跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱清龍
研究生(外文):Ching-Lung Chiu
論文名稱:龜山島火山岩之岩漿演化及其構造上的隱示
論文名稱(外文):Magmatic Evolution of Volcanic Rocks in Kueishantao and Its Tectonic Implication
指導教授:宋聖榮宋聖榮引用關係
指導教授(外文):Sheng-Rong Song
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:龜山島岩漿演化沖繩海槽地殼混染結晶分化
外文關鍵詞:Kueishantaomagmatic evolutionOkinawa Troughcrustal contaminationfractional crystallization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:530
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
龜山島位於沖繩海槽最西南端,是北台灣最年輕的火山,其最後一次噴發年代約為7 ka (Chen et al., 2001)。朱秋紅(2005)將MgO>5 wt.%的龜山島火山岩視為高鎂安山岩。然而,典型的高鎂安山岩(Crawford et al.,1989; Tatsumi and Maruyama,1989; Tatsumi and Hanyu, 2003),如:玻安岩(Boninites)及瀨戶內海高鎂安山岩(Setouchi HMAs),兩者的氧化鎂、鎳和鉻含量均較龜山島高鎂安山岩高,且龜山島火山所處的地體環境是否能提供高鎂安山岩的形成,仍有待商榷,故將龜山島含鎂量較高的火山岩歸類為高鎂安山岩可能較不適當。因此,筆者根據氧化鎂的含量,將龜山島火山岩可劃分成兩群:I型安山岩(MgO<4.5wt.%)及II型安山岩(MgO>4.5wt.%)。I型安山岩分布於岩層的下半部,II型安山岩則分布在岩層的上半部,顯示龜山島的岩漿性質由早期的正常島弧岩漿轉變為後期具有較高MgO含量的岩漿。從微量元素分析結果顯示,除了II型安山岩具有較高之鎳(Ni)、鉻(Cr)含量外,其餘微量元素含量大致皆與I型安山岩相近。I型安山岩和II型安山岩的隕石標準化稀土元素分布圖(REE Pattern)和整體不相容元素分布圖(Spidergram)均具有極相似的型態,均呈現銪(Eu)元素負異常、富集的輕稀土元素(LREE) 和大離子岩石圈元素(LILE),以及虧損的高場力元素(Ti, Nb, Ta)。另外,從龜山島鑽井岩芯觀察結果顯示,上半部岩層具有較多的上部地殼之捕獲岩,而下半部岩層則含有較少之捕獲岩,意味著II型安山岩可能受到相當程度的地殼混染作用,而I型安山岩則可能僅受輕微地殼混染作用的影響。本研究利用地殼混染(crustal contamination)及結晶分化(fractional crystallization)的觀念,配合龜山島地區的大地構造資料,建立龜山島火山岩的岩漿演化模式: 1. I型安山岩可能由玄武岩質岩漿經歷約45%的結晶分化作用而成; 2. II型安山岩則因受到南沖繩海槽擴張的影響,玄武岩質岩漿可快速上升,岩漿因而僅受輕微的結晶分化作用,並且在上升的過程捕獲上部地殼物質,受到約15∼25%的地殼混染作用,如此可形成II型安山岩。
Kueishantao (KST) is a young volcanic island located at the southernmost part of the Okinawa Trough. It is mainly composed of andesitic lava flows and pyroclastic flows. Based on major-element geochemistry, KST andesites can be divided into two subgroups, in which Type I Andesites are defined as possessing lower MgO and SiO2, and Type II Andesites possessing higher MgO and SiO2. In general, both of them reveal similar trace-element compositions except that Type II Andesites exhibit high Ni and Cr contents. In primitive-mantle-normalized incompatible element diagram and chondrite-normalized REE pattern, Type I and II Andesites have highly similar patterns. They are characterized by enrichment of large ion lithophile elements (LILEs) and Th, U and Pb, and depletion of high field strength elements (HFSEs). Type I Andesites are in the lower part of core, and Type II Andesites are distributed in the topper part, indicating that KST magmatic evolution from low MgO magmas transferring into high MgO magmas.
The amount of xenoliths in the drill cores increases from the bottom to the top, inferring that the degree of crustal contamination increases progressively. Base on the combination of results of chemical analyses, isotopic compositions and petrographic observation, we propose that magmatic evolution of KST is as follows. Firstly, Type I Andesites were produced by about 45% fractional crystallization of basaltic magmas, which were derived from melting of the mantle wedge induced by hydrous fluids released during dehydration reactions in the subducting Philippine oceanic lithosphere, prior to the opening of the southern Okinawa Trough. Secondly, as a result of the opening of the Okinawa Trough, quick ascending of magma may shorten its storage time in magma chamber and experienced less fractional crystallization. Finally, magma assimilated the continental crust materials (about 15-25%) during it ascended through the upper continental crust and then produced Type II Andesites.
第一章 緒論...............................................1
1.1 區域地質背景.......................................1
1.2 前人研究...........................................5
1.3 研究動機...........................................6
1.4 研究目的...........................................7
第二章 研究方法...........................................8
2.1 標本採集..........................................8
2.2 野外工作..........................................8
2.3 顯微鏡岩象觀察....................................8
2.4 捕獲岩數量分析....................................8
2.5 全岩主要元素含量分析.............................16
2.6 全岩微量元素含量分析.............................16
第三章 分析結果..........................................18
3.1 野外觀察結果.....................................18
3.2 岩芯觀察與描述...................................19
3.3 岩象觀察.........................................19
3.4 主要元素分析結果.................................20
3.5 微量元素分析結果.................................29
第四章 討論..............................................35
4.1 龜山島高鎂安山岩?................................35
4.2 龜山島火山岩岩漿之可能成因探討....................38
4.3 地殼混染作用與計算..........................39
4.4 II型安山岩主要元素含量之回推......................41
4.5 結晶分化作用......................................46
4.6 結晶分化模式計算..................................47
4.7 龜山島火山岩岩漿演化與沖繩海槽之關係..............49
第五章 結論..............................................54
參考文獻.................................................56
圖版.....................................................61
朱秋紅,2005,龜山島高鎂安山岩之岩漿成因。國立台灣大學地質科學研究所碩士論文,共99頁。
李寄嵎、蔡榮浩、何孝�琚B楊燦堯、鍾孫霖和陳正宏,1997,應用X光螢光分析儀從事岩石樣品之定量分析(I)主要元素。中國地質學會八十六年年會曁學術研討會論文摘要,第418-420頁。
莊文星和陳汝勤,1989,台灣北部火山岩之定年與地球化學研究。經濟部中央地質調查所彙刊,第五號,第31-66頁。
陳正宏,1990,台灣之火成岩。經濟部中央地質調查所,共137頁。
黃鑑水、王詠詢和余炳盛,1999,雪山山脈東北段金面山地區之地質與鉛鋅礦脈。經濟部中央地質調查所彙刊,第十二號,第63-97頁。
劉穎、劉海臣和李獻華,1996,用ICP-MS準確測定岩石樣品中的40餘種微量元素。地球化學,25(6),第552-558頁。
羅正平,2001,南沖繩海槽構造與火成岩體分佈之研究。國立台灣大學海洋研究所碩士論文,共67頁。
Bryan, W.B., Finger, L.W., and Chayes, F., 1969. Estimating proportions in petrographic mixing equations by least-squares approximation. Science 163, 926-927.
Bryant, C.J., Arculus, R.J. and Eggins, S.M., 2003. The geochemical evolution of the Izu-Bonin arc system: A perspective from tephras recovered by deep-sea drilling. Geochem. Geophys. Geosys., 4 (11).
Chang, M.D. and Chen, J.C., 1979: Geochemistry of andesites from Kueishantao. Acta Ocean. Taiwan. 9, 39–49.
Chen, C.H., Lee, T., Shieh, Y.N., Chen, C.H. and Hsu, W.Y., 1995: Magmatism at the onset of back-arc basin spreading in the Okinawa Trough. Jour. Volcanol. Geotherm. Res. 69, 313–322.
Chen, C.H. and Lee, T., 1990: An Nd-Sr isotopic study on river sediments of Taiwan. Proc. Geol. Soc. China, 33(4), 339-350.
Chen, Y.G., Wu, W.S., Chen, C.H. and Liu, T.K., 2001: A date for volcanic-eruption inferred from a siltstone xenolith. Quat. Sci. Rev. 20, 869–873.
Chung, S. L., Wang, S. L., Shinjo, R., Lee, C. S. and Chen, C. H., 2000: Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova 12, 225–230.
Crawford, A.J., Falloon, T.J. and Green, D.H., 1989. Classification, petrogensis and tectonic setting of boninites. In: Boninites and Related Rocks (Crawford, A.J., ed.), Unwin and Hyman, London, 1-49.
Gill, J., 1981: Orogenic Andesite and Plate Tectonics, Springer-Verlag, New York. 390pp.
Hsu, L. C., 1963: Petrology of the Pleistocene andesite from Kueishantao, Northern Taiwan. Acta Geol. Taiwan 10, 29–40.
Hsu, S.K., 2001: Lithospheric structure, buoyancy and coupling across the southernmost Ryukyu subduction zone: an example of decreasing plate coupling. Earth Planet. Sci. Lett., 186, 471-478.
Kao, H., Shen, S.J. and Ma, K.F., 1998. Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. J. Geophys. Res., 103B4, 7211-7229.
Kelemen P.B., 1995: Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol., 120, 1-19.
Kimura, M., 1985: Back-arc rifting in the Okinawa Trough. Mar. Petrol. Geol. 2, 222-240.
Kuno H., 1959: Origin of Cenozoic petrographic provinces of Japan and surrounding provinces. Bull Volcanol., 20, 37-76.
Lan, C. Y., Lee, C. S., Shen, J. J. S., Lu, C. Y., Mertzman, S. A., and Wu, T. W., 2002: Nd-Sr isotopic composition and geochemistry of sediments from Taiwan and their implications. Western Pacific Earth Sci., 2(2), 205-222.
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woollley, A.R. and Zanettin, B., 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford.
Lee, C. S., Shor, G., Jr., Bibee, L. D., Lu, R. S. and Hilde, T. W. C., 1980: Okinawa Trough: Origin of a back-arc basin. Mar. Geol. 35, 219–241.
Letouzey, J. and Kimura, M., 1986: The Okinawa Trough: Genesis of a back-arc basin developing along a continental margin. Tectonophys. 125, 209–230.
Lin, J.Y., Hsu, S.K. and Sibuet, J.C., 2004: Melting features along the western Ryukyu slab edge (northeast Taiwan): Tomographic evidence. J. Geophys. Res., 109 B12402.
Liu, C. C., 1995: The Ilan plan and the southwestward extending Okinawa Trough. Jour. Geol. Soc. China 38, 229–242.
Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K. and Jahn, B.M., 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth Planet. Sci. Lett., 160, 479-492.
Shinjo, R. and Kato, Y., 2000: Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos. 54, 117-137.
Sibuet, J.C., Deffontaines, B., Hsu, S. K., Thareau, N., Le Formal, J.P., Liu, C. S. and the ACT party, 1998: The Okinawa Trough backarc basin: early tectonic and magmatic evolution. J. Geophys. Res. 103, 30245–30267.
Sibuet, J.C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.P., Hilde, T.W.C., Kimura, M., Chiao, L.Y., Marsset, B., Muller, C. and Stephan, J.F., 1987: Back arc extension in the Okinawa Trough. Jour. Geophys. Res. 92, 14041-14063.
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Magmatism in the ocean basins (Saunders, A.D. and Norry, M.J. eds.). Spec. Publ. Geol. Soc. London, 42, 313-345.
Tatsumi, Y. and Hanyu, T., 2003: Geochemical modeling of dehydration and partial melting of subducting lithosphere: toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem. Geophys. Geosys., 4 (9), 1081.
Taylor, R.N., Nesbitt, R.W., Vidal, P., Harmon, R.S., Auvray, B. and Croudace, I.W., 1994: Mineralogy, chemistry, and genesis of the Boninite series volcanics, Chichijima, Bonin islands, Japan. J. Petrol., 35, 577-617.
Tuttle, O.F. and England, J.L., 1955: Preliminary report on the system SiO2-H2O. Bull. Geol. Soc.
Yang, T. F., Lan, T. F., Lee, H. F., Fu, C. C., Chuang, P. C., Lo, C. H., Chen, C. H., Chen, C. T. A. and Lee, C. S., 2005: Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal, 39, 469-480.
Yeh, Y. H., Lin, C. H. and Roecher, S. W., 1989: A study of upper crustal structures beneath northeastern Taiwan: Possible evidence of the western extension of Okinawa Trough. Proc. Geol. Soc. China, 32, 139-156.
Yogodzinski, G.M., Lees, J.M., Churikova, T.G., Dorendorf, F., Woerner, G. and Volynets, O.N., 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409, 500-504.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top