跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:涂孟寅
研究生(外文):Meng-Yin Tu
論文名稱:JISSK5及JISS60C鋼之變韌鐵組織與其它組織的性質比較
論文名稱(外文):Comparison of Microstructures and Properties between Bainite and other Structures in JIS SK5 and JIS S60C Steels
指導教授:王文雄王文雄引用關係
指導教授(外文):Wen-Hsiung Wang  
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:143
中文關鍵詞:JIS SK5S60CEBSD變韌鐵
外文關鍵詞:JIS SK5S60CEBSDBainite
相關次數:
  • 被引用被引用:3
  • 點閱點閱:698
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在探討JIS SK5及JIS S60C兩種鋼材經不同熱處理後之顯微組織及機械性質。此外也對其上、下變韌鐵的破壞行為進行解析,並觀察變韌鐵變態的過程及其相變態的晶體學。
實驗結果顯示,SK5及S60C兩種鋼材之上、下變韌鐵組織的延、韌性較同硬度的回火麻田散鐵組織者佳。與下變韌鐵組織硬度相同之回火麻田散鐵,由於發生回火麻田散鐵脆性(TME),其韌性遠低於下變韌鐵,其破斷面呈沿晶破裂的模式,經歐傑能譜儀對破斷面分析,發現有不純物磷偏析至晶界造成晶界弱化。碳化物是影響所有組織機械性質最主要的因素,於變韌鐵組織中,含碳量高者,其受碳化物分散強化的影響越大,使材料之強度、硬度提升,而韌性下降。
上、下變韌鐵的破斷面皆呈穿晶劈裂破壞,其劈裂刻面尺寸與變韌鐵束尺寸間有對應關係。經EBSD”直接分析法”量測發現劈裂面晶體方位趨向{001}α、{112}α及{123}α等面上,這些晶面都是破裂裂紋傳遞時偏好的低表面能劈裂路徑。理論計算結果顯示變韌鐵束界面大多屬於高角度晶界,因此裂紋會在變韌鐵束界面作路徑的偏折,證實變韌鐵束尺寸即為劈裂路徑的單位尺寸。
上、下變韌鐵之肥粒鐵/雪明碳鐵間呈Bagaryatskii方位關係,組織中的雪明碳鐵會析出於 面上。而沃斯田鐵/肥粒鐵的方位關係則介於K-S與N-W之間。變韌肥粒鐵長條之兩組平行四邊形切面分別座落於 ~ 及 面上。結合變韌鐵中沃斯田鐵/肥粒鐵/雪明碳鐵三者方位關係及恆溫變態的組織觀察,可將變韌鐵之成長過程描述為:(a)變韌肥粒鐵次平板(subunit)或次次平板(sub subunit)在沃斯田鐵相的(111)γ|| 面上生核且沿著 ~ 方向生長。(b)變韌鐵次平板會叢聚一起,開始了擴散行為,使 面傾向於 面。變韌肥粒鐵於 晶癖面上析出雪明碳鐵,兩相間具有Bagaryatskii方位關係;(c)隨恆溫變態時間增加,肥粒鐵次平板不斷生核成長且叢聚成變韌鐵束,將雪明碳鐵包埋在其中。
This study investigates the microstructures and mechanical properties of various structures in JIS SK5 and JIS S60C steels. Strength falls and ductility raises as carbon content in steels increases for all structures. At equivalent hardness, the toughness and ductility of bainite are superior to those of tempered martensite. Tempered martensite embrittlement (TME) occurred in the ~310℃ tempered specimens, whose hardness is equal to lower bainite one. It is caused by grain boundary segregation of phosphorus and grain boundary precipitation of carbide during tempering. The fracture mode of TME is dominated by intergranular failure.
The fracture surfaces of both lower and upper bainite structures exhibit transgranular cleavage. The size of the cleavage facet of bainite was demonstrated to be correlated with the width of the bainite sheaf. The results of EBSD analysis indicates not only that the sheaf boundary is a high-angle boundary, but also that the cleavage crack travels along the {001}α, {112}α and {123}α ferrite planes, whose surface energy are low.
According to TEM diffraction analysis, the orientation relationship of cementite / bainitic ferrite satisfies the Bagaryatskii relation, and the habit plane of cementite precipitated in the bainite sheaf locates on || . The orientation relationship of austenite / bainitic ferrite satisfies between K-S and N-W relation. Two sets of parallelogram cross-section of binitic ferrite were found to locate on ~ and respectively. As isothermal holding time increases, one set of parallel plane inclines to via a diffusional interface migration and bainite subunits gradually coalesce.
摘要…………………………………………………………... Ⅰ
Abstract...........................................Ⅲ
目錄…………………………………………………………..…Ⅴ
表目錄…………………………………………….……………Ⅷ
圖目錄…………………………………………….……………Ⅸ
第一章 前言……………………………………………..1
第二章 文獻回顧……………………………………………..4
2-1 熱處理……………………………………………..….4
2-1-1 沃斯回火處理…..………………………………….4
2-1-2 麻淬火熱處理………………………..…………….5
2-2 變韌鐵相變態………………………………………...5
2-2-1 上變韌鐵…………………………………………..8
2-2-2 下變韌鐵…………………………………………..9
2-2-3 變韌鐵變態的機制………...……………………...12
2-3 麻田散鐵相變化………………………………….…13
2-3-1 麻田散鐵的特徵…………………...…………...…14
2-3-2 麻田散鐵之晶體結構………………...……………15
2-3-3 麻田散鐵之結晶學………………..…………...….16
2-3-4 回火麻田散鐵脆性………………………….…….18
2-4 晶癖面、劈裂晶面及位錯的量測方法…………….19
2-4-1軌跡分析法(trace analysis)…………………...19
2-4-2 EBSD直接分析法……………………………………….21
2-4-3 位錯(misorientation)…………………………21
第三章 實驗方法………………..…………………………..35
3-1 試片成份及製作………………………………….…35
3-2 熱處理…………………………………………….…35
3-2-1 沃斯回火…………………………………………36
3-2-2 傳統淬火回火…..………………..…………….…36
3-2-3 麻淬火回火…….………………...………….……36
3-3 機械性質測試………..……………………………...37
3-3-1 硬度測試……………………………………...….37
3-3-2 衝擊試驗…………………………………………37
3-3-3 拉伸試驗………………………………………....37
3-4 顯微組織觀察…………………………………….…38
3-4-1 光學顯微鏡之觀察.………………..……………....38
3-4-2 穿透式電子顯微鏡(TEM)之觀察…………………...38
3-5 衝擊破斷面之觀察……………………………….....39
3-5-1 掃瞄式電子顯微鏡(SEM)之觀察…………………...39
3-5-2 歐傑電子能譜儀(AES)之分析…………………..…39
3-6 EBSD分析…………………………………………...39
3-6-1 破斷劈裂刻面之晶體分析…………………………39
3-6-2 EBSD mapping…………………………………….39
第四章 顯微組織與機械性質…………………………….44
4-1 顯微組織的觀察…………………………………….44
4-1-1 變韌鐵…………………………………………....44
4-1-2 波來鐵組織………………………………….……46
4-1-3 回火麻田散鐵組織………………………………..47
4-2 機械性質測試………………..……………………...49
4-2-1 上、下變韌鐵機械性質……………………….……50
4-2-2 變韌鐵與其它組織之機械性質比較………….…….53
4-3 破斷面觀察...................................55
4-3-1 變韌鐵之破斷面分析.........................55
4-3-2 其它組織之破斷面觀察.......................56
4-4 歐傑電子能譜儀之分析....................58
4-5 晶界碳化物………………………………………….60
第五章 變韌鐵破壞行為…………………………………..95
5-1 劈裂面的結晶學………………………………….....95
5-2 變韌鐵束間的錯位關係(Misorientation)………..…97
5-3 碳化物的影響…………………………………….....99
5-4 變韌鐵組織的破壞機制…………………………...100
第六章 變韌鐵之晶體學…………………………………107
6-1 變韌肥粒鐵/雪明碳鐵的方位關係……..…………107
6-2 變韌鐵束組織及晶癖面(habit plane)..…………...108
6-3 恆溫過程之顯微組織…..………..………………...110
6-4 沃斯田鐵/變韌肥粒鐵的方位關係及變韌肥粒鐵之晶癖面..112
6-5 變韌鐵成長的過程…………………………...……113
第七章 結論………………………………………………...126
7-1 顯微組織與機械性質………………………..…….126
7-2 變韌鐵破壞行為……………………………….…..127
7-3 變韌鐵之晶體學…………………………...………128
參考文獻……………………………………………….…….130
附錄……….…………………………………………….…….136
[1] E.S. Davrnport and E.C. Bain, Trans. Met. Soc. AISM, 90 (1930) 117.
[2] W.F. Smith and J. Hashemi, "Foundations of Materials Science and Engineering," 4th ed., McGraw-Hill, (2006).
[3] Y. Ohmori, R.W.K. Honeycombe, Proc. ICSTIS, Suppl. Trans., Iron Steel Inst. Jpn, 11 (1971) 1160.
[4] ASM Meatals Handbook, 8th Edition, Vol. 2 (1964) 56-57.
[5] H.K.D.H. Bhadeshia and D.V. Edmonds, Metall. Trans., 10A (1979) 895.
[6] H.K.D.H. Bhadeshia, Acta Metall., 29 (1981) 1117.
[7] F.B. Pickering, “Transformation and Hardenability in Steels,” Climax Molybdenum Co., (1967) 107.
[8] H.K.D.H. Bhadeshia, Acta Metall., 28 (1980) 1103.
[9] H.K.D.H. Bhadeshia, “Bainite in Steels,” The Institute of Materials, London, (1992) 199.
[10] R.W.K. Honeycombe and F.B. Pickering, Metall. Trans., 3A (1972) 1090.
[11] W. Pitsch : Arch. Eisenhuttenwes., 34 (1963) 381.
[12] H.K.D.H. Bhadeshia and J.W. Christian, Metall. Trans., 21A (1990) 767.
[13] G.R. Speich, “The Decomposition of Austenite by Diffusional Process,” Interscince Co., New York, (1962) 353.
[14] K. Shimizu and Z. Nishiyama, Mem, Inst. Sci. Ind. Res., Osaka University, 20 (1963) 42.
[15] R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles,” 3rd Edition, PWS-Kent Publishing Company, Boston, (1992) 616.
[16] M. Dadian and H. Granjon, “De Ferri Metallographia,” Vol. IV, Verlag Stahleisen M.B.H., Dusseldorf, (1983) 701.
[17] S.J. Matas and R.F. Hehemann, Trans. TMS-AIME, 221 (1961) 179.
[18] R.H. Hobbs, G.W. Lorimer and N. Ridley, JISL, 201 (1972) 757.
[19] R.H. Hehemann, “Phase Transformation,” ASM, Metals Park, OH, (1970) 397.
[20] D. Kalish and M. Cohen, Mater. Sci. Eng., 6 (1970) 156.
[21] Y.A. Bagaryatskii, Dokl. Akad. Nauk, SSSR, 73 (1950) 1161.
[22] H.K.D.H. Bhadeshia, “Bainite in Steels,” The Institute of Materials, London, (1992) 130.
[23] A. Ali and H.K.D.H. Bhadeshia, Mater. Sci. Technol., 7 (1991) 895.
[24] E.P. Klier and T. Lyman, Trans. AIME, 158 (1944) 394.
[25] T. Lyman and A.R. Troiano, Trans ASM, 37 (1946) 402.
[26] H.K.D.H. Bhadeshia, “Bainite in Steels,” The Institute of Materials, London, (1992) 9.
[27] H.K.D.H. Bhadeshia, “Worked Examples in the Geometry of Crystals,” The Institute of Metals, (1987) 56.
[28] D.P. Koistinennhe, R.E. Marburger, Acta. Metall., 7 (1959) 59.
[29] R.W.K. Honeycombe, “Steels Microstructure and Properties,” Edward Arnold, (1981).
[30] M. Cohen, Trans. Met. Soc. AIME, 224 (1962) 638.
[31] J.W. Christian, “Chapter in Martensite Fundamentals and Technology,” E.R. Petty (Ed.), Longman, London, (1970) 13.
[32] G.V. Kurdjumov, G. Sachs, Z. Phys., 64 (1930) 325.
[33] Z. Nishiyama, Sci. Rept., Tohoku Univ., 23 (1934) 325.
[34] R.M. Horn and Robert O. Ritchie, Metall. Trans., 9A (1978) 1039.
[35] K.W. Andrews, D.J. Dyson and S.R. Keown, “Interpretation of electron diffraction patterns,” London, Hilger & Watts, (1967) 52.
[36] P.A. Davies and V. Randle, J. Microscopy, 204 (2001) 29.
[37] A.J. Schwartz, M. Kumar and B.L. Adams, “Electron Backscatter Diffraction in Materials Science,” Kluwer Academic/Plenum Publishers, New York, (2000).
[38] R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles,” 3rd Edition, PWS-Kent Publishing Company, Boston, (1992) 170.
[39] H.J. Bunge, “Texture Analysis in Materials Science,” London, Butterworths, (1982).
[40] V. Randle, “Microtexture Determination and its Applications,” London, Institute of Materials, (1992).
[41] H. Grimmer, W. Bollmann and D.H. Warrington, Acta Cryst., 30A (1974) 197.
[42] G. Spanos, H.S. Fang, and H.I. Aaronson, Metall. Trans., 21A (1990) 1381.
[43] Y. Ohmori, Trans. ISIJ, 11 (1971) 95.
[44] K. Shimizu, T. Ko and Z. Nishiyama, Trans. JIM, 5 (1964), 225.
[45] M. Oka, H. Okamoto and K. Ishida, Metall. Trans., 21A (1990) 845.
[46] D.D. Pearson and J.D. Verhoeven, Met. Trans., 15A (1984) 1037.
[47] H.K.D.H. Bhadeshia, “Bainite in Steels,” The Institute of Materials, London, (1992) 292.
[48] J. Diagne, M. Guttmann and J.P. Naylor, Mat. Sci. and Eng. 56 (1982) 1.
[49] A.S. Keh and S. Weissmann, “Electron Microscopy and the Strength of Crystals,” G. Thomas and J. Washburn, Interscience, NY, (1962) 313.
[50] G.R. Speich and H.J. Warlimont, J. Iron Steel Inst., 206 (1968) 385.
[51] M.K. Fondekar, A.M. Rao and A.K. Mallik, Metall. Trans., 1 (1970) 885.
[52] K.J. Irvine and F.B. Pickering, Iron Steel Inst. Spec. Rep. 93, London, (1965) 110.
[53] K.J. Irvine and F.B. Pickering, J. Iron Steel Inst., 187 (1957) 292.
[54] P.P.L.G. Siriwardene, Ph.D. Thesis, University of Cambridge, (1955).
[55] F.B. Pickering, “Transformations and Hardenability in Steels,” Climax Moly., Ann Arbor, MI, (1967) 109.
[56] C.J. McMahon Jnr., M. Cohen, Acta Metall., 13 (1965) 591.
[57] R.S. Chandel, R.F. Orr, J.A. Gianetto, J.T. McGrath, B.M. Patchett and A.C. Bicknell, The Microstructure and Mechanical Properties of Narrow Gap Welds in 2.25Cr-1Mo Steel, Report ERP/PMRL 85-16(OP-J) of the Physical Metallurgy Research Laboratories, CANMET, Energy, Mines and Resources Canada, Ottawa, Canada, (1985).
[58] J.P. Naylor and P.R. Krahe, Metall. Trans., 5 (1974) 1699.
[59] Metal Scince, 15 (1981) 401.
[60] R.G. Faulkner, Int. Mater. Rev., 41 (1996) 198.
[61] D. Mclean, “Grain Boundaries in Metals,” Oxford University Press, Oxford, (1957) 116.
[62] R.G. Faulkner, J. Mater. Sci., 16 (1981) 373.
[63] T.D. Xu, S.H. Song, Acta Metall., 37 (1989) 2499.
[64] R.G. Faulkner, S.H. Song, P.E.J. Flewitt, M. Victoria and P. Marmy, J. Nucl. Mater., 255 (1998) 189.
[65] S.H. Song, R.G. Faulkner, P.E.J. Flewitt, P. Marmy and M. Victoria, Mater. Sci. Eng. A, 286 (2000) 230.
[66] P.A. Davies, M. Novovic, V. Randle and P. Bowen, J. Microscopy, 205 (2002) 278.
[67] U. H. Lindborg and B.L. Averbach, Acta Metall., 14 (1996) 1583.
[68] A.F. Gourgues, H.M. Flower and T.C. Lindley, Mater. Sci. Technol., 16 (2000) 26.
[69] E. Bouyne, H.M. Flower, T.C. Lindley and A. Pineau, Scripta Mater., 39 (1998) 295.
[70] S. Morito, H. Tanaka, T. Furuhara, T. Maki, In: Sakai T, Suzuki HG, editors. Proc. 4th Int. Conf. on Recrystallization and Related Phenomena. Sendai (JPN): Japan Institute of Metals, (1999) 295.
[71] A. Lambert-Perlade, A.F. Gourgues and A. Pineau, Acta Mater., 52 (2004) 2337.
[72] H.K.D.H. Bhadeshia and D.V. Edmonds, Met. Sci., 17 (1983) 411.
[73] L.C. Chang, Mater. Sci. Eng. A, 368 (2004) 175.
[74] M.X. Zhang and P.M. Kelly, Scripta Mater., 37 (1997) 2009.
[75] I. Isaichev, Zhur. Tekh. Fiz., 11(1947), 412.
[76] D.N. Shackleton and P.M. Kelly, Acta Metall., 15 (1967) 979.
[77] R.F. Hehemann, K.R. Kinsman and H.I. Aaronson, Metall. Trans., 2 (1972) 1077.
[78] K.R. Kinsman, E. Eichen and H.I. Aaronson, Metall. Trans., 6A (1975) 303.
[79] J.M. Rigsbee and H.I. Aaronson, Acta Metall., 27 (1979) 365.
[80] M. Enomoto and H. Tsubakino, Mater. Trans. JIM, 32 (1991) 642.
[81] H.K.D.H. Bhadeshia and D.V. Edmonds, Metall. Trans., 28A (1980) 1265.
[82] H.K.D.H. Bhadeshia, Acta Metall., 28 (1980) 1103.
[83] H.K.D.H. Bhadeshia and D.V. Edmonds, Acta Metall., 28 (1980) 1265.
[84] G.B. Olson, H.K.D.H. Bhadeshia and M. Cohen, Acta Metall. 37 (1989) 381.
[85] S.A. Mujahid and H.K.D.H. Bhadeshia, Acta Metall. Mater., 41 (1993) 967.
[86] Y. Ohmori, H. Ohtsubo, Y.C. Jung, S. Okaguchi and H. Ohtani, Metall. Mater. Trans., 25A (1994) 1981.
[87] Y. Ohmori, H. Ohtsubo, Y.C. Jung, K. Nakai and H. Shioiri, Acta Mater., 49 (2001) 3149.
[88] T. Furuhara, Private communication.
[89] Y. Ohmori, Y-C Jung, H.U., K. Nakai and H. Ohtsubo, Mater. Trans. JIM, 37 (1996) 1665.
[90] K. Tsuzaki, A. Kodai and T. Maki, Metall. Mater. Trans., 25A (1994) 2009.
[91] H. Ohtani, S. Okaguchi, Y. Fujishiro and Y. Ohmori, Metall. Trans., 21A (1990) 877.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top