跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳衍榮
研究生(外文):Yen-Jung Chen
論文名稱:氮化銦鎵薄膜之電子傳輸特性
論文名稱(外文):Electron transport in InxGa1-xN films
指導教授:梁啟德
指導教授(外文):Chi-Te Liang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:49
中文關鍵詞:氮化銦鎵電子傳輸
外文關鍵詞:InGaNInxGa1-xN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是探討在氮化銦鎵InxGa1-xN薄膜的電子傳輸性質中是否有金屬相關的性質。我們測量了大溫度範圍下(12 K< T < 315 K)氮化銦鎵薄膜的電子傳輸特性。我們利用 van der Pauw 四點量測法測量樣品的電阻並計算出電阻率。電阻率的數據顯示,我們的樣品InxGa1-xN 在x=1時,有一個由半導體到金屬轉變的現象。這也印證了氮化銦的傳輸特性優於氮化鎵。金屬電阻率在低溫下遵守 Bloch T^5 定理與高溫下遵守Bloch T 定理,而對於InxGa1-xN (x = 1)的樣品,我們檢查它的電阻率在低溫時符合Bloch T^5定理。
藉由此種特性,我們加以探討InxGa1-xN (x = 1)樣品在低溫的情況下,電子與聲頻聲子的交互作用所造成的現象。
This thesis focuses on electron transport properties of InxGa1-xN thin films. The transport measurements were performed on InxGa1-xN thin films over a wide temperature range (12 K< T < 315 K). The four independent van der Pauw measurements, each with 90∘rotation of contact configuration to measure the resistance of , were used. These samples show a tendency from semiconductor to metal with increasing x of InxGa1-xN , indicating InN electron transport properties are better than GaN. The resistivity of InN was best fitted with Block T^5 law. This supports the high In composition films can be considered as degenerate electron system in which the Fermi level is much higher than conduction band over the whole temperature range.
Taking this characteristic into consideration, in this thesis the phenomenon of the electron-acoustic phonon interactions were investigated under the low temperature condition.
口試委員會審定書...........................................i
誌謝......................................................ii
中文摘要.................................................iii
英文摘要..................................................iv

Chapter 1 Introduction....................................1

Chapter 2 Theoretical background
2.1 Van der Pauw method....................................5
2.2 Electrical transport properties.......................11
2.2.1 Ohm’s law and electrical conductivity..............11
2.2.2 Relaxation time approximation.......................14
2.3 Carrier mobility for Electron Gas.....................17
2.3.1 Acoustic-Phonon Scattering..........................18

Chapter 3 Experimental Instruments
3-1 Close-cycle system....................................24
3-2 Experimental progression..............................25

Chapter 4 Electrical properties of InxGa1−xN films
4.1 Temperature dependence of electrical resistivity......27
4.2 Analysis of experimental data.........................39

Chapter 5 Conclusions.....................................43

References................................................47
[1] S.Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano,and I. Akasaki, J. Appl. Phys. 85, 7682 (1999).
[2] Y. S. Liu, The Next Generation Lighting Technology- Semiconductor Lighting (Tsinghua University, Physics Colloquim, Hsinchu, Taiwan) (2004).
[3] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. Part 2 32, L8 (1993).
[4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. Part 2 35, L74 (1996).
[5] http://en.wikipedia.org/wiki/Indium_gallium_nitride.
[6] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).
[7] R. Juza and A. Rabenau, Z. Anorg. Allg. Chem. 285, 212 (1956).
[8] T. Renner, Z. Anorg. Allg. Chem. 298, 28 (1958).
[9] J. Pastrnak and L. Souckova, Phys. Status Solidi 3, 71 (1963).
[10] G. V. Samsonov, Nitridy Kiev (1969).
[11] H. J. Hovel and J. J. Cuomo, Appl. Phys. Lett. 20, 71 (1972).
[12] J. W. Trainor and K. Rose, J. Electron. Mater. 3, 821 (1974).
[13] K. Osamura, K. Nakajima, Y. Murakami, H. P. Shingu, and A. Ohtsuki, Solid State Commun. 11, 617 (1972).
[14] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46, 3432 (1975).
[15] N. Puychevrier and M. Menoret, Thin Solid Films 36, 141 (1976).
[16] T. Matsuoka, H. Tanaka, T. Sasaki, and A. Katsui, Proceedings of the Sixteenth International Symposium on GaAs and Related Compounds, Karuizawa, Japan, September 25-29, 1989 (Institute of Physics, Bristol,1990)
[17] A. Wakahara and A. Yoshida, Appl. Phys. Lett. 54, 709 (1989).
[18] A. Wakahara, T. Tsuchiya, and A, Yoshida, J. Cryst. Growth 99, 385 (1990).
[19] T. L. Tansley and R. J. Egan, Phys. Rev. B 45, 10942 (1992).
[20] T. L. Tansley and R. J. Egan, Mater. Res. Soc. Symp. Proc. 242, 395 (1992).
[21] A.Yamamoto, Y. Murakami, K. Koide, M. Adachi, and A. Hashimoto, Phys. Status Solidi B 228, 5 (2001).
[22] A.Yamamoto, T. Tanaka, K. Koide, and A. Hashimoto, Phys. Status Solidi A 194, 510 (2002).
[23] C. Stampfl, C. G. Van de Walle, D. Vogel, P. Kruger, and J. Pollmann, Phys. Rev. B 61, R7846 (2000).
[24] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002).
[25] Shih-Kai Lin, Electron transport in In-rich InxGa1-xN films (2005).
[26] L. J. Van der Pauw, Philips Research Report, No. 13, 1 (1958).
[27] David J. Griffiths, Introduction to electrodynamics (3rd edition), Prentice Hall (1999).
[28] Peter Y. Yu, Manuel Cardona, Fundamentals of Semiconductors (Springer-Verlag Berlin Heidelberg New York) (1998).
[29] Cz Jasiukiewicz and V Karpus, Semicond. Sci. Technol. 11, 1777 (1996).
[30] John H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press) (1998).
[31] B. K. Ridley, Electrons and Phonons in Semiconductor Multilayers (Cambridge University Press) (1997).
[32] H. L. Störmer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. B 41, Vol. 2 (1990).
[33] Shih-Kai Lin, Kun-Ta Wu, Chao-Ping Huang, C.-T. Liang, Y. H. Chang, Y. F. Chen, P. H. Chang, N. C. Chen, C. A. Chang, H. C. Peng, C. F. Shih, K. S. Liu, T. Y. Lin, J. Appl. Phys. 97, 046101 (2005).
[34] S. Aydogu and O. Ozbas, Materials Science in Semiconductor Processing 8 536–539 (2005).
[35] P. J. Price, Solid State Commun. 51, 607 (1984).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 方世杰、林麗娟、邱志芳(1993),參與研發聯盟廠商之知識創造與技術移轉績效-社會資本與經濟互動之觀點,管理評論,第22卷第3期,頁123-148。
2. 方世杰(1999),技術取得模式與技術取得績效之研究---電子業之實證分析,管理學報,第16卷第1期,頁139-168。
3. 方世杰(1999),產研研發聯盟之廠商特質、技術移轉特性、互動機制與績效之研究,管理學報,第16卷第4期,頁633-659。
4. 方世杰、林麗娟、鄭仲興(2000),合作研發之組織學習與績效的研究:參與工研院技術專案廠商,科技管理學刊,第5卷第3期,頁105-133。
5. 方世杰、林麗娟、邱志芳(2003),參與研發聯盟廠商之知識創造與技術移轉績效-社會資本與經濟性互動之觀點,管理評論,第22卷第3期,頁123-148。
6. 方世杰、林麗娟(2005),參與科技專案廠商之組織學習、社會資本與技術移轉之實證研究,管理學報,第22卷第3期,頁295-313。
7. 方世杰、蔡淑梨、羅育如(2005),從知識市場效率觀點探討組織知識之創造,中山管理評論,第13卷第二期,695-719。
8. 陳忠仁、蔡淑茹(2005),知識創造來源、知識管理能力及知識屬性對創新績效影響之研究-組織學習理論觀點,中山管理評論,第13卷第二期,389-416。
9. 曾銘深(1999),OECD國家推動產學合作的作法,經濟情勢暨評論,第五卷,第三期,頁80-98。