跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊令樂
研究生(外文):Ling-Yueh Yang
論文名稱:以膠體晶體模板及核殼粒子製備具奈米結構之聚苯胺和其環境應答
論文名稱(外文):Fabrication and Environmental Responses of Nanostructured Polyaniline Prepared from Colloidal Crystal Templates and Core-Shell Particles
指導教授:廖文彬廖文彬引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:152
中文關鍵詞:聚苯胺膠體晶體模板核殼粒子奈米結構感測
外文關鍵詞:polyanilinecolloidal crystalstemplatescore-shell particlesnanostructuressensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討了兩種以膠體粒子製備具奈米結構聚苯胺的方式、產物聚苯胺環境應答的情形及結構的影響。一種方式是利用均一粒徑的聚苯乙烯膠體粒子以最密堆積自組而成的膠體晶體為模板,吸附十二烷基苯磺酸及苯胺後,於晶體的間隙藉化學合成法聚合聚苯胺。去除模板即得到高品質的聚苯胺反蛋白石。添加十二烷基苯磺酸使得反蛋白石結構收縮率較低,因此可以調整光禁帶的位置。導電度也隨之增加,聚苯胺部分導電度估計為7 S/cm,與文獻值相當。此外,反蛋白石的厚度能由模板的厚度控制。另一種方式是先藉助十二烷基磺酸鈉於聚苯乙烯膠體粒子表面合成聚苯胺薄殼製得核殼粒子,將核殼粒子塗佈於基板乾燥後,直接或先加熱核殼粒子製膜再除去聚苯乙烯,便能得到兩種由厚數十奈米聚苯胺薄殼隨機堆積而成的薄膜,而此兩種薄膜的吸收光譜顯示加熱過程並未對聚苯胺造成顯著影響。環境應答部分包含乾燥氣流(減少含水量)、乙醇蒸氣(澎潤)、氯化氫氣(摻雜)及氨氣(去摻雜)四種測試。因奈米結構具有廣大表面積與物質作用,結構中的空孔又利於物質擴散,所製備的聚苯胺對環境變化十分敏感、電阻應答快速。不同的結構對應答的情形有著顯著的影響。以核殼粒子製成的兩種薄膜中,經加熱製膜程序者聚苯胺薄殼堆積較緊密,故應答表現均較差。而反蛋白石為高度有序的多孔結構,我們亦分析了其與核殼粒子製得(不具規律結構)薄膜應答情形的差異。反蛋白石的光禁帶更提供新穎的感測方向,實驗結果顯示聚苯胺反蛋白石具有以光禁帶變化感測乙醇蒸氣、氯化氫氣及氨氣的潛力。
In this dissertation, we studied two approaches to fabricating nanostructured polyaniline (PANI) using colloidal particles, its environmental responses, and the influence of the structure. One approach was templating polystyrene (PS) colloidal crystals, or close-packed self-assembly of monodisperse microspheres. After the adsorption of dodecylbenzene sulfonic acid (DBSA) and aniline, the polymerization around the PS spheres was initiated by ammonium peroxydisulfate. Removing PS yielded PANI inverse opals of high quality. The use of DBSA resulted in structures having less shrinkage, and thus the position of the optical stop band could be tuned. The conductivity of the inverse opals increased as well, and that of PANI was estimated to be 7 S/cm, comparable to the value in the literature. Moreover, the overall thickness of the inverse opals could be controlled by that of the templates. The other approach first prepared PS-PANI core-shell particles using PS particles as cores, onto whose surface aniline monomers adsorbed with the aid of sodium dodecyl sulfate and were polymerized to form thin PANI shells. The resulting suspensions of the core-shell particles were then drop-cast onto substrates and dried. Two kinds of films composed of randomly packed thin PANI shells of tens of nanometers were obtained by removing PS directly or after the formation of composite films through heating the core-shell particles. The UV-Vis spectra of the films indicate that the heating had no obvious effect on PANI. As for the environmental responses, four tests were included: dry gas flow (decreasing water content), ethanol vapor (swelling), hydrogen chloride (doping), and ammonia (dedoping). The nanostructured PANI was highly sensitive, and the resistance responded fast to different conditions because of the porosity facilitating diffusion and large surface area interacting with substances. The structure was found to greatly affect the response behavior. Concerning the two kinds of films prepared from the core-shell particles, the packing of PANI shells was more compact in the films whose fabrication involved heating; hence the performance was inferior. We also examined the difference between the responses of the inverse opals (highly ordered porous structures) and films prepared from the core-shell particles (disordered structures). Moreover, the optical stop band of the inverse opals could provide a novel sensing mechanism. The results suggest that the inverse opals have the potential of sensing ethanol vapor, hydrogen chloride, and ammonia by the change in the stop band.
口試委員會審定書………………………………………………………iii
誌謝………………………………………………………………………v
中文摘要…………………………………………………………………vii
英文摘要…………………………………………………………………ix

圖目錄……………………………………………………………………xiv
表目錄……………………………………………………………………xx

第一章 前言……………………………………………………………1

第二章 文獻回顧………………………………………………………3
2.1 聚苯胺……………………………………………………………3
2.2 具奈米結構聚苯胺之合成………………………………………7
2.3 膠體晶體………………………………………………………10
2.4 聚苯胺之感測應用……………………………………………14
2.5 聚苯胺奈米結構應用於物質感測……………………………16

第三章 實驗……………………………………………………………19
3.1 藥品……………………………………………………………19
3.2 儀器……………………………………………………………23
3.3 試樣製備………………………………………………………27
3.4 性質測試分析…………………………………………………32

第四章 具奈米結構聚苯胺之合成……………………………………36
4.1 簡介……………………………………………………………36
4.2 聚苯乙烯膠體晶體模板之製備………………………………38
4.3 合成聚苯胺反蛋白石…………………………………………40
4.4 聚苯乙烯膠體晶體模板與聚苯胺反蛋白石之光學性質……47
4.5 以核殼粒子製備具奈米結構聚苯胺薄膜……………………50

第五章 具奈米結構聚苯胺之環境應答:電阻變化…………………82
5.1 簡介……………………………………………………………82
5.2 乾燥氣流對電阻之影響………………………………………83
5.3 乙醇蒸氣對電阻之影響………………………………………87
5.4 氯化氫氣對電阻之影響………………………………………89
5.5 氨氣對電阻之影響……………………………………………90

第六章 具奈米結構聚苯胺之環境應答:光學性質變化……………105
6.1 簡介……………………………………………………………105
6.2 乙醇蒸氣對光學性質之影響…………………………………106
6.3 氯化氫氣對光學性質之影響…………………………………108
6.4 氨氣對光學性質之影響………………………………………110

第七章 結論…………………………………………………………120

參考文獻………………………………………………………………123

附錄一 定量分析組成對環烯烴共聚物機械鬆弛的影響…………130
附錄二 簡歷…………………………………………………………151
[1]MacDiarmid, A. G. Synth. Met. 1997, 84, 27.
[2]Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1992, 48, 91.
[3]Scrosati, B., Ed. Applications of Electroactive Polymers, 1st ed.; Chapman & Hall: London; New York, 1993.
[4]Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R., Eds. Handbook of Conducting Polymers, 2nd ed.; Marcel Dekker: New York, 1998.
[5]Aldissi, M. Inherently Conducting Polymers: Processing, Fabrication, Applications, Limitations; Noyes Data Corp.: Park Ridge, 1989.
[6]MacDiarmid, A. G. Angew. Chem., Int. Edit. 2001, 40, 2581.
[7]Stejskal, J.; Kratochvil, P.; Jenkins, A. D. Collect. Czech. Chem. Commun. 1995, 60, 1747.
[8]Stejskal, J.; Hlavata, D.; Holler, P.; Trchova, M.; Prokes, J.; Sapurina, I. Polym. Int. 2004, 53, 294.
[9]Prokes, J.; Stejskal, J. Polym. Degrad. Stabil. 2004, 86, 187.
[10]Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263.
[11]Wallace, G. G.; Innis, P. C. J. Nanosci. Nanotechnol. 2002, 2, 441.
[12]Lu, G. W.; Chen, F.; Wu, W. F.; Qu, L. T.; Zhang, J. X.; Shi, G. Q. Chin. Sci. Bull. 2005, 50, 1673.
[13]Jang, J. Adv. Polym. Sci. 2006, 199, 189.
[14]Zhang, D. H.; Wang, Y. Y. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2006, 134, 9.
[15]Huang, J. X.; Virji, S.; Weiller, B. H.; Kaner, R. B. J. Am. Chem. Soc. 2003, 125, 314.
[16]Huang, J. X.; Kaner, R. B. J. Am. Chem. Soc. 2004, 126, 851.
[17]Huang, J. X.; Kaner, R. B. Angew. Chem., Int. Edit. 2004, 43, 5817.
[18]Jing, X. L.; Wang, Y. Y.; Wu, D.; Qiang, J. P. Ultrason. Sonochem. 2007, 14, 75.
[19]Kim, B. J.; Oh, S. G.; Han, M. G.; Im, S. S. Synth. Met. 2001, 122, 297.
[20]Han, M. G.; Cho, S. K.; Oh, S. G.; Im, S. S. Synth. Met. 2002, 126, 53.
[21]Zhang, Z. M.; Wei, Z. X.; Wan, M. X. Macromolecules 2002, 35, 5937.
[22]Li, G. C.; Zhang, Z. K. Macromolecules 2004, 37, 2683.
[23]Li, G. C.; Peng, H. R.; Wang, Y.; Qin, Y.; Cui, Z. L.; Zhang, Z. K. Macromol. Rapid Commun. 2004, 25, 1611.
[24]Huang, L. M.; Wang, Z. B.; Wang, H. T.; Cheng, X. L.; Mitra, A.; Yan, Y. X. J. Mater. Chem. 2002, 12, 388.
[25]Zhang, L. J.; Wan, M. X. Nanotechnology 2002, 13, 750.
[26]Wei, Z. X.; Zhang, L. J.; Yu, M.; Yang, Y. S.; Wan, M. X. Adv. Mater. 2003, 15, 1382.
[27]Zhang, L. J.; Wan, M. X. Adv. Funct. Mater. 2003, 13, 815.
[28]Zhang, L. J.; Long, Y. Z.; Chen, Z. J.; Wan, M. X. Adv. Funct. Mater. 2004, 14, 693.
[29]Wu, C. G.; Bein, T. Science 1994, 264, 1757.
[30]Martin, C. R. Science 1994, 266, 1961.
[31]Martin, C. R. Chem. Mater. 1996, 8, 1739.
[32]Delvaux, M.; Duchet, J.; Stavaux, P. Y.; Legras, R.; Demoustier-Champagne, S. Synth. Met. 2000, 113, 275.
[33]Maeda, Y.; Shimoi, Y.; Ogino, K. Polym. Bull. 2005, 53, 315.
[34]Li, X.; Tian, S. J.; Ping, Y.; Kim, D. H.; Knoll, W. Langmuir 2005, 21, 9393.
[35]Zhang, X. Y.; Goux, W. J.; Manohar, S. K. J. Am. Chem. Soc. 2004, 126, 4502.
[36]Bartlett, P. N.; Birkin, P. R.; Ghanem, M. A.; Toh, C. S. J. Mater. Chem. 2001, 11, 849.
[37]Wang, D. Y.; Caruso, F. Adv. Mater. 2001, 13, 350.
[38]Han, S. B.; Briseno, A. L.; Shi, X. Y.; Mah, D. A.; Zhou, F. M. J. Phys. Chem. B 2002, 106, 6465.
[39]Briseno, A. L.; Han, S. B.; Rauda, I. E.; Zhou, F. M.; Toh, C. S.; Nemanick, E. J.; Lewis, N. S. Langmuir 2004, 20, 219.
[40]Tian, S. J.; Wang, J. J.; Jonas, U.; Knoll, W. Chem. Mater. 2005, 17, 5726.
[41]Chen, J. Y.; Chao, D. M.; Lu, X. F.; Zhang, W. J.; Manohar, S. K. Macromol. Rapid Commun. 2006, 27, 771.
[42]Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Adv. Mater. 2000, 12, 693.
[43]Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
[44]John, S. Phys. Rev. Lett. 1987, 58, 2486.
[45]Busch, K.; John, S. Phys. Rev. E 1998, 58, 3896.
[46]Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Chem. Mater. 1999, 11, 2132.
[47]Cong, H.; Cao, W. X. Langmuir 2003, 19, 8177.
[48]Gu, Z. Z.; Fujishima, A.; Sato, O. Chem. Mater. 2002, 14, 760.
[49]Deckman, H. W.; Dunsmuir, J. H. Appl. Phys. Lett. 1982, 41, 377.
[50]Deckman, H. W.; Dunsmuir, J. H. J. Vac. Sci. Technol. B 1983, 1, 1109.
[51]Hulteen, J. C.; Van Duyne, R. P. J. Vac. Sci. Technol. A-Vac. Surf. Films 1995, 13, 1553.
[52]Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B 2001, 105, 5599.
[53]Wang, D. Y.; Mohwald, H. Adv. Mater. 2004, 16, 244.
[54]Micheletto, R.; Fukuda, H.; Ohtsu, M. Langmuir 1995, 11, 3333.
[55]Goldenberg, L. M.; Wagner, J.; Stumpe, J.; Paulke, B. R.; Gornitz, E. Langmuir 2002, 18, 5627.
[56]Dimitrov, A. S.; Nagayama, K. Langmuir 1996, 12, 1303.
[57]Bertone, J. F.; Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Colvin, V. L. Phys. Rev. Lett. 1999, 83, 300.
[58]Im, S. H.; Kim, M. H.; Park, O. O. Chem. Mater. 2003, 15, 1797.
[59]Egen, M.; Voss, R.; Griesebock, B.; Zentel, R.; Romanov, S.; Torres, C. S. Chem. Mater. 2003, 15, 3786.
[60]Rengarajan, R.; Jiang, P.; Larrabee, D. C.; Colvin, V. L.; Mittleman, D. M. Phys. Rev. B 2001, 6420.
[61]Jiang, P.; Ostojic, G. N.; Narat, R.; Mittleman, D. M.; Colvin, V. L. Adv. Mater. 2001, 13, 389.
[62]Romanov, S. G.; Ferrand, P.; Egen, M.; Zentel, R.; Ahopelto, J.; Gaponik, N.; Eychmuller, A.; Rogach, A. L.; Torres, C. M. S. Synth. Met. 2003, 139, 701.
[63]Zhang, J.; Alsayed, A.; Lin, K. H.; Sanyal, S.; Zhang, F.; Pao, W. J.; Balagurusamy, V. S. K.; Heiney, P. A.; Yodh, A. G. Appl. Phys. Lett. 2002, 81, 3176.
[64]Hoogenboom, J. P.; Retif, C.; de Bres, E.; de Boer, M. V.; van Langen-Suurling, A. K.; Romijn, J.; van Blaaderen, A. Nano Lett. 2004, 4, 205.
[65]Burmeister, F.; Badowsky, W.; Braun, T.; Wieprich, S.; Boneberg, J.; Leiderer, P. Appl. Surf. Sci. 1999, 145, 461.
[66]Li, Y.; Cai, W. P.; Cao, B. Q.; Duan, G. T.; Li, C. C.; Sun, F. Q.; Zeng, H. B. J. Mater. Chem. 2006, 16, 609.
[67]Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K. Small 2006, 2, 458.
[68]Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.
[69]Stein, A.; Schroden, R. C. Curr. Opin. Solid State Mat. Sci. 2001, 5, 553.
[70]Stein, A. Microporous Mesoporous Mat. 2001, 44, 227.
[71]Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Bertone, J. F.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 11630.
[72]Deutsch, M.; Vlasov, Y. A.; Norris, D. J. Adv. Mater. 2000, 12, 1176.
[73]Sumida, T.; Wada, Y.; Kitamura, T.; Yanagida, S. Chem. Commun. 2000, 1613.
[74]Jiang, P.; Bertone, J. F.; Colvin, V. L. Science 2001, 291, 453.
[75]Cassagneau, T.; Caruso, F. Adv. Mater. 2002, 14, 34.
[76]Cassagneau, T.; Caruso, F. Adv. Mater. 2002, 14, 1837.
[77]Qian, W. P.; Gu, Z. Z.; Fujishima, A.; Sato, O. Langmuir 2002, 18, 4526.
[78]Sumioka, K.; Kayashima, H.; Tsutsui, T. Adv. Mater. 2002, 14, 1284.
[79]Kayashima, H.; Sumioka, K.; Lee, S. H.; Jang, B. B.; Fujita, K.; Tsutsui, T. Jpn. J. Appl. Phys., Part 1 2003, 42, 5731.
[80]Yoshino, K.; Satoh, S.; Shimoda, Y.; Kawagishi, Y.; Nakayama, K.; Ozaki, M. Jpn. J. Appl. Phys., Part 2 1999, 38, L961.
[81]Satoh, S.; Kajii, H.; Kawagishi, Y.; Fujii, A.; Ozaki, M.; Yoshino, K. Jpn. J. Appl. Phys., Part 2 1999, 38, L1475.
[82]Yoshino, K.; Kawagishi, Y.; Tatsuhara, S.; Kajii, H.; Lee, S.; Fujii, A.; Ozaki, M.; Zakhidov, A. A.; Vardeny, Z. V.; Ishikawa, M. Microelectron. Eng. 1999, 47, 49.
[83]Nicolas-Debarnot, D.; Poncin-Epaillard, F. Anal. Chim. Acta 2003, 475, 1.
[84]Wan, M. X. J. Polym. Sci. Pt. A-Pol. Chem. 1992, 30, 543.
[85]Stejskal, J.; Kratochvil, P.; Radhakrishnan, N. Synth. Met. 1993, 61, 225.
[86]Liu, T.; Samuels, R. J. Polym. Sci. Pt. B-Polym. Phys. 2001, 39, 2481.
[87]Kukla, A. L.; Shirshov, Y. M.; Piletsky, S. A. Sens. Actuators B-Chem. 1996, 37, 135.
[88]Wu, S. Z.; Zeng, F.; Li, F. X.; Zhu, Y. L. Eur. Polym. J. 2000, 36, 679.
[89]Matsuguchi, M.; Io, J.; Sugiyama, G.; Sakai, Y. Synth. Met. 2002, 128, 15.
[90]Koul, S.; Chandra, R.; Dhawan, S. K. Sens. Actuators B-Chem. 2001, 75, 151.
[91]Koul, S.; Chandra, R. Sens. Actuators B-Chem. 2005, 104, 57.
[92]Agbor, N. E.; Petty, M. C.; Monkman, A. P. Sens. Actuators B-Chem. 1995, 28, 173.
[93]Bartlett, P. N.; Lingchung, S. K. Sens. Actuators 1989, 20, 287.
[94]Tan, C. K.; Blackwood, D. J. Sens. Actuators B-Chem. 2000, 71, 184.
[95]Sharma, S.; Nirkhe, C.; Pethkar, S.; Athawale, A. A. Sens. Actuators B-Chem. 2002, 85, 131.
[96]Roh, J. G.; Hwang, H. R.; Yu, J. B.; Lim, J. O.; Huh, J. S. J. Macromol. Sci.-Pure Appl. Chem. 2002, A39, 1095.
[97]Taka, T. Synth. Met. 1993, 57, 5014.
[98]Ogura, K.; Saino, T.; Nakayama, M.; Shiigi, H. J. Mater. Chem. 1997, 7, 2363.
[99]Kulkarni, M. V.; Viswanath, A. K.; Aiyer, R. C.; Khanna, P. K. J. Polym. Sci. Pt. B-Polym. Phys. 2005, 43, 2161.
[100]Dutta, D.; Sarma, T. K.; Chowdhury, D.; Chattopadhyay, A. J. Colloid Interface Sci. 2005, 283, 153.
[101]Jin, Z.; Su, Y. X.; Duan, Y. X. Sens. Actuators B-Chem. 2001, 72, 75.
[102]Nicho, M. E.; Trejo, M.; Garcia-Valenzuela, A.; Saniger, J. M.; Palacios, J.; Hu, H. Sens. Actuators B-Chem. 2001, 76, 18.
[103]Hu, H.; Trejo, M.; Nicho, M. E.; Saniger, J. M.; Garcia-Valenzuela, A. Sens. Actuators B-Chem. 2002, 82, 14.
[104]Sotomayor, P. T.; Raimundo, I. M.; Zarbin, A. J. G.; Rohwedder, J. J. R.; Neto, G. O.; Alves, O. L. Sens. Actuators B-Chem. 2001, 74, 157.
[105]Andreu, Y.; de Marcos, S.; Castillo, J. R.; Galban, J. Talanta 2005, 65, 1045.
[106]Lee, Y. S.; Joo, B. S.; Choi, N. J.; Lim, J. O.; Huh, J. S.; Lee, D. D. Sens. Actuators B-Chem. 2003, 93, 148.
[107]Yuan, J. M.; El-Sherif, M. A. IEEE Sens. J. 2003, 3, 5.
[108]Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. Chem.-Eur. J. 2004, 10, 1315.
[109]Zarbin, A. J. G.; dePaoli, M. A.; Alves, O. L. Synth. Met. 1997, 84, 107.
[110]Lei, Z. B.; Zhang, H. C.; Ma, S. H.; Ke, Y. X.; Li, J. M.; Li, F. Q. Chem. Commun. 2002, 676.
[111]Virji, S.; Huang, J. X.; Kaner, R. B.; Weiller, B. H. Nano Lett. 2004, 4, 491.
[112]Virji, S.; Kaner, R. B.; Weiller, B. H. J. Phys. Chem. B 2006, 110, 22266.
[113]Ma, X. F.; Li, G.; Wang, M.; Cheng, Y. N.; Bai, R.; Chen, H. Z. Chem.-Eur. J. 2006, 12, 3254.
[114]Wang, J.; Chan, S.; Carlson, R. R.; Luo, Y.; Ge, G. L.; Ries, R. S.; Heath, J. R.; Tseng, H. R. Nano Lett. 2004, 4, 1693.
[115]Li, G. F.; Martinez, C.; Janata, J.; Smith, J. A.; Josowicz, M.; Semancik, S. Electrochem. Solid State Lett. 2004, 7, H44.
[116]Barthet, C.; Armes, S. P.; Chehimi, M. M.; Bilem, C.; Omastova, M. Langmuir 1998, 14, 5032.
[117]Barthet, C.; Armes, S. P.; Lascelles, S. F.; Luk, S. Y.; Stanley, H. M. E. Langmuir 1998, 14, 2032.
[118]Wang, L. Y.; Lin, Y. J.; Chiu, W. Y. Synth. Met. 2001, 119, 155.
[119]林怡君,碩士論文,國立臺灣大學,2001。
[120]Niu, Z. W.; Yang, Z. H.; Hu, Z. B.; Lu, Y. F.; Han, C. C. Adv. Funct. Mater. 2003, 13, 949.
[121]Park, M. K.; Onishi, K.; Locklin, J.; Caruso, F.; Advincula, R. C. Langmuir 2003, 19, 8550.
[122]Shi, X. Y.; Briseno, A. L.; Sanedrin, R. J.; Zhou, F. M. Macromolecules 2003, 36, 4093.
[123]Wiersma, A. E.; Vandersteeg, L. M. A.; Jongeling, T. J. M. Synth. Met. 1995, 71, 2269.
[124]Lascelles, S. F.; Armes, S. P. J. Mater. Chem. 1997, 7, 1339.
[125]Khan, M. A.; Armes, S. P. Langmuir 1999, 15, 3469.
[126]Khan, M. A.; Armes, S. P.; Perruchot, C.; Ouamara, H.; Chehimi, M. M.; Greaves, S. J.; Watts, J. F. Langmuir 2000, 16, 4171.
[127]Huijs, F.; Lang, J. Colloid Polym. Sci. 2000, 278, 746.
[128]Cheung, J. H.; Fou, A. F.; Rubner, M. F. Thin Solid Films 1994, 244, 985.
[129]Ferreira, M.; Rubner, M. F. Macromolecules 1995, 28, 7107.
[130]Fou, A. C.; Rubner, M. F. Macromolecules 1995, 28, 7115.
[131]Cheung, J. H.; Stockton, W. B.; Rubner, M. F. Macromolecules 1997, 30, 2712.
[132]Stockton, W. B.; Rubner, M. F. Macromolecules 1997, 30, 2717.
[133]Armes, S. P.; Aldissi, M.; Hawley, M.; Beery, J. G.; Gottesfeld, S. Langmuir 1991, 7, 1447.
[134]Stejskal, J.; Sapurina, I.; Prokes, J.; Zemek, J. Synth. Met. 1999, 105, 195.
[135]Haba, Y.; Segal, E.; Narkis, M.; Titelman, G. I.; Siegmann, A. Synth. Met. 1999, 106, 59.
[136]Kayes, J. B. J. Colloid Interface Sci. 1976, 56, 426.
[137]Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley-Interscience: Hoboken, 2004.
[138]蕭強仁,碩士論文,國立臺灣大學,2005。
[139]Seferis, J. C. In Polymer Handbook, 4th ed.; Brandrup, J.; Immergut, E. H.; Grulke, E. A., Eds.; John Wiley & Sons: New York, 1999; p VI/571.
[140]Cha, C.; Samuels, R.; Hardaker, S.; Gregory, R. Synth. Met. 1997, 84, 743.
[141]Lubentsov, B.; Timofeeva, O.; Saratovskikh, S.; Krinichnyi, V.; Pelekh, A.; Dmitrenko, V.; Khidekel, M. Synth. Met. 1992, 47, 187.
[142]Pinto, N. J.; Shah, P. D.; Kahol, P. K.; McCormick, B. J. Phys. Rev. B 1996, 53, 10690.
[143]孫鈺婷,碩士論文,國立臺灣大學,2003。
[144]Liau, W. B.; Sun, Y. T.; Yang, L. Y.; Wang, L. Y.; Chiu, W. Y.; Hsieh, K. H.; Tseng, S. M. J. Appl. Polym. Sci. 2006, 102, 5406.
[145]Matveeva, E. S.; Calleja, R. D.; Parkhutik, V. P. Synth. Met. 1995, 72, 105.
[146]Kaye, G. W. C.; Laby, T. H., Eds. Tables of Physical and Chemical Constants and Some Mathematical Functions, 15th ed.; Longman: London, 1986.
[147]Forsythe, W. E., Ed. Smithsonian Physical Tables, 9th rev. ed.; Smithsonian Institution: Washington, 1964.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top