跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張博豪
研究生(外文):Po-Hao Chang
論文名稱:磁性雜質對多層結構的影響
論文名稱(外文):Effect of loossen spins on the Transmissioncoefficient of multilayers
指導教授:張慶瑞
指導教授(外文):Ching-Ray Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:49
中文關鍵詞:穿透係數磁性雜質量子位能井
外文關鍵詞:transmission coefficienttransfer-matrixquantum well
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們討論了磁性雜質的大小跟磁矩的方向對多層結構中穿透係數的影響。其中介紹了transfer-matrtix的方法,並且針對我們處理的結構所需引入了自旋座標轉換和機率流衰減因子來修改原始的transfer-matrix公式。
We discuss the e¤ects of the size, magnitude and orientation of magnetic
moment of magnetic impurities. To discuss the transport in quantum well
aspect, the systematic method which named transfer-matrix formalism is
needed for solving the transmission and refection probability.
1 Motivation 9
2 theoretical calculation 11
2.1 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 ferromaget region . . . . . . . . . . . . . . . . . . . . . 12
2.2 wave functions and eigenenergies . . . . . . . . . . . . . . . . 13
2.3 The transfer-matrix formalism . . . . . . . . . . . . . . . . . . 15
2.3.1 Single F/M case . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Generalized into N layers case . . . . . . . . . . . . . . 18
2.4 The modi…cation of the transfer-matrix formalism . . . . . . . 20
2.4.1 The spinor transformation?? . . . . . . . . . . . . . . . 20
2.4.2 The defusive case . . . . . . . . . . . . . . . . . . . . . 22
2.5 The Landuer formula . . . . . . . . . . . . . . . . . . . . . . . 25
3 Numerical Results and Discussions 27
3.1 Analyze the properties of transmission probability . . . . . . . 27
3.1.1 T vs L . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Transmission probability versus particle energy . . . . 36
4 Conclusion 45
A The derivation of some formula 47
A.1 Solve the eigenvalue problems for the ferromagnetic region . . 47
[1] J. C. Slonczewski Phys. Rev. B 39, 6995(1989)
[2] Jun Yang, Jun Wang, Z. M. Zheng, D. Y. Xing, and C. R. Chang, Phys.
Rev. B 73, 014432(2006)
[3] S. Datta, Electronic Transport in Mesoscopic Systems Cambridge Uni-
versity Press, Cambridge, U.K., 1995 .
[4] http://www.utdallas.edu/~frensley/technical/qtrans/node6.html#eqnj1d[5] S. Datta, Electronic Transport in Mesoscopic Systems Cambridge University Press, Cambridge, U.K., 1995
[6] http://www.utdallas.edu/ frensley/technical/qtrans/node6. html#eqnj1d
[7] Sakurai, Modern Quantum Mechanics
[8] Eugen Merzbacher, Quantum Mechanics
[9] Phys. Rev. B 52, 411
[10] P. Bruno, J. Magn. Magn. Mater 121, 248 (1993)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top