerts T, Verhest A, Sculier JP, Ninane V. (1999) Detection of bronchial preneoplastic lesions and early lung cancer with fluorescence bronchoscopy: a study about its ambulatory feasibility under local anesthesis. Lung Cancer 1999;25:161—8.

Verveer PJ,Wouters FS, Reynolds AR, Bastiaens PIH (2000) Science 290:1567

Wands JR. (2004) Prevention of hepatocellular carcinoma. N Engl J Med 2004; 351: 1567–1570.

Wang, W. G., Wyckoff, J. B., Frohlich, V. C., Oleynikov, Y., Huttelmaier, S., Zavadil, J., Cermak, L., Bottinger, E. P., Singer, R. H., White, J. G., et al. (2002) Cancer Res. 62, 6278–6288.

Wang, Xue Feng; Uchida, Teruo; Minami, Shigeo (1989) A Fluorescence Lifetime Distribution Measurement System Based on Phase-Resolved Detection Using an Image Dissector Tube, Applied Spectroscopy, Volume 43, Number 5, July 1989 , pp. 840-845(6)

Warburg O: The metabolism of tumors. London Constable Co. Ltd 1930

Warren R. Zipfel, Rebecca M. Williams, Richard Christie, Alexander Yu Nikitin, Bradley T. Hyman, and Watt W. Webb (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, PNAS 2003 100: 7075-7080

Wood RW (1921) Proc R Soc London A 99:362

Wouters FS, Bastiaens PIH (1999) Curr Biol 9:1127

YuanlongY,YanmingY, Fuming L,Yufen L, Paozhong M. (1987) Lasers Surg. Med. 7:528–32



Yucel T, Mutnal A, Fay K, Fligiel SE, Wang T, Johnson T, Baker SR, Varani J. (2005) Matrix metalloproteinase expression in basal cell carcinoma: relationship between enzyme profile and collagen fragmentation pattern. Exp Mol Pathol 79:151-60, 2005.

Zhiwei HUANG, Annette MCWILLIAMS, Harvey LUI, David I. MCLEAN, Stephen LAM and Haishan ZENG (2003) NEAR-INFRARED RAMAN SPECTROSCOPY FOR OPTICAL DIAGNOSIS OF LUNG CANCER, Int. J. Cancer: 107, 1047–1052 (2003)

Zhu AX. (2003) Hepatocellular carcinoma: are we making progress? Cancer Invest 2003; 21: 418–428.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top