跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王建中
研究生(外文):Chien-Chung Wang
論文名稱:高溫下二維砷化鎵電子系統之巨大正磁阻研究
論文名稱(外文):Huge positive magnetoresistance in GaAs two-dimensional electron systems at high temperatures
指導教授:梁啟德
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:60
中文關鍵詞:砷化鎵二維電子氣巨大正磁阻高溫高電子遷移率
外文關鍵詞:GaAstwo-dimensional electron gasHuge positive magnetoresistancehigh temperaturehigh electron mobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This thesis describes the huge positive magnetoresistance of GaAs/AlGaAs high- and low-mobility sample structures at high temperatures. This thesis comprises the following two parts:

1. Huge positive magnetoresistance of GaAs/AlGaAs high electron mobility transistor structures at high temperatures

We have shown experimental evidence for huge positive magnetoresistance (PMR) of our high-mobility sample structures at high temperatures. The huge PMR can be described by a model which is based on macroscopic inhomogeneity within a 2D semiconductor and permits us to evaluate the density inhomogeneity of about 5.5 % in our systems. Because a GaAs-based HEMT is nonmagnetic, it is not influenced by ferromagnetic noise which seems to appear an essential challenge to the scalability of magnetic MR devices to ultrahigh area densities. In order to prevent conductance fluctuations, our sample needs to be larger than the elastic mean free path of our device. Most importantly, our experimental results lay the foundation for the experimental realization and scalability of a future generation of MR devices based on nonmagnetic semiconductors which are not susceptible to ferromagnetic noise.

2. Huge positive magnetoresistance of a low-electron-mobility system in the GaAs/AlGaAs heterostructure at high temperatures

We have performed magnetoresistivity measurements on a GaAs two-dimensional electron system containing self-assembled InAs quantum dots at high temperatures. For the GaAs-based low-electron-mobility sample structure, we observe the negative magnetoresistance in intermediate magnetic fields (B < 2 T) at high temperatures. This low-mobility sample shows large PMR for B > 3 T. The MR value is larger than 125 % at T=80 K and less than 200 % at T=20 K. I used the model which is studied in chapter 4 to calculate the density inhomogeneity . And I found it is much larger than that in our high-mobility sample structures.
Chapter 1
Introduction to two-dimensional electron system 1

1.1 Two-dimensional electron system in a GaAs/AlGaAs heterostructure.....................1
1.2 Density of states........................................................................................................2
References.......................................................................................................................8


Chapter 2
Theoretical Background 9

2.1 Classical Hall effect..................................................................................................9
2.2 Quantum Hall effect..................................................................................................11
2.2.1 Landau levels..................................................................................................11
2.2.2 The Shubnikov-de Haas effect.......................................................................13
2.2.3 Edge states......................................................................................................16
2.2.4 Landauer-Buttiker formalism........................................................................18
References.......................................................................................................................21


Chapter 3
Sample fabrication and experimental instrument 22

3.1 Sample structure......................................................................................................22
3.2 Cryogenic system: Sorption Pumped 3He cryostat..................................................23
3.2.1 Condensation of 3He.......................................................................................24
3.2.2 The temperature control.................................................................................25
3.2.3 Measurement of the four-terminal resistance.................................................25
Reference.......................................................................................................................27


Chapter 4
Huge positive magnetoresistance of GaAs/AlGaAs high electron mobility transistor structures at high temperatures 28

4.1 Introduction.............................................................................................................28
4.2 Background: The effective-medium approximation...............................................29
4.3 Experiment...............................................................................................................31
4.4 Data analysis............................................................................................................32
4.5 Summary..................................................................................................................42
References.....................................................................................................................43


Chapter 5
Huge positive magnetoresistance of a low-electron-mobility system in the GaAs/AlGaAs heterostructure at high temperatures 44

5.1 Introduction.............................................................................................................44
5.2 Sample structure......................................................................................................45
5.3 Magnetoresistance in a low-mobility two-dimensional electron gas......................46
5.4 Density inhomogeneity............................................................................................51
5.5 Summary..................................................................................................................55
References.....................................................................................................................57

Chapter 6
Conclusions 58

Reference.......................................................................................................................60
Chapter 1
[1] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33,
665 (1978).
[2] J. Singh, Physics of Semiconductors and Their Heterostructures, McGraw-Hill,
Inc (1993).
[3] Charles Kittel, Introduction to Solid State Physics, seventh edition 1996, John
Wiley and Sons, Inc.
Charpter 2
[1] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[2] H. Aoki and T. Ando, Phys. Rev. Lett. 54, 831 (1985).
[3] K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).
[4] J. Singh, Physics of Semiconductors and Their Heterostructures, McGraw-Hill
(1993).
[5] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[6] B. L. Johnson, and G. Kirczenow, Rep. Prog. Phys. 60, 889 (1997).
[7] Y.-T. Jiang, Master thesis, National Taiwan University (2006)
.
Chapter 3
[1] T.-Y. Huang, Master thesis, National Taiwan University (2001).
Chapter 4
[1] J. S. Moodera, L. Kinder, T. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
[2] For a review, see P. M. Levy, Solid State Phys. 47, 367 (1994).
[3] T. D. Boone, L. Folks, J. A. Katine, S Maat, E. Marinero, S. Nicoletti, M. Field, G. J.
Sullivan, A. Ikhlassi, B. Brar, and B. A. Gurney, IEEE Trans. Magn. 42, 3270 (2006).
[4] S. A. Solin, D. R. Hines, A. C. H. Rowe, J. S. Tsai, Yu. A. Pashkin, S. J. Chung, N. Goel, and M. Santos, Appl. Phys. Lett. 80, 4012 (2002).
[5] For example, see D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[6] D. A. G. Bruggeman, Ann. Phys. (Leipz.) 24, 636 (1935).
[7] R. Landauer, J. Appl. Phys. 23, 779 (1952).
[8] T. W. Noh, P. H. Song, and A. J. Sievers, Phys. Rev. B 44, 5459 (1991).
[9] D. Stroud, Phys. Rev. B 12, 3368 (1975).
[10] H. L. Stormer, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Solid State Commun. 84, 95 (1992).
[11] H. Stachowiak, Physica 45, 481 (1970).
[12] V. Guttal and D. Stroud, Phys. Rev. B 71, 201304(R) (2005).
[13] For example, see W. Pan, J. S. Xia, H. L. Stormer, D. C. Tsui, C. L. Vicente, E. D. Adams, N. S. Sullivan, L. N. Pfeiffer, K. W. Bladwin, and K. W. West, Phys. Rev. Lett. 95, 066808 (2005).
[14] R. Ilan, N. R. Cooper, and A. Stern, Phys. Rev. B 73, 235333 (2006).
Chapter 5
[1] D. G. Polyakov, F. Evers, A. D. Mirlin, and P. Wolfle, Phys. Rev. B 64, 205306
(2001).
[2] A. Endo, and Y. Iye, J. Phys. Soc. Jpn. 74, 1792 (2005).
[3] N. M. Sotomayor, G. M. Gusev, J. R. Leite, A. A. Bykov, A. K. Kalagin, V. M.
Kudryashev, and A. I. Toropov, Phys. Rev. B 70, 235326 (2004).
[4] E. S. Kannan, G.-H. Kim, and S. Kumar, I. Farrer, D. A. Ritchie, J.-H. Son, J.-M.
Baik, J.-L. Lee, D. H. Youn, and K.-Y. Kang, Appl. Phys. Lett. 90, 152110 (2007).
[5] Y.-T. Jiang, Master thesis, National Taiwan University (2006).
[6] V. Renard, Z. D. Kvon, G. M. Gusev, and J. C. Portal, Phys. Rev. B 70, 033303
(2004).
[7] D. A. G. Bruggeman, Ann. Phys. (Leipz.) 24, 636 (1935).
[8] D. Stroud, Phys. Rev. B 12, 3368 (1975).
[9] H. Stachowiak, Physica 45, 481 (1970).
[10] V. Guttal and D. Stroud, Phys. Rev. B 71, 201304(R) (2005).
Chapter 6
[1] D. G. Polyakov, F. Evers, A. D. Mirlin, and P. Wolfle, Phys. Rev. B 64, 205306
(2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊