跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/10 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉亞君
研究生(外文):Ya-Jiun Liu
論文名稱:西太平洋鄂霍次克海1.8百萬年來之環境變遷
論文名稱(外文):Environmental changes of the Okhotsk Sea in the western Pacific since 1.8 Ma
指導教授:宋聖榮宋聖榮引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:104
中文關鍵詞:鄂霍次克海礦物環境變遷
外文關鍵詞:Okhotsk seamineralsenvironment changes
相關次數:
  • 被引用被引用:2
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鄂霍次克海位於太平洋的西北方及亞洲的東北方,是世界上最大的邊緣海,具有季節性海冰變化的特徵。MD012414岩芯採樣位置位於鄂霍次克海的中央,是目前本海域的紀錄中最長的一根岩芯。據古地磁定年的結果,本岩芯可記錄鄂霍次克海中央過去約一百七十七萬年來的環境變遷。本研究利用礦物組成分析、主要化學元素分析、海冰漂礫物質與沉積物粒徑組成等方法對岩芯沉積物進行分析,以探討過去一百七十七萬年來,鄂霍次克海的環境變遷。
本岩芯沉積物的主要礦物組成大致可區分成三種:陸源碎屑性礦物以石英及長石礦物為主;生物源礦物即方解石與蛋白石;和沉積環境氧化還原指示礦物,如白雲石等。其中,生物源礦物含量變化,可以將整根岩芯的記錄分成四大時期:第一時期,約一百七十七萬年前到一百二十五萬年前,蛋白石含量峰值出現頻率為整根岩芯中最高的時期,可表示鄂霍次克海表層有較高的生產力;第二時期,約一百二十五萬到八十萬年前,生物源沉積物的含量最少,沉積物以陸源礦物為主且IRD含量略高,是生物記錄稀少的時期;第三時期,四十八萬年到八十萬年前左右,生物源礦物的組成幾乎只有方解石,可反應營養鹽組成變化,而造成鈣質殼體生物成為優勢;第四時期,約四十八萬年以來的沉積物記錄大致可以與晚第四紀全球氣候十萬年週期的變遷相呼應。
元素分析的結果中,SiO2/Al2O3及CaO/Al2O3與蛋白石及方解石變化相呼應,可看出相似的趨勢;TiO2/Al2O3、Al2O3/Al2O3、Fe2O3/Al2O3和K2O/Al2O3等比值則與陸源碎屑物質的供應有關;而晚第四紀的沉積物記錄中,間冰期初期,P2O5/Al2O3與MnO/Al2O3比值都會有突然增加的情形,反映因沉積速率突增而造成沉積物表層或次表層中的氧被耗盡而形成還原環境的情形。海冰漂礫物質的分析結果顯示,八十萬至八十五萬年前左右,鄂霍次克海的沉積環境發生明顯的轉變,可能因為海域東部的堪察加半島上山嶽冰川擴張的結果所致,此記錄可能與全球水氣循環的平衡有關。另外,岩芯沉積物中細顆粒陸源物質的粒徑變化與礦物及主要元素等結果的變化沒有明顯的相關性,可能因為沉積作用中另有海冰的參與,而增加其複雜性,令傳統海洋岩芯沉積物粒徑分析的參數在此並不適用。
The Okhotsk Sea located in the northwestern Pacific and also the northeastern Asia is the largest marginal sea in the world and is characterized by seasonal sea-ice. Core MD012414 is collected in the central of the Okhotsk Sea and is the longest sedimentary core in the area. According to the paleomagnetic stratigraphy, the core recorded the environmental changes in the past 1.77 Myrs. The proxies including mineral assemblages, major elements, sea-ice rafted materials and grain size analyses of the core sediments were utilized to discuss the environmental changes. Three mineral assemblages of core sediments can be distinguished and described as followed; the first, terrigenous minerals including quartz and plagioclase; the second, minerals of biogenous shells containing calcite and opal; and the last, the dolomite peaked out in early of interglacial periods of late Quaternary and related to the oxic-reduced condition. Based on the variations of biogenous minerals, the whole core records can be distinguished into four periods. The first period, from 1.77 Ma to 1.25 Ma, the Okhotsk Sea was in a circumstance of high siliceous productivity. The second period, from 1.25 Ma to 0.8 Ma, showed low biogenous mineral contents and represented a severe environment. The third period, from 0.8 Ma to 0.48 Ma, calcite was the major biogenous minerals instead of opal. It implied a different nutrient condition. The fourth period characterized by five 100 kyrs cycling were corresponded to the late Quarternary glacial-interglacial cycles. As the results of major elements, the variations of SiO2/Al2O3 and CaO/Al2O3 were related to opal and calcite, respectively; the ratios of TiO2/Al2O3、Al2O3/Al2O3、Fe2O3/Al2O3 and K2O/Al2O3 were associated with detridus materials, and the ratios of P2O5/Al2O3 and MnO/Al2O3, increased suddenly in the early of deglacial periods of late Quaternary were sensitive to the oxic-reduced conditions. The record of sea-ice rafted materials suggests a change of the sedimentation environment occurred in 0.8 Ma. It may be correlated to the extensive mountain glaciers of Kamchatka when the global atmospheric circulation was in a different condition. The results of grain size analyses of the core sediments showed no close relationships with the variations of mineral and major elements. It infers that the sea-ice rafted materials disturbed the grain size distributions.
第一章 緒論-----------------------------------------------------------------------------------1
1.1 研究區域-----------------------------------------------------------------------------1
1.2 前人研究-----------------------------------------------------------------------------2
1.3 研究目的-----------------------------------------------------------------------------5
第二章 研究材料與研究方法--------------------------------------------------------------6
2.1 研究材料及樣品採集--------------------------------------------------------------6
2.2 研究方法-----------------------------------------------------------------------------6
2.2.1 礦物組成分析--------------------------------------------------------------6
2.2.2 主要元素組成分析--------------------------------------------------------8
2.2.3 粗顆粒物質的計數--------------------------------------------------------9
2.2.4 粒徑分析--------------------------------------------------------------------9
第三章 年代模式----------------------------------------------------------------------------11
第四章 結果----------------------------------------------------------------------------------15
4.1 礦物組成----------------------------------------------------------------------------15
4.2 岩心沉積物的主要元素變化----------------------------------------------------17
4.3 冰漂礫計算結果-------------------------------------------------------------------21
4.4 沉積物粒徑的分布結果----------------------------------------------------------24
第五章 討論----------------------------------------------------------------------------------26
5.1 礦物種類和含量的意義------------------------------------------26
5.2 各主要元素所代表之意義-------------------------------------------------------------30
5.3 生物源物質與陸源物質之間含量變化----------------------------------------31
5.4 冰漂礫變化的控制因素--------------------------------------------------------------36
5.5 錳和磷富化的原因--------------------------------------------------------------------38
5.6 沉積物粒徑變化的討論----------------------------------------------------------40
第六章 結論----------------------------------------------------------------------------------41
參考文獻----------------------------------------------------------------------------------------44
附錄一 岩心沉積物中各礦物含量百分比---------------------------------------------51
附錄二 岩心沉積物中各主要元素含量百分比---------------------------------------77
附錄三 岩芯沉積物中>250um之粗顆粒物質的計數-------------------------------86
附錄四 岩芯紀錄中落石出現頻率------------------------------------------------------94
附錄五 岩芯沉積物<250um之粒徑分析結果----------------------------------------96
汪良奇 (2004) 鄂霍次克海化石矽藻類群研究—重建178萬年來海冰變化與古氣候變遷:國立彰化師範大學生物學系碩士論文,57頁
周祐民 (2003) 鄂霍次克海岩心MD012414之磁學研究—180萬年來東北亞古氣候及古環境變遷:國立台灣師範大學地球科學研究所碩士論文,81頁
André K., (2001) Ozeanographie, Produktivität und Meereisverbreitung im Ochotskischen Meer während der letzten ca. 350 ka. Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel, 114pp.
Balsam, W., Ji, J., and Chen, J., (2004) Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and planetary science letters 223, pp.335-348
Bassinot, F., and Baltzer, A. 2002 WEPAMA Cruise MD122/IMAGES VII on board RV ”Marion Dufresne”. Institut Polaire Francais- Paul-Emile Victor. 41-43
Becquey, S., and Gersonde, R., (2002) Past hydrographic and climatic changes in the Subantarctic zone of the South Atlantic- The Pleistocene record from ODP Site 1090. Palaeogeogr. Palaeoclimatol. Palaeoecol 182, pp. 221-239
Berger, W.H., and Jansen, E., (1994) Mid-Pleistocene climate shift:The Nansen connection. In:The Polar Oceans and their Role in Shaping the Global Environment. American Geophysical Union, Washington, DC, pp. 295-311.
Berger, W.H., and Wefer, G., (2003) On the Dynamics of the ice ages: stage-11 paradox, mid-Brunhes climatie shift, and 100-ky cycle, In:Earth’s climate and orbital eccentricity, the marine isotope stage 11 question. American Geophysical Union, Washington, DC. pp. 41-59
Broeser, A.T.C., Ziveri, P., and Honjo, S., (2000) Coccolithophore (-CaCO3) flux in the Sea of Okhotsk: seasonality, settling and alteration processes. Marine Micropaleontology 39, 179-200
Clark, P.U., Richard, B.A., and Pollard, D., (1999) Northern hemisphere ice-sheet influences on global climate change. Science 286, 1104-1111
Fagel, N., Boski, T., Likhoshway, L., and Oberhaensli, H., (2003) Late Quaternary clay mineral records in central Lake Baikal (Academician ridge, Siberia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, pp. 159-179
George, W.L.III, Byorn, S.,Brent, L.L., Paul, J.B., and Norman, S., (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochimica et Cosmochimica Acta 61 (19), 4043-4052
Guo, Z., Liu, T., Fedoroff, N., Wei, L., Ding, Z., Wu, N., Lu, H., Jiang, W., and An, Z., (1998) Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic. Global and planetary changes 18, pp.113-128
Gorbarenko, S.A., (1996) Stable isotope and lithologic evidence of late-glacial and Holocene oceanography of the Northwestern Pacific and its marginal seas. Quaternary Res. 46, 230-250
Gorbarenko, S.A., Chekhovskaya M.P., and Souhton J.R., (1998) On the paleoenvironment of the central part of the Sea of Okhotsk during the past Holocene glaciation. Oceanography 38 (2), 277-280
Gorbarenko, S.A., Khusid, T.A., Basov, I.A., Oba, T., Southon, J.R., and Koizumi, I., (2002a) Glacial Holocene environment of the Southeastern Okhotsk Sea: evidence from geochemical and palaeontological data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 177, 237-263
Gorbarenko, S.A., Nürnberg, D., Derkachev, A.N., Astakhov, A.S., Southon, J.R., and Kaiser, A., (2002b) Magnetostratigraphy and tephrochronology of the upper Quaternary sediments in the Okhotsk Sea: implications of terrigenous, volcanogenic, and biogenic matter supply. Marine Geology 183, 107-129
Gorbarenko, S.A., Southon, J.R., Keigwin, L.D., Cherepanova, M.V., and Gvozdeva, I.G., (2004) Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological, and paleontological evidence. Palaeogeog. Palaeoclim. Palaeoaco. 209, 281-301
Helmke, J.P., Bauch, H.A., Röhl, U., and Mazaud, A., (2005) Changes in sedimentation patterns of the Nordic Sea region across the mid-Pleistocene. Marine geology 215, 107-122
Heslop, D., Dekkers, MJ., and Langereis, C.G. (2002) Timing and structure of mid-Pleistocene transition: records from the loess deposits of northern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, pp.133-143.
Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C.,Duffy, A., Howard, W.R., Kukla, G., Kuzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., Toggweiler, J.R., (1993) On the structure and origin of major glaciation cycles:2. The 100.000-year cycle, Paleoceanography 8, pp. 699-735
Kadko, D., and Heath, G.R., (1984) Models of depth dependent bioturbation at MANOP site H in the east equatorial Pacific. J. Geophys. Res. 89, 6567-6570
Kawahata, H., Oshima, H., Shimada, C., Oba, T., (2003) Terrestrial-oceanic environmental changes in the southern Okhotsk Sea during the Holocene. Quart. Int. 108, 67-76
Kegwin, L.D., (1998) Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 13(4), 323-339
Lawrence, A. K., (1999) 14. Data report: Mass accumulation rates and composition of Neogene ice-rafted debris, site 919, Irminger basin. Proc. of the Ocean Drilling Program, science results. 163, 159-161
Lee, C.Y., Tsai, J.H., Ho, H.H., Yang, T.F., Chung, S.L., Chen, C.H., (1996) Quantitative analysis in rock samples by X-ray fluorescence spectrometer (I) major elements. Abstract of Annual Meeting of the Geological Society of China, Taiwan, pp. 418-420 (in Chinese)
Lisitzin, A.P. (1996) Oceanic Sedimentation: Lithology and Geochemistry. Amreican Geophysical Union, Washington, D.C. 151-157pp
Liu, Y.-J., Song, S.-R., Lee Teh-Quei, Chen Yaw-Lin and Chen Huei-Fen, (2006) Mineralogical and Geochemical Changes in the Sediments of the Okhotsk Sea during Deglacial Periods in the Past 500 kyrs, Global and planetary changes. doi:10.1016/j.gloplacha.2006.01.007(in press)
McCave, I.N., Manighetti, B., and Robison, S.G., (1995) Sortable silt anf fine sediment size/composition slicing: Parameter for palaeocurrent speed and palaeoceanography. Paleoceanography 10(3), 593-610
Mudelsee, M., and Schulz, M., (1997) The Pleistocene climate transition: onset of 100 ka cycles lags ice volume build-up by 280 ka. Earth and planetary science letters 151, pp 117-123
Nimmergut A., and Abelmann A., (2002) Spatial and seasonal changes of radiolarian standing stocks in the Sea of the Okhotsk. Deep-Sea Research part I 49, 463-493
Nürnberg, D., and Tiedemann, R., (2004) Environmental change in the Sea of Okhotsk during the last 1.1 million years. Paleoceanography 19, PA401, doi:10.1029/2004PA001023
Prokopenko, A.A., Karabanov, E.B., Williams, D.F., Kuzmin, M.I., Shackleton, N.J., Crowhurst, S.J., Peck, J.A., Gvozdkov, A.N., and King, J.W., (2001) Biogenic silica record of the lake of the Baikal response to climatic forcing during the Brunhes. Quaternary Research 55, 123-132
Prokopenko, A.A., Williams, D.F., Kuzmin, M.I., Karabanov, E.B., Khursevich, G.K., and Peck, J.A., (2002) Mute climate variations in continental Siberia during the mid-Pleistocene epoch. Nature 418, pp. 65-68
Richards, F.A., (1965) Anoxic basins and fjords. In “Chemical Oceanography” (J. P. Riley and G. Skirrow, Eds), Academic Press, London and New York, 611-646
Rossignol-Strick, M., Paterne, M., Bassinot, F.C.,Emeis K.-C. and De Lange, G.J. (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392, 269-272
Sawlan, J.J., and Murray, J.W., (1983) Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth Planet. Sci. Lett. 64, 213-230
Schmieder, F., Dobenech, T., and Bleil, U., (2000) The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event. Earth and planetary science letters 179, pp 539-549
Seki, O., Kawamura, K., Ikehara, M., Nakatsuka, T., Oba, (2004a) Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs. Organic Geochemistry 35, 347-354
Seki, O., Ikehara, M., Kawamura, K., Nakatsuka, T., Ohnishi, K., Wakatsuchi, M., Narita, H., and Sakamoto, T., (2004b) Reconstructuction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr, Paleoceanography 19, PA1016, doi:10.1029/2002PA000808
Shackleton, N.J., (2000) The 100,000-years ice-ahe cycle identified anf found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897-1902
Shiga, K., and Koizumi, I., (2000) Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom. Marine Micropaleontology 38, 91-117
Sighinolfi, G..P., and Tateo, F., (1998) Mineralogical and geochemical criteria for distinguishing turbidite and hemipelagic pelites -- the Maastrichtian of the northern Apennines. Sedimentary Geology 115, 301-313
Stuut, J-B. W., Prins, M.A., Schneider, R.R., Weltje, G.J., Jansen, J.H. F., and Postma, G., (2002) A 300-kyrs record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180, 221-233
Tamburini, F., Huon, S., Stenmann, P., Grousset, F.E., Adate, T., and Follmi, K.B, (2002) Dysaerobic conditions during Heinrich events 4 and 5: evidence from phosphorus distribution in a North Atlantic deep-sea core. Geochimica Et Cosmochimica Acta 66 (23), 4069-4083
Ternois, Y., Kawamura, K., Keigwin, L., Ohkouchi, N., and Nakatsuka, T., (2001) A biomarker approach for assessing marine and terrigenous inputs to the sediments of the Sea of Okhotsk for the last 27,000 ka. Geochimica Et Cosmochimica Acta 65 (5), 791-802
Thomson ,J., Higgs, N.C., Jarvis, I., Hydes, D.J., Colley, S., and Wilson, T.R.S., (1986) The behavior of manganese in the Atlantic carbonate sediments. Geochimica Et Cosmochimica Acta 50, 1807-1818
Thomson, J., Higgs, N.C., Croudace, I.W., Colley, S., and Hydes, D., (1993) Redox zonation of elements at an oxic / post-oxic boundary in deep-sea sediments. Geochimica et Cosmochimica Acta 57, 579-595
Trask, P.D., (1932) Origin and Environments of Source Sediments of Petroleum., American Petroleum Institute, Houston. 323 pp.
Xiao, J., and An, Zhisheng. (1999) Three large shift in Asian monsoon circulation indicated by loess-paleosol sequences in China and late Cenozoic deposits in Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, pp.179-189
Yusuke, O., Takahashi, K., Yoshitani, H., Nakatsuka, T., Ikehara, M., and Wakatsuchi, M., (2003) Radiolarians under the seanoally sea-ice covered conditions in the Okhotsk Sea: flux and their implications for paleoceanography. Marine Micropaleontology 49. 195-230
Zech, W., R. Baumler, O. Savoskul, O. A. Braitseva, and J. Melekestsev, (1997) Evidence of middle Pleistocene glaciation in SW Kamtchatka, Z. Gletscherkd. Glazialgeol. 33(1), 15-20
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王吉林,〈唐與吐蕃關係中的祿東贊家族〉,文刊《漢學研究》第4卷第2期1986年。
2. 王吉林,〈安史亂後唐與吐蕃關係的研討〉,《史學彙刊》第十八期,2003年。
3. 王治平,〈唐蕃石堡城戰爭地理問題研究〉,文刊《中正歷史學刊》2001年第四期。
4. 王壽南,〈論僕固懷恩之叛〉,《國立政治大學歷史學報》第九期,1991年。
5. 周宜靜,〈唐與回紇的絹馬貿易〉,《人文學報》1992年
6. 林冠群,〈僕固懷恩〉,《中國邊政》,第七十八期,1982年。
7. 林冠群,〈唐代吐蕃史史料之研究〉文刊《大陸雜誌》,70卷4期,1985年。
8. 林冠群,〈唐代吐蕃政治制度研究〉,《國立政治大學學報》60期,1989年12月,台北。
9. 林冠群,〈漠北時期回纥形式之探討─以肅代德時期為中心〉,《中國邊政》1989年。
10. 林冠群,〈唐代吐蕃的社會結構〉,《國立政治大學民族學報》第二十期1993年,台北。
11. 林冠群,〈蘇毗與森波杰考辨〉,《史學彙刊》第十八期,2003年。
12. 林冠群,〈墀祖德贊時期唐蕃關係之研究〉文刊《東吳歷史學報》十四期,2005年,台北。
13. 康才媛,〈唐玄宗時期隴右地區的國防〉收入《中國歷史學會史學集刊》1980年。 
14. 雷家驥,〈從戰略發展看唐朝節度體制的創建〉,《簡牘學報》第八期。
15. 鄭月裡,〈試論突厥、回紇與唐朝廷的關係〉,《中國邊政》1996年。