跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅喜興
研究生(外文):Hsi-Hsing Lo
論文名稱:聚三己基噻吩混掺二氧化鈦奈米桿有機太陽能電池之光電性質的研究
論文名稱(外文):Study on photocurrent properties of organic hybrid solar cell based on poly(3-hexylthiophene) and TiO2 nanorods
指導教授:林唯芳林唯芳引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:106
中文關鍵詞:聚三己基噻二氧化鈦奈米桿混掺比例膜厚溶劑高分子的分子量界面活性劑有機太陽能電池
外文關鍵詞:poly (3-hexylthiophene)TiO2 nanorodshybrid ratioactive layerthicknesssolventmolecular weightligandorganic solar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
聚噻吩(polythiophene)及二氧化鈦,由於其具有較好的化學穩定性、熱穩定性及優良的電荷傳導能力,而常應用於有機太陽能電池中的電子予體及電子受體材料。於本論文之研究,主要是在探討如何有效改善聚三己基噻吩(poly(3-hexylthiophene), P3HT)與二氧化鈦奈米桿(TiO2 nanorods)混掺型的有機太陽能電池效率。由於有機太陽能電池的效率主要決定於材料吸收光源的量、激子分離以及電荷傳輸等因素,因此我們藉由研究高分子以及無機奈米材料的基礎特性;包括二氧化鈦奈米桿於混掺中的含量、吸附於二氧化鈦奈米桿表面的界面活性劑種類、導電層的厚度、高分子的分子量以及高分子所使用的溶劑,以有效改善激子分離及電荷傳輸,進而提升電池的效率。

於研究混掺比例以及導電層膜厚中,我們藉由所製備的元件效率得出最佳化的混掺比例以及導電層的最佳厚度分別為:w P3HT/w TiO2 nanorods = 47/53與125 nm。我們也探討高分子的分子量以及其所使用的溶劑對於元件效率的影響,因高分子的分子量大小或是所使用的溶劑差異皆有可能使高分子成膜厚度及其構形上有所改變,影響激子分離以及電荷傳輸的效率,進而影響元件效率。在這部分的研究結果指出,當聚三己基噻吩的分子量越大且所使用的溶劑為氯苯時,聚三己基噻吩於成膜後的構形上有較共平面的結構,使得高分子鏈與鏈之間的π-π堆疊程度較好,進而提升電荷傳輸的效率。於研究界面活性劑的效應方面,我們試著導入具有導電性的界面活性劑於二氧化鈦奈米桿的表面,因為在混掺後聚三己基噻吩與二氧化鈦奈米桿之間有界面活性劑的存在,因此界面活性劑的導電能力將影響到分離後的電荷是否能夠有效傳輸至電極。在此部分,我們將已吸附於二氧化鈦奈米桿表面的界面活性劑置換成具有導電性質的分子,且有效改善激子的分離以及電荷傳輸的能力,使得元件效率有進一步的提升。

若將上述所探討的各個影響電池效率的因素之最佳化參數合併在一起並且利用此製程參數製備聚三己基噻吩混掺二氧化鈦的有機太陽能電池(參數為:P3HT的分子量為66kD、溶劑為氯苯、二氧化鈦奈米桿的表面吸附著Pyr、混掺組成:w P3HT/w TiO2 nanorods = 47/53且導電層的膜厚調控在120~130 nm),目前效率於A.M. 1.5照光下已可達到約0.7 %。
Polymer-based solar cell has been fabricated by blending the conjugated polymer, poly (3-hexylthiophene) (P3HT) with TiO2 nanorods. Polythiophene and titania are frequently used as good electron donor and electron acceptor in organic solar cells, respectively, due to their good chemical stability, thermal stability and excellent charge transport properties. In our study, we tried to improve the power conversion efficiency of P3HT/TiO2 nanorods hybrid organic solar cell. Because device’s efficiency is determined by light harvesting, exciton dissociation and charge transport, so we tried to improve the efficiency of exciton dissociation and charge transport by studying the fundamental properties of active layer made from a solution consisted of conducting polymer and inorganic nanocrystal hybrid material. The effect of material properties on the photocurrent include hybrid composition, film thickness, polymer molecular weight, solvent type and ligand type.

For the influence of hybrid composition and active layer thickness on the device efficiency, the results showed that the device has better performance at 53 % by weight of TiO2 nanorods and at about 125 nm film thickness. For the effect of polymer molecular weight and solvent type in the hybrid on the device efficiency, we have found a high molecular weight polymer (~66 kD) and a medium volatile solvent of chlorobenzene provide best materials for high efficiency cell. The efficiency of exciton dissociation and charge transport in the device also can improve by surface modification of inorganic nanocrystal. We used pyridine, thienyl phosphonic acid and thienyl carboxylic acid to exchange oleic acid that capped on the surface of TiO2 nanorods. The results show the hybrid materials made of surface modified TiO2 nanorods exhibit better performance as compared to that of end-capped by oleic acid due to the improved surface interaction between polymer and nanocrystals.

The best performance devices was fabricated from a blend ratio of 47 to 53 by weight in P3HT to TiO2 nanorods, a film thickness of about 125 nm, chlorobenzene as a solvent, a P3HT molecular weight of 66kD, pyridine as a surfactant. The device exhibits power conversion efficiency, 0.7% under air mass 1.5 simulated solar illumination (100 mW/cm2).
摘要.................................................................................................................I
Abstract…………………………………………………………………….III
目錄…………………………………………………………………………V
圖目錄………………………………………………………………….…VII
表目錄........................................................................................................XIV
第一章 緒論……………………………………………..……………….1
1.1 前言………………..………………………………………….…1
1.2 太陽光的頻譜照度…………………………………………...…2
1.3 太陽能電池的簡介…………………………………………...…3
1.3.1 無機太陽能電池……………………………………………...…3
1.3.2 有機太陽能電池……………………………………………...…5
1.4 研究動機……………………………………………………...…6
第二章 文獻回顧………………………………………………………8
2.1 有機高分子太陽能電池的工作原理………………………...…8
2.2 導電高分子太陽能電池的特性分析……………………….....12
2.2.1 開路電壓 (Open circuit voltage;VOC)…………………..…….13
2.2.2 短路電流 (Short circuit current;ISC)……………………….....16
2.2.3 填充因子 (Fill factor;FF)…………………………………....17
2.3 導電高分子太陽能電池的結構…………………………..…...19
2.3.1 單層結構…………………………………………………….....19
2.3.2 電子予體/受體雙層結構………………………….…………..20
2.3.3 電子予體/受體單層異質接面結構……………………….…..24
2.3.3.1 導電高分子混掺Fullerene異質接面結構之有機太陽能電
池……………………………………………………….........…26
2.3.3.2 導電高分子混掺無機半導體異質接面結構之有機太陽能電
池…………………………………………………………….…32
2.3.3.2.1 導電高分子混掺TiO2奈米晶體………………………………33
第三章 實驗…………………………...………………………………..39
3.1 實驗藥品……………………………………………………….39
3.2 實驗儀器……………………………………………………….40
3.3 實驗步驟與流程……………………………………………….41
3.3.1 合成二氧化鈦奈米桿………………………………………….41
3.3.2 置換二氧化鈦奈米桿表面的界面活性劑……………….……42
3.3.2.1 把油酸置換成砒啶………………………………………….…42
3.3.2.2 把油酸置換成噻吩的衍生物………………………………….44
3.3.2.2.1 噻吩的衍生物的分子結構及溶解度………………………….44
3.3.2.2.2 置換實驗步驟…………………………………………….……45
3.4 高分子材料…………………………………………………….46
3.4.1 導電高分子之結構與其性質……………………………….…46
3.4.2 溶解P3HT所使用之溶劑及其性質………………………….48
3.5 有機太陽能電池之元件製程步驟…………………………….49
第四章 結果與討論…………………………………………………….53
4.1 TiO2之材料鑑定…………………………………………….…53
4.1.1 TiO2 nanorods材料鑑定…………………………………….…53
4.1.2 TiO2 nanorods表面改質後之鑑定……………………………54
4.2 P3HT混掺PCBM以及混掺TiO2 nanorods之熱性質探討...56
4.3 P3HT混掺TiO2 nanorods之有機太陽能電池研究結果…….58
4.3.1 混掺比例及導電層(active layer)對太陽能電池效率的影響...58
4.3.1.1 導電高分子(P3HT)與無機奈米粒子(TiO2 nanorods)混掺比
例……………………………………………………………….58
4.3.1.2 導電層膜厚效應……………………………………………….62
4.3.2 P3HT的分子量及其所使用的溶劑對太陽能電池效率的影
響…………………………………………………………….…66
4.3.2.1 分子量效應…………………………………………………….66
4.3.2.2 溶劑效應……………………………………………………….75
4.3.3 界面活性劑對於太陽能電池效率的影響………………….…84
4.3.4 總結………………………………………………………….…95
第五章 結論………………………………………………………...…..96
第六章 建議………………………………………………………….....98
第七章 參考文獻列表……………………………………………….....99
(1) M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganäs , M. R. Andersson*, “High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative,” 2003, Adv. Mater., 15, 988-991.

(2) W. U. Huynh, J. J. Dittmer, A. P. Alivisatos*, “Hybrid Nanorod-Polymer Solar Cells,” 2002, Science, 29, 2425-2427.

(3) W. U. Huynh, X. Peng, A. P. Alivisatos*, “CdSe Nanocrystal Rods / Poly(3-hexylthiophene) Composite Photovoltaic Devices,” 1999, Adv. Mater., 11(11), 923-927.

(4) C. J. Brabec*, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” 2000, Adv. Funct. Mater., 11(5), 374-380.

(5) C. J. Brabec*, S. E. Shaheen, C. Winder, N. S. Sariciftci, “Effect of LiF/Metal Electrodes on the Performance of Plastic Solar Cells,” 2002, Appl. Phys. Lett., 80(7), 1288-1290.

(6) S.E. Shaheen, C. J. Brabec*, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5% Efficient Organic Plastic Solar Cells,” 2001, Appl. Phys. Lett., 78(6), 841-843.

(7) C. J. Brabec*, S. E. Shaheen, T. Fromherz, F. Padinger, J. C. Hummelen, A. Dhanabalan, R. A. J. Janssen, N. S. Sariciftci, “Organic Photovoltaic Devices Produced from Conjugated Polymer / Methanofullerene Bulk Heterojunctions,” 2001, Synth. Met., 121(1-3), 1517-1520.

(8) C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, C. J. Brabec*, “ Physics of Organic Bulk Heterojunction Devices for Photovoltaic Applications,” 2006, J. Appl. Phys., 99, 104503-1-104503-6.



(9) P. Schilinsky, U. Asawapirom, U. Scherf,*, M. Biele, C. J. Brabec*, “Influence of the Molecular Weight of Poly(3-hexylthiophene) on the Performance of Bulk Heterojunction Solar Cells,” 2005, Chem. Mater., 17, 2175-2180.

(10) M. R. Reyes, K. Kim, D. L. Carroll*, “High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends,” 2005, Appl. Phys. Lett., 87, 083506.

(11) A. J. Breeze, Z. Schlesinger, A. S. Cater*, P. J. Brock, “Charge Transport in TiO2/MEH-PPV Polymer Photovoltaics,” 2001, Phys. Rev. B, 64(12), 125205-1-9.

(12) A. D. Cuendias, M. L. Hellaye, S. Lecommandoux, E. Cloutet*, H. Cramail, “Synthesis and Self-Assembly of Polythiophene-Based Rod–Coil and Coil–Rod–Coil Block Copolymers,” 2005, J. Mater. Chem., 15, 3264-2367.

(13) C-Y Kwong, W. C. H. Choy, A. B. Djurisic*, P-C Chui, K-W Cheng, W-K Chan, “Poly(3-hexylthiophene):TiO2 Nanocomposites for Solar Cell Applications,” 2004, Nanotechnology, 15, 1156-1161.

(14) C. C. Qey, A. B. Djurisic*, H. Wang, K. K. Y. Man, W. K. Chan, M. H. Xie, Y. H. Leung, A. Pandey, J. M. Nunzi, P. C. Chui, “Polymer-TiO2 solar cells: TiO2 interconnected network for improved cell performance,” 2006, Nanotechnology, 17(3), 706-713.

(15) A. F. Nogueira, I. Montanari, J. Nelson, J. R. Durrant*, C. Winder, N. S. Sariciftci, “Charge Recombination in Conjugated Polymer/Fullerene Blended Films Studied by Transient Absorption Spectroscopy,” 2003, J. Phys. Chem. B, 107, 1567-1573.

(16) Q. Fan*, B. McQuillin, D. D. C. Bradley, S. Whitelegg, A. B. Seddon, “A Solid State Solar Cell Using Sol–Gel Processed Material and a Polymer,” 2001, Chem. Phys. Lett., 347(4-3), 325-330.

(17) J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, J. M. J. Fréchet*, “ Polythiophene Containing Thermally Removable Solubilizing Groups Enhances the Interface and the Performance of Polymer-Titania Hybrid Solar Cells,” 2004, J. Am. Chem. Soc., 126(31), 9486-9487.
(18) J. J. M. Halls, K. Pichler, R. H. Friend*, S.C. Moratti, and A.B. Holmes, “Exciton Diffusion and Dissociation in a Poly(pphenylenevinylene)/C60 Heterojunction Photovoltaic Cell,” 1996, Appl. Phys. Lett., 68(22), 3120-3122.

(19) P. Peumans, S. R. Forrest*, “Very-High-Efficiency Double-Heterostructure Copper Phthalocyanine/C60 Photovoltaic Cells,” 2001, Appl, Phys. Lett., 79(1), 126-128.

(20) P. Peumans, A. Yakimov, S. R. Forrest*, “Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells,” 2003, J. Appl. Phys., 93, 3693-3723.

(21) N. Vlachopoulos, P. Liska, J. Augustynski, M. Grätzel*, “Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films 1988, J. Am. Chem. Soc., 110(4), 1216-1220.

(22) M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, M. Grätzel*, “Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells,” 2005, Nano Lett., 5(9), 1789-1792.

(23) M. A. Green*, K. Emery, D. L. King, S. Igari, W.Warta, “Short Cmmunication: Solar Cell Efficiency Tables (version 25)”, 2005, Progress in Photovoltaics, 13(1) , 49-54.

(24) N. C. Greenham*, X. Peng, A. P. Alivisatos, “Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity,” 1996, Phys. Rev. B, 54(24), 17628-17637.

(25) B. Sun, S. Westenhoff, A. S. Dhoot, C. Silva, N. C. Greenham*, “Charge Transfer and Recombination at Conjugated Polymer/Semiconductor Nanoparticle Iinterfaces,” 2004, Proceedings of SPIE, 5513, 76-85.

(26) S. Günes*, H. Neugebauer, N. S. Sariciftci, “Conjugated Polymer-Based Organic Solar Cells,” 2007, Chem. Rev., 107, 1324-1338.



(27) G.. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger*, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” 1995, Science, 270, 1789-1791.

(28) W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger*, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology,” 2005, Adv. Funct. Mater., 15(10), 1617-1622.

(29) H. Hoppe*, N. S. Sariciftci, “Organic solar cells: An overview,” 2004, J. Mater. Res., 19(7), 1924-1945.

(30) H. Hoppe*, D. A. M. Egbe*, D. Mühlbacher, N. S. Sariciftci, “Photovoltaic Action of Conjugated Polymer/Fullerene Bulk Heterojunction Solar Cells using Novel PPE-PPV-Copolymers,” 2004, J. Mater.Chem., 14, 3462-3467.

(31) M. A. Ibrahim*, O. Ambacher, S. Sensfuss, G. Gobsch, “Effects of Solvent and Annealing on the Improved Performance of Solar Cells Based on Poly(3-hexylthiophene):Fullerene,” 2005, Appl. Phys. Lett., 86, 201120.

(32) S. E. Shaheen, D. S. Dinley, G. E. Jabbour*, “Organic-Based Photovoltaics:Toward Low-Cost Power Generation”, 2005, Mrs. Bull., 30, 10-19.

(33) S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour*, “Fabrication of Bulk Heterojunction Plastic Solar Cells by Screen Printing”, 2001, Appl. Phys. Lett., 79(18), 2996-2998.

(34) P.A. v. Hal, M. P. T. Christiaans, M. M. Wienk, J.M. Kroon, R. A. J. Janssen*, “Photoinduced Electron Transfer from Conjugated Polymers to TiO2,” 1999, J. Phys. Chem. B, 103, 4352-4359.

(35) W. J. E. Beek, M. M. Wienk, R. A. J. Janssen*, “Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer,” 2004, Adv. Mater., 16(12), 1009-1013.

(36) W. J. E. Beek, M. M. Wienk, M. Kemerinl, X. Yang, R. A. J. Janssen*, “Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells,” 2005, J. Phys. Chme. B, 109, 9505-9516.

(37) H. Kallamnn*, M. Pope, “Photovoltaic Effect in Organic Crystals,” 1959, J. Chem. Phys., 30, 585-586.

(38) M-Y Song, K-J Kim, D-Y Kim*, “Enhancement of Photovoltaic Characteristics Using a PEDOT Interlayer in TiO2/MEHPPV Heterojunction Devices,” 2005, Sol. Energy Mater. Sol. Cells, 85(1), 31-39.

(39) M. M. Wienk, J. M. Kroon*, W. J. H. Verhees, J. Knol, J.C. Hummelen*, P. A. van Hal, R. A. J. Janssen*, “Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells,” 2003, Angew. Chem. Int. Ed., 42(29), 3371-3375.

(40) G. G. Malliaras*, J. R. Salem, P. J. Brock, and J. C. Scott, “Photovoltaic Measurement of the Built-In Potential in Organic Light Emitting Diodes and Photodiodes,” 1998, J. Appl. Phys., 84(3), 1583-1587.

(41) K. M. Coakley, M. D McGehee*, “Photovoltaic Cells Made From Conjugated Polymers Infiltrated into Mesoporous Titania,” 2003, Appl. Phys. Lett., 83(16), 3380
-3382.

(42) R. J. Kline, M.D. McGehee*, E.N. Kadnikova, J. Liu, J.M.J. Fréchet, “Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight,” 2003, Adv. Mater., 15(18), 1519-1522.

(43) Y. Liu, M. A. Summers, C. Edder, J. M. J. Frechet, M. D. McGehee*, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” 2005, Adv. Mater., 17(24), 2960-2964.

(44) A. J. Moulé, J. B. Bonekamp, K. Meerholz*, “The Effect of Active Layer Thickness and Composition on the Performance of Bulk-Heterojunction Solar Cells,” 2006, J. Appl. Phys., 100, 094503-1-7.

(45) A. Moliton*, J. M. Nunzi, “How to Model the Behavior of Organic Photovoltaic Cells,” 2006, Polymer Int., 55, 583-600.

(46) A. J. Mozer*, P. Denk, M. Scharber, H. Neugebauer, N. S. Sariciftci, P. Wagner, L. Lutsen, D. Vanderzande, “Novel Regiospecific MDMO-PPV Copolymer with Improved Charge Transport for Bulk Heterojunction Solar Cells,” 2004, J. Phys. Chem. B, 108, 5235-5242.
(47) A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, D. Neher*, “Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors,” 2004, Adv. Funct. Mater., 14(8), 757-764.

(48) J. Bouclé, P. Ravirajan, J. Nelson*, “Hybrid Polymer–Metal Oxide Thin Films for Photovoltaic Applications,” 2007, J. Mater. Chem., 17, 1-14.

(49) P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Grätzel, D. D. C. Bradley, J. R. Durrant, J. Nelson*, “Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer,” 2006, J. Phys. Chem. B, 110, 7635-7639.

(50) R. Ravirajan, D. D. C. Bradley, J. Nelson*, S. A. Haque, J. R. Durrant, H. J. P. Smith, J. M. Kroon, “Efficient Charge Collection in Hybrid Polymer/TiO2 Solar Cells Using Poly(ethylenedioxythiophene)/polystyrene sulphonate as Hole Collector,” 2005, Appl. Phys. Lett., 86, 143101-1-3.

(51) P. Ravirajan, S. A. Haque, J. R. Durrant, D. D. C. Bradley, J. Nelson*, “The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells,” 2005, Adv. Func. Mater. , 15(4), 609-618.

(52) M. Nilsing, P. Persson, L. Ojamäe*, “Anchor Group Influence on Molecule–Metal Oxide Interfaces: Periodic Hybrid DFT Study of Pyridine Bound to TiO2 Via Carboxylic and Phosphonic Acid,” 2005, Chem. Phys. Lett., 415(4-6), 375-380.

(53) F. Padinger*, R. S. Rittberger, N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” 2003, Adv. Funct. Mater., 13(1), 85-88.

(54) I. D. Parker*, “Carrier Tunneling and Device Characteristics in Polymer Light-Emittign Diodes,” 1993, J. Appl. Phys., 75(3), 1656-1666.

(55) D. M. Chapin, C. S. Fuller, G. L. Pearson*, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power”,1954, Journal of Applied Physics, 25, 676.


(56) P. Ravirajan*, S. A. Haque, J. R. Durrant, D. Poplavskyy, D. D. C. Bradley, J. Nelson, “Hybrid nanocrystalline TiO2 Solar Cells with a Fluorene–Thiophene Copolymer as a Sensitizer and Hole Conductor,” 2004, J. Appl. Phys., 95(3), 1473-1480.

(57) N. S. Sariciftci*, L. Smilowitz, A. J. Heeger*, F. Wudi, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene,” 1992, Science, 258, 1474-1476.

(58) C. Winder, N. S. Sariciftci*, “Low Bandgap Polymers for Photon Harvesting in Bulk Heterojunction Solar Cells, “ 2004, J. Mater. Chem., 14, 1077-1086.

(59) E. L.-Beltran, P. Prene, C. Boscher, P. Belleville*, P. Buvat, C. Sanchez*, “All-Solid-State Dye-Sensitized Nanoporous TiO2 Hybrid Solar Cells with High Energy-Conversion Efficiency,” 2006, Adv. Mater., 18(19), 2579-2582.

(60) T. J. Savenije*, J. M. Warman, A. Goossens, “Visible Light Sensitisation of Titanium Dioxide Using a Phenylene Vinylene Polymer,” 1998, Chem. Phys. Lett., 287(1-2), 148-153.

(61) M. C. Scharber*, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency,” 2006, Adv. Mater., 18, 789-794.

(62) T-Q Nguyen, V. Doan, B. J. Schwartz*, “Conjugated Polymer Aggregates in Solution: Control of Interchain Interactions,” 1999, J. Phys. Chem., 110(8), 4068-4078.

(63) T-W Zeng, Y-Y Lin, H-H Lo, C-W Cheg*, C-H Cheng, S-C Liou, H-Y Huang, W-F Su*, “A Large Interconnecting Network Within Hybrid MEH-PPV/TiO2 Nanorod Photovoltaic Devices,” 2006, Nanotechnology, 17, 5387-5392.

(64) C. W. Tang*, “Two-Layer Organic Photovoltaic Cell,” 1986, Appl. Phys. Lett., 48(2), 183-185.

(65) C. Waldauf*, P. Schilinsky, J. Hauch, C. J. Brabec, “Material and device concepts for organic photovoltaics: towards competitive efficiencies,” 2004, Thin Solid Films, 451-452, 503-507.
(66) P. D. Cozzoli, A. Kornowski, H. Weller*, “Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods,” 2003, J. Am. Chem. Soc., 125, 14539-14548.

(67) Z. B. Xie*, B. M. Henry, K. R. Kirov, D. A. R. Barkhouse, V. M. Burlakov, H. E. Smith, C. R. M. Grovenor, H. E. Assender, G. A. D. Briggs, M. Kano, Y. Tsukahara, “Correlation Between Photoconductivity in Nanocrystalline Titania and Short Circuit Current Transients in MEH-PPV/Titania Solar Cells,” 2007, Nanotechnology, 18, 145708-1-5.

(68) G. Li, V. Shrotriya, Y. Yao, and Y. Yang*, “Investigation of Annealing Effects and Film Thickness Dependence of Polymer Solar Cells Based on poly(3-hexylthiophene),” 2005, J. Appl. Phys., 98, 043704.

(69) J. Liu, Y. Shi, Y. Yang*, “Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices,” 2001, Adv. Funct. Mater., 11(6), 420-424.

(70) V. Shrotriya, G. Li, Y. Yao, C. W. Chu, Y. Yang*, “Transition Metal Oxide as the Buffer Layer for Polymer Photovoltaic Cells,” 2006, Appl. Phys. Lett., 88, 073508-1-073508-3.

(71) S. A. Jenekhe and S. Yi*, “Efficient Photovoltaic Cells from Semiconducting Polymer Heterojunctions,” 2000, Appl. Phys. Lett. 77, 2635-2637.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊