跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 11:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:虞邦英
研究生(外文):Bang-Ying Yu
論文名稱:片狀氧化鋁及稜角狀莫來石於氧化鋁基材上生成機制之研究
論文名稱(外文):Study on the Formation mechanism of Tabular Al2O3 and Prismatic Mullite Formation on Alumina Substrate
指導教授:韋文誠韋文誠引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:197
中文關鍵詞:氧化鋁片狀莫來石稜角狀氧化鋁基材生長機制
外文關鍵詞:aluminatabularmulliteprismaticalumina substrateformation mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:571
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用氧化鋁-氧化矽雙相溶膠(diphasic aluminum silicate sol)在多孔及緻密氧化鋁基材上,以低於共晶溫度(1560oC)的熱處理條件(1280oC)形成鍍膜。在多孔氧化鋁基材上,生成片狀(tabular)氧化鋁的互鎖(interlock)結構;而在緻密96%純度氧化鋁基材上,則生成針狀(acicular)莫來石的互鎖結構。
實驗中以矽酸四乙酯(TEOS,tetraethlylorthosilicate)和氫氧化鋁(boehmite)分別當作鋁、矽原子的來源,形成氧化鋁-氧化矽雙相溶膠。在固定鋁矽莫耳比為莫來石當量比3Al2O3•2SiO2的條件下,利用旋轉塗佈法(spin coating)在氧化鋁基材上生成雙相氧化鋁-氧化矽(簡稱DAS)薄膜,經過乾燥和1280oC熱處理得到具有非等向晶粒鍍膜的高溫陶瓷複合材料。所得到的複合材料經由X光繞射儀(XRD)、掃描式電子顯微鏡暨能量分析光譜儀(SEM&EDX)、與分析式穿透電子顯微鏡(AEM)及電子能量損失譜儀(EELS)來進行成分及微結構的觀察。研究中採用不同的純度、鍍膜成分或熱處理條件等製程參數,並製備多種條件的多孔陶瓷TEM樣品,針對非等向晶粒在氧化鋁基材上生成的機制進行探討。
DAS鍍膜在多孔氧化鋁基材上會形成以片狀氧化鋁為主的層狀結構。在薄膜中,片狀晶交錯生成,產生微米級的孔洞,一片狀氧化鋁晶粒中含有數個方向相同的次片狀晶(sub-tabular grain),片狀晶的最大平面為(000h)AlO。同一個片狀晶中的次片狀晶晶粒生長方向略有不同,但不論成分鑑定或晶相分析皆能証明其為氧化鋁。
在96%緻密氧化鋁基材上的DAS薄膜經燒結後會生成針狀莫來石。經過TEM的晶相分析,針狀莫來石具有的軸向(zone direction)為[001]M,長度為5-20
In this study, diphasic aluminum silicate sol (M) was coating on porous or dense alumina substrate to form a covering layer (DAS) and then sintered at 1280oC, which was below eutectic temperature (1560oC) of Al2O3-SiO system. A gradient, porous Al2O3 substrate was prepared with the characteristics of micro-sized tabular grains on surface, fine interlocking of Al2O3 grains in matrix. Acicular mullite grains were formed on dense Al2O3 substrate with interlocking structure.
The sample was made by spin-coating alumina substrates with diphasic gel made by pseudo-boehmite (AlOOH) and hydrolyzed TEOS [Si(OC2H5)4]. After drying and sintering at different heat treatments, which at the temperature 1280oC, the crystallography and microstructure of the porous structure was investigated by analytical electron microscopy (AEM), X-ray differactometry (XRD), and scanning electron microscopy (SEM). Detailed micro-beam compositional and structural analyses were conducted in order to verify the glassy phase and abnormal Al2O3/ mullite grains.
The abnormal grain growth of Al2O3 grains is possibly due to the transient SiO2-glass phase during sintering above 1250oC. The formation of tabular grains is due to a heterogeneous nucleation from faceted grain of Al2O3/Glass interface, ripening from transient Al2O3 nano-crystals through amorphous SiO2 glass. The reactions are limited to regions where the density is higher, and results in a perpendicular growth of plate-like grains on the substrate. Ostwald ripening in association with the rearrangement of small transient
摘要....................................................1
Abstract..............................................III
目錄....................................................V
圖目錄...................................................VIII
表目錄...............................................XIII
第一章 前言.............................................1
第二章 文獻回顧.........................................5
2-1氧化鋁-氧化矽相圖(Al2O3-SiO2 binary phase diagram)...6
2-1-1 氧化鋁、氧化矽、氧化鋁-氧化矽相圖 錯誤! 尚未定義書籤。
2-1-1 介穩定相 (metastable region)......................9
2-1-2相分離區..........................................10
2-1-3 過冷液相.........................................10
2-2 莫來石.............................................12
2-2-1莫來石的形成......................................12
2-2-2固溶反應與鍵能....................................13
2-2-3過飽和及莫來石的生成.....................................................14
2-3-1 晶形定義.........................................19
2-3-2 莫來石的製備與晶形...............................20
2-4 片狀
M. G. M. U. Ismail, Z. Nakai, and S. Somiya, “Microstructure and Mechanical Properties of Mullite Prepared by Sol-Gel Method,” J. Am. Ceram. Soc., 70, C7-C8, (1987).
K. S. Mazdiyasni, and M. L. Brown, “Synthesis and Mechanical Properties of Stoichiometric Aluminum Silicate,” J. Am. Ceram. Soc., 55, 548-52 (1972).
B. L. Metcalfe, J. H. Sant, “The Synthesis, Microstructure and Physical Properties of High-Purity Mullite,” Trans. J. Br. Ceram. Soc., 74, 193-201 (1975)
T. I. Ma, and K. S. Mazdiyasni, “Mechanical Properties of Mullite,” J. Am. Ceram. Soc., 66, 699-703 (1983).
http://nr.stic.gov.tw/ejournal/NSCM/9303/9303-06.pdf
H. Schneider and S. Komarneni, Chapter 4 Mullite Synthesis and Processing in Mullite, Wiely-VCH Verlag Gmbh & Co. KGaA. Weinheim, pp 251-337 (2005).
G.P Souza, E. Rambaldi, A. Tucci, L.Esposito, and W. E. Lee, “Microstructural Variation inPorcelain Stoneware as a Function of Flux System,” J. Am. Ceram. Soc., 87 [10] 1959-1966 (2004)
H. Schneider and S. Komarneni, Chapter 6 Mullite Fibers in Mullite, Wiely-VCH Verlag Gmbh & Co. KGaA. Weinheim, pp 377-394 (2005).
M. Cheryan, “Ultrafiltration and Microfiltration Handbook,” Technomic Publishing Company, Inc., Pennsylvania, U.S.A. (1998).
A. J. Pyzik and C. G. Li, “New Design of a Ceramic Filter for Diesel Emission Control Application,” Int. J. Applied Ceramic Technology, 2, 6, 440-51 (2005).
Y. Y. Chen, “Formation of Mullite Thin Film by Sol-Gel Process,” Master thesis, NTU (2001).
Y-M Chiang, D. Birnie III and W. D. Kingery, Chapter 4 Phase Equilibrium in Physical Ceramics, Wiley and MIT Series, pp. 263-350 (1996).
汪建民主編,粟愛綱,陶瓷技術手冊第十一章,相圖及其應用,pp. 313-14,中華民國粉末冶金協會出版 (1994)
K. Wefers and C. Misra, Chapter 4 Phase Relations of Aluminum Hydroxides and Oxides under Nonequilibrium Conditions in Oxides and Hydroxide of Aluminum, Alcoa Laboratories, pp 46-47 (1987).
Phase Diagrams for Ceramists I-IIIV, printed by American Ceramic Society, Columbus, Ohio, USA (1964-
S. H. Risbud and J. A. Pask, “SiO2-Al2O3 Metastable Phase Equilibrium Diagram without Mullite,” J. Mater. Sci., 13 [11] 2449-2454 (1978).
J. A. Pask, Critical Review of Phase Equilibria in the Al2O3-SiO2 System in Mullite and Mullite Matrix Composites, Ceramic Transactions Vol 6, pp. 1-14 (1990).
I. A. Aksay and J. A. Pask, “Stable and metastable equilibria in the system SiO2-Al2O3,” J. Am. Ceram. Soc. 58, 507-12 (1975).
S. Aramaki and R. Roy, “The Mullite-corundum boundary in the system MgO-Al2O3-SiO2 and CaO-Al2O3-SiO2,” J. Am. Ceram. Soc., 42 [12] 644-45 (1959).
S. Aramaki and R. Roy, “Revised phase diagram for the system SiO2-Al2O3,” J. Am. Ceram. Soc. 45, 229-242 (1962).
J. F. MacDowell and G. H. Beall, “ Immiscibility and Crystallization in Alumina-Silica,” J. Am. Ceram. Soc., 52 [1] 24 (1969).
W. G. Staley, Jr. and G. W. Brindley, J. Am. Ceram. Soc., 52 [11] 616 (1969).
H. Schneider, K. Okada, and J. Pask, Chapter 3 Phase Equilibrium of Mullite in Mullite and Mullite Ceramics, John Wiley & Sons, pp 83-104 (1994).
H. Schneider and S. Komarneni, Chapter 3 Phase Equilibria and Stability of Mullite in Mullite, Wiely-VCH Verlag Gmbh & Co. KGaA. Weinheim, pp 227-35 (2005).
F. J. Klug, S. Prochazka, R. H. Doremus, “Alumina-Silica Phase Diagram in the Mullite Region,” Mullite and Mullite Matrix Composites, Ceramic Transactions Vol 6, pp. 15-44 (1990).
N. L. Bowen and J. W. Greig, “The system Al2O3-SiO2,” J. Am. Ceram. Soc., 7 [4] 238-54 (1924).
J. W. Welch, “New interpretation of the Mullite Problem,” Nature, 186 [4724] 545-46 (1960).
R. C. Newton, Science, 151 [3715] 1223 (1966).
S. W. Richardson, P. M. Bell, and M. C. Gibert, Carnegie Inst. Washington, Yearbook, 65, 248 (1966).
R. C. De Vries, J. Am. Ceram. Soc., 47 [5] 236 (1954).
R. W. Haskell and R. C. De Vries, J. Am. Ceram. Soc., 47 [4] 203 (1964).
A. Staronka, H. Pham, and M. Rolin, Rev. Int. Hautes Temp. Refract., 5 [2] 112 (1968).
T. Horibe and S. Luwabara, Bull. Chem. Soc. Jap., 40 [4] 980 (1967).
R. F. Davis and J. A. Pask, “Difussion and Reaction Studies in the System Al2O3-SiO2,” J. Am. Ceram. Soc., 55 [10] 525-31 (1972).
N. A. Toropov and F. Ya. Galakhov, Vopr. Petrogr. Mineral., 2, 245-55 (1953).
S. H. Risbud and J. A. Psak, “Calculated Thermodynamic Data and Metastable Immiscibility in the System SiO2-Al2O3,” J. Am. Ceram. Soc., 60 [9-10] 418-24 (1977).
P. A. Howald and I. Eliezer, J. Phys. Chem., 82 [20] 2199-204 (1978).
P. Doerner, L. J. Gauckler, H. Krieg, H. L. Lukas, G. Petzow, and Weiss, CALOHAD: Comput. Coupling Phase Diagrams Thermochem., 3 [4] 241-57 (1979).
W. Weisweiler, Sprechsaal, 144 [6] 450-54 (1981).
C. M. Jantzen, D. Schwahn, J. Schelten, and H. Herman, Phys. Chem. Glasses, 22 [5] 122-37.
E. Salje and C. Werneke, Contrib. Mineral. Petrol., 79 [1] 56-67 (1982).
汪建民主編,顏富士,陶瓷技術手冊第二章,粉體、鬚晶和纖維,p 45,中華民國粉末冶金協會出版 (1994)
W. D. Callister, Materials Science and Engineering an Introduction, 4th ed, p996, John Wiely & Sons Inc. (2000)
K. S. Mazdiyasni, and M. L. Brown, “Synthesis and Mechanical Properties of Stoichiometric Aluminum Silicate,” J. Am. Ceram. Soc., 55, 548-52 (1972).
B. L. Metcalfe, J. H. Sant, “The Synthesis, Microstructure and Physical Properties of High-Purity Mullite,” Trans. J. Br. Ceram. Soc., 74, 193-201 (1975)
T. I. Ma, and K. S. Mazdiyasni, “Mechanical Properties of Mullite,” J. Am. Ceram. Soc., 66, 699-703 (1983).
K. Odada, N. Otsuka, “Synthesis of Mullite Whiskers and Their Application in Composites,” J. Am. Ceram. Soc., 74, 2414 (1991).
D. S. Perera, G. Allot, “Synthesis of Needle Mullite Particles Using Potassium Sulfate Flux,” J. Mater. Sci. Lett. 4, 1270 (1985).
I. W. M. Brown, K. J. D. Mackenzie, M. E. Bowen, and R. H. Meinhold, “Outstanding Problems in the Kaolinite-Mullite Reaction Sequence investigated by 29Si and 27Al Solid-state Nuclear Magnetic Resonance: II. High-Temperature Transformations of Metakaolinite. J. Am. Ceram. Soc., 68, 298-301 (1985)
K. Okada, Y. Hoshi, and N. Otsuka, “Formation Reaction of Mullite from SiO2-Al2O3 Xerogels,” J. Mater. Sci. Lett. 5, 1315-1318. (1986).
C. Y. Chen, G. S. Lan, and W. H. Tuan, “Microstructural Evolution of Mullite During the Sintering of Kaolin Powder Compacts,” Ceram. Int. 26, 715-720 (2000).
S. H. Hong, W. Cermignani, and G. L. Messing, “Anisotropic grain growth in Seeded and B2O3-doped Diphasic Mullite Gels,” J. Eur. Ceram. Soc., 16, 133-41 (1996).
M. Bartsch, B. Saruhan, M. Schmucker, H. Schneider, “Novel Low-Temperature Processing Route of Dense Mullite Ceramics by Reaction Sintering of Amorphous SiO2-Coated
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 23、陳榮宗著,「第三人撤銷訴訟之原告當事人適格」,月旦法學雜誌,第115期,第180-193頁,2004年12月。
2. 22、陳榮宗著,「美國群眾訴訟與西德團體訴訟(上)」,法學叢刊,第118期,第16-24頁,1985年4月。
3. 21、黃國昌著,「確認他人法律關係存否之訴之當事人適格」,月旦法學教室,第39期,第18-19頁,2006年1月。
4. 19、黃國昌著,「既判力之時間範圍」,月旦法學教室,第32期,第90-97頁,2005年6月。
5. 18、黃國昌著,「既判力總論」,月旦法學教室,第30期,第88-93頁,2005年4月。
6. 17、黃國昌著,「第三人撤銷訴訟之要件」,月旦法學教室,第20期,第133-135頁,2004年6月。
7. 16、黃國昌著,「訴訟參與及代表訴訟-新民事訴訟法下「程序保障」與「紛爭解決一次性」之平衡點」,月旦法學雜誌,第97期,第8-27頁,2003年6月。
8. 15、許士宦著,「民事訴訟法與強制執行法-民事訴訟法學之新進展」,月旦法學雜誌,第124期,第52-69頁,2005年9月。
9. 14、張文郁著,「選定當事人」,月旦法學教室,第39期,第16-17頁,2006年1月。
10. 7、姜世明著,「選定當事人制度之變革-兼論團體訴訟」,月旦法學雜誌,第96期,第8-26頁,2003年5月。
11. 6、姜炳俊著,「公益社團法人訴訟與不執行協議」,月旦法學教室,第21期,第16-17頁,2004年7月。
12. 5、沈冠伶著,「既判力擴張協議與拘束力協議」,月旦法學教室,第12期,第18-19頁,2003年10月。
13. 3、吳明軒著,「民事訴訟法修正後之再審程序」,月旦法學雜誌,第97期,第28-49頁,2003年6月。