跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉潔樺
研究生(外文):Jay-Hua Yeh
論文名稱:鐵電晶體在力電耦合下之遲滯表現與電域旋轉:實驗與模擬
論文名稱(外文):Hysteresis and domain switching behaviors of ferroelectric crystals under electromechanical loading: experiments and modeling
指導教授:謝宗霖謝宗霖引用關係
指導教授(外文):Jay Shieh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:力電耦合即時影像觀察鈦酸鋇單晶PLZT晶域旋轉模擬
外文關鍵詞:Electromechanical loadingin-situ observationBaTiO3 single crystalPLZT polycrystalDomain switchingSimulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主軸分為實驗與理論模擬(Modeling)兩大部分。 在實驗部分可細分成力電耦合實驗(Electromechanical loading)與即時影像觀察實驗(In-situ observation)兩種,力電耦合實驗是同時以交互電場和單軸向壓應力作用於鈦酸鋇單晶(Barium Titanate Single Crystal)與多晶PLZT(Polycrystalline Lanthanum-Doped Lead Zirconate Titanate)兩種塊材之上以得到電滯曲線與蝴蝶曲線之實驗,於鈦酸鋇單晶與PLZT中,我們分別可使其應變量達0.45%與0.23%,此時所施加之單軸向壓應力則分別是2.7MPa與3.2MPa,交互電場為±1.25MVm-1,我們並由這些數據來解釋應力誘發90°晶域旋轉(Domain switching)以造成應變量大幅上升的行為,同時,由晶域觀察所得之影像我們可以得知所施加之電場並不一定能使偶極完全朝同一方向,使得應變值與理論值有所差距;而即時影像觀察實驗乃利用光學顯微鏡配合偏光片(Polarizer)觀察鈦酸鋇單晶與PLZT在正負交互電場作用下晶域即時之變化情況,除了可觀察到晶域於旋轉一開始時產生類氣泡狀(Bubble-like)且狀似成核之變化,還能觀察到在電場作用過程時晶域sweeping的現象,此外利用晶域變化的情況,我們定義出90°晶域旋轉起始點與結束點之矯頑電場( 與 )大小,我們得到鈦酸鋇單晶之 為0.06MVm-1、 為0.25MVm-1,而PLZT之 與 則分別是0.15 MVm-1與0.37 MVm-1。
在理論模擬的部分,則承續上述實驗之結果與數值來配合理論發展出一套以能量極小化為概念的模型,並模擬晶域旋轉的行為以驗證與比較力電耦合下電滯曲線與蝴蝶曲線所得之結果。
This thesis is consisted of two sections: electromechanical loading experiments on BaTiO3 (Barium titanate) single crystals and PLZT (Lanthanum-Doped Lead Zirconate Titanate) polycrystals and simulations of electromechanical behaviors of BaTiO3 single crystals. For the electromechanical loading experiments a cyclic electric field and a uniaxial compressive stress were applied on to BaTiO3 single crystals and PLZT polycrystals (5×5×2mm3) to obtain their hysteresis and butterfly curves. About 0.45% of strain is obtained for the BaTiO3 single crystal under a compressive stress of 2.7MPa and a cyclic electric field of ±1.25MVm-1. About 0.23% of strain is obtained for the PLZT polycrystal under a compressive stress of 3.2MPa and a cyclic electric field of ±1.25MVm-1. It is concluded that the stress-induced 90° domain switching increases the level of strain output. It is found that the electric field of ±1.25MVm-1 is unable to produce one single domain in the BaTiO3 single crystal; this unsaturation provides a condition for “polarization-free” straining. Optical microscopy with polarizers are adopted to observe the motion of domain switching within the BaTiO3 single crystal and the PLZT during cyclic electric field loading. The bubble-like patterns are observed at the beginning of 90° switching in the BaTiO3 single crystal. From the observed patterns, the starting and the finishing electric fields of 90° domain switching are defined. and for the BaTiO3 single crystal are 0.06MVm-1 and 0.25MVm-1, respectively, and and for the PLZT are 0.15 MVm-1and 0.37 MVm-1, respectively.
For the simulation study, a energy-minimization-based model is developed. Simulations of domain switching processes are tested against the experiment results.
目錄
致謝 iii
摘要 v
Abstract vi
目錄 vii
圖目錄 ix
表目錄 xii
第一章 序論 1
1-1前言 1
1-2 研究動機 2
1-3 實驗目的 3
第二章 文獻回顧 4
2-1 鐵電性質 4
2-1-1 鐵電特性 4
2-1-2 壓電性質 7
2-1-3 極化機制 9
2-1-4 晶域 12
2-1-5 極化強度-電場曲線圖(電滯曲線) 16
2-1-6 應變量-電場曲線圖(蝴蝶曲線) 19
2-1-7 力電耦合 21
2-2 BaTiO3與PLZT材料之介紹 22
2-3 有關理論模擬的簡單介紹 27
第三章 實驗方法 28
3-1 力電耦合的實驗方法 28
3-2 影像的觀察方法 34
3-2-1 光學顯微鏡 34
3-2-2 掃瞄式電子顯微鏡 34
3-2-3 即時影像觀察實驗 34
第四章 實驗結果與討論 36
4-1 鈦酸鋇單晶 36
4-1-1力電耦合結果與討論 36
4-1-1-1電滯曲線 36
4-1-1-2蝴蝶曲線 39
4-1-2 晶域觀察結果與討論 43
4-1-2-1 晶域的觀察 43
4-1-2-2 in-situ實驗結果 50
4-2 PLZT 54
4-2-1 力電耦合結果與討論 54
4-2-1-1 電滯曲線 54
4-2-1-2 蝴蝶曲線 57
4-2-2 in-situ實驗結果 60
第五章 理論模擬 64
5-1 理論模擬之簡介 64
5-2 理論模擬架構 64
5-2-1 建立不同的秩(Rank) 65
5-2-2 散逸能量(Dissipation energy) 66
5-2-3 判別晶域是否旋轉 69
5-2-4 二維之模擬架構 72
5-3 模擬與實驗結果之比較 76
第六章 結論 82
6-1 結果與討論 82
6-2 未來研究方向 84
參考文獻 85
附錄 90
1.鄭佩慈,儀科中心簡訊,國家實驗研究院儀器科技研究中心,68期,(2005)。
2.Xu, Q., Chen, X., W., Chen, S., Kim, B., Lee, J., Synthesis,ferroelectric and piezoelectric properties of some(Na0.5Bi0.5)TiO3 system compositions, Mater. Lett., 59, 2437-2441, (2005).
3.Ang, Z. Yu, Z. Jing, R. Guo, A. S. Bhalla, L. E. Cross, Piezoelectric and electrostrictive strain behavior of Ce-doped BaTiO3 ceramics, Appl. Phys. Lett., Vol. 80, No. 18, 6 May (2002).
4.Burcsu, G. Ravichandran, K. Bhattacharya, Large electrostrictive actuation of Barium titanate single crystals, J. Mech. Phys. Solids, 52, 823-846, (2004).
5.Achuthan, C. T. Sun, Domain switching in ferroelectric ceramic materials under combined loads, J. Appl. Phys, 97. 114103 (2005).
6.Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nature Mater., Vol. 3, February (2004).
7.汪建民,陶瓷技術手冊(上),新竹:全華科技圖書,(1994)。
8.Haertling, G. H., Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc., 82, 797-818, (1999).
9.Moulson and J. M. Herbert, Electroceramics-Materials Properties Applications, New York: Chapman&Hall, (1990).
10.kanzig, Ferroelectrics and antiferroelectrics, Academic Press., (1957).
11.Shieh, Switching and cyclic behavior of ferroelectric, PhD Thesis., (2002).
12.Chou, M. H. Lin, H. Y. Lu, Ferroelectric Domains In Pressureless-Sintered Barium Titanate, Acta mater., 48, 3569-3579, (2000).
13.Lee, J. H. Choi and J. Y. Lee, S. Baik, Domian formation in epitaxial Pb(Zr,Ti)O3 thin film, J. Appl. Phys., Vol. 90, No. 8, 15 October (2001).
14.Jayavel, S. Madeswaran, R. Mohan Kumar, K. Terabe, K. Kitamura, Domain patterns on ferroelectric Rh:BatiO3 single crystals, Mater. Sic. And Eng. B, 120, 137-140, (2005).
15.Soga, T. Noguchi, M. Miyayama, H. Okino, T. Yamamoto, Domain structure and polarization properties of lanthanum-subsituted bismuth titanate single crystal, Appl. Phys. Lett., Vol. 84, No. 1, 5 January(2004).
16.Bokov, Z.-G. Ye, Domain structure in the monoclinic Pm phase of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals, J. Appl. Phys., Vol. 85, No. 11, 1 June (2004).
17.Hatanaka, H. Hasegawa, Observation of domain structures in tetragonal Pb(ZrxTi1-x)O3 single crystals by chemical etching method, Jpn. J. Appl. Phys., Vol. 31, 3245-3248, (1992).
18.Hatanaka, A. Sawada, Ferroelastic domain switching in YBa2Cu3Ox single crystals by external stress, Jpn. J. Appl. Phys., Vol. 28, No. 5, 794-796, May(1989).
19.Jona, F.,Shirane, G., Ferroelectric Crystals, Pergamon, New York, (1993).
20.Tin, W. Cao, Domain configurations in domain engineered 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystals, J. Appl. Phys., Vol. 87, No. 10, 15 May (2000).
21.Yako, H. Kakemoto, T. Tsurumi, S. Wada, Domain size dependence of d33 piezeoelectric properties for barium titanate single crystal with engineered domain configurations, Mater. Sci. Eng. B 120, 181-185, (2005).
22.Wada, T. Tsurumi, Enhance piezoelectricity of barium titanate single crystals with engineered domain configuration, British Ceramic Transaction, Vol. 103, No. 2, 93, (2004).
23.Wan, C. Chen, Y. P. Shen, Uniaxial electromechanical behavior of ferroelectric ceramic PZT-53, J. Mater. Sci., 41, 549-555, (2006).
24.Park and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys., 82:1804-1811, (1997).
25.Ren, K. Otsuka, Universal symmetry property of point defects in crystals, Phys. Rev. Lett., Vol. 85, No. 5, 31 July (2000).
26.Zhang, W. Chen, X. Ren, Large recoverable electrostrain in Mn-doped (Ba,Sr)TiO3 ceramics, Appl. Phys. Lett., Vol. 85, No. 23, 6 December (2004).
27.Lynch, The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT, Acta mater., Vol. 44, No. 10, 4137-4148, (1996).
28.Zhou, M. Kamlah and D. Munz, Effects of uniaxial prestress on the ferroelectric hysteretic response of soft PZT, J. Eur. Ceram. Soc., 25, 425-432, (2005).
29.Xu, Y., Ferroelectric materials and their application, North-Holland, New York, (1991).
30.Moulson, A. J., Herbert, J. M., Electroceramics, John Wiley, England, (2003).
31.Jona, G. Shirane, Ferroelectric Crystals, Pergamon, New York, p.108, (1962).
32.Kirby and Barry A. Wechsler., Phase relations in the BaTiO3 system, J. Am. Ceram. Soc., 74[8], 1841-1847, (1991).
33.Hwang, Christopher S. Lynch, Robert M. McMeeking, Ferroelectric/ferroelastic interactions and a polarization switching model, Acta mater., 0956-7151 (94) 00379-3.
34.Schaufele, A. B., H., K. H., Ferroelastic properties of lead zirconate titanate ceramics, J. Am. Ceram. Soc., 79(10), 2637-2640, (1996).
35.Sun, C. T., Achuthan, A.,Domain switching criteria for piezoelectric materials, Proceedings SPIE, Smart Structures and Materials.
36.Lu, D.-N. Fang, C. Q. Li, K.-C. Hwang, Nonlinear electric-mechanical behavior and micromechanics modeling of ferroelectric domain evolution, Acta Mater., Vol. 47, No. 10, 2913-2926, (1999).
37.Hwang, S. C., McMeeking, R. M., A finite element model of ferroelectric/ferroelastic polycrystals, Behaviour and Mechanics 3992, 404-417, (2000).
38.Zhang, D. N. Fang, A. K. Soh, A new criterion for domain-switching in ferroelectric materials, Mech. Mater., 38, 25-32, (2006).
39.Huber, N. A. Fleck, Ferroelectric switching: a micromechanics model versus measured behaviour, Euro. J. Mech. A/Solids, 23, 203-217, (2004).
40.Chen, C. S. Lynch, A micro-electro-mechanical model for polarization switching of ferroelectric materials, Acta mater., Vol. 46, No. 15, 5303-5311, (1998).
41.Fang, W. Yang, Indentation-induced cracking and 90° domain switching pattern in barium titanate ferroelectric single crystals under different poling, Mater. Lett., 57 (2002) 198-202, November (2002).
42.Busche, K. J. Hsia, Fracture and domain switching by indentation in barium titanate single crystals, Scripta mater., 44, 207-212, (2001).
43.Arlt, P. Sasko, Domain configuration and equilibrium size of domains in BaTiO3 ceramics, J. Appl. Phys., 51(9), September (1980).
44.張智星,MATLAB 程式設計與應用,清蔚科技,9月,(2000)。
45.蒙以正,MATLAB入門與精進,儒林圖書,2月,(2004)。
46.Shu and J. H. Yen, J. Shieh and J. H. Yeh, Effect of depolarization and coercivity in actuation strains due to domain switching in Barium Titanate, Appl. Phys. Lett., 90, 172902, (2007).
47.Shu and K. Bhattacharya, Phipos. Mag. B, 81:2021-2054, (2001).
48.Sun, C. T., Achuthan, A., Domain switching criteria for piezoelectric materials, Smart Structures and Materials, (2001).
49.Gopalan, T. E. M., In situ video observation of 180° domain switching in LiTiO3 by electro-optical imaging microscopy, J. Appl. Phys. , Vol. 85, No. 4, 15 Feb. (1999).
50.Hwang., John E. Huber, Robert M. McMeeking, Norman A. Fleck, The simulation of switching in polycrystalline ferroelectric ceramics, J. Appl. Phys., Vol. 84, No. 3, 1 August (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top