跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巖正傑
研究生(外文):Cheng-Chieh Yen
論文名稱:硫化汞的生物效應及毒理機制的研究
論文名稱(外文):THE STUDY OF BIOLOGICAL EFFECTS AND TOXIC MECHANISMS OF MERCURIC SULFIDE
指導教授:蕭水銀蕭水銀引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:181
中文關鍵詞:硫化汞器官分布細胞毒性螯合劑冷蒸氣原子吸收光譜
外文關鍵詞:mercurytissue distributionV79 cellscytotoxicitypyrrolidine dithiocarbamatecold-vapor atomic absorption spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
汞是目前環境中污染較嚴重的重金屬之一,它以元素汞、無機汞及有機汞三種型式在環境中循環。雖然相關文獻針對於汞金屬化合物的毒性作用探討相當多,但對中醫用藥---硃砂之主成份,亦即硫化汞 (HgS)的毒性研究卻不多,根據記載硃砂又名辰砂,在神農本草經中列為上品,具有“清心鎮靜,安神解毒”的功能,隨著硃砂應用歷史的演變,《本草綱目》記述“入火則熱而有毒能殺人”即因為硫化汞加熱分解,使汞游離出來,而《本草從新》更有”獨用多用,令人呆悶”的敘述。近年來在大陸有臨床報告指出誤用硃砂的毒性反應,而臺灣亦有小兒八寶散的重金屬污染問題。因此,釐清硫化汞化合物藥效與毒性間相關性及其重要之毒性效應生物指標的建立是相當重要的。本研究將從硫化汞在生物組織及細胞樣品之分析技術建立與驗證、細胞毒性機制之探討與比較以及螯合劑在其毒性表現之影響等方向逐步架構出硫化汞之生物效應與毒理機制。
首先,生物樣品中的汞含量可以藉由流注分析系統結合冷蒸氣原子吸收光譜儀的技術加以定量。然而,在石英管內的水氣凝結卻會干擾訊號進而影響分析結果。本部份的研究主要探討在流注分析系統中多加一組氣-液分離器是否能有效處理上述汞分析之問題及其實用性。經過修改後之系統可以有效地降低管路及石英管內的水氣干擾問題。同時,將此技術應用於分析汞在經過5天連續餵食2 mg MeHg/KgBW甲基汞或0.1 g HgS/Kg BW 之硫化汞的鼷鼠體內主要器官的汞含量及分佈。硫化汞在器官內的累積程度約為甲基汞的五千分之ㄧ。此外,鼷鼠在經過28天連續餵食0.2mg 或 2 mg/ kg BW之甲基汞以及0.1 g 或1 g/ kg BW之硫化汞之後,結果顯示硫化汞在器官內的累積程度約為甲基汞的七千分之ㄧ(2 mg MeHg vs. 0.1 g HgS)到三十萬分之ㄧ(0.2mg MeHg vs. 0.1 g HgS; 2 mg MeHg vs. 1 g HgS)。證實非水溶性的硫化汞在腸胃道可以被微量吸收並分佈到其他的器官(包括大腦、小腦、肝、腎、肺、心、睪丸、胃等)。此外,經餵食0.2mg / kg BW之甲基汞以及0.1 g / kg BW之硫化汞的鼷鼠,收集並分析由糞便排出之汞含量分別佔其總餵食量之57.9% 及61.0%。
甲基汞及氯化汞對細胞毒性已有相當深入的研究,但是硫化汞的藥物動力學及毒性效應卻仍需更進一步的探討。在之前的研究發現硫化汞可以由動物的腸胃道吸收,並分佈到各主要器官包括肺。本部份的研究首先發現硫化汞對動物之生物效應與能降低鼷鼠肺、肝、腎組織之 GSH含量及增加肺部脂質過氧化產物、抑制肺、肝、腎組織之SOD酵素活性及增加氧化性物質(as H2O2)而刺激腎組織之catalase 酵素活性有關。進一步以倉鼠肺部纖維母細胞(V79 cell)為標的與甲基汞及氯化汞做比較。實驗數據顯示,硫化汞對V79 細胞存活率的IC 50濃度為795.6 µM明顯高於氯化汞(8.1µM)及甲基汞(5.9µM)。此外,硫化汞亦會造成細胞產生DNA傷害,增加氧化性物質及脂質過氧化物、降低粒線體膜電位、ATP及GSH含量,和氯化汞或甲基汞之作用類似,但毒性較緩和。
比較細胞外汞離子濃度較接近之1200µM硫化汞、10µM氯化汞及10µM甲基汞的細胞毒理作用機制。數據顯示,1200µMHgS在細胞暴露8-24小時產生time-dependent之毒性效應,而細胞內的氧化性物質含量在細胞暴露0.5小時就產生,顯著增加持續到暴露2小時,比10µM氯化汞或甲基汞更為顯著,而氧化性物質之產生亦比粒線體膜電位之下降更早發生,顯示是氧化性傷害導致粒線體之損傷。而更進一步探討GSH生合成之重要酵素γ-GCS之活性顯示三種汞化合物皆會抑制γ-GCS之活性,而其酵素活性IC 50之濃度分別為1650µM(HgS),8.5µM(HgCl2)及5.1µM(MeHg)。此外,低濃度的汞化合物暴露導致細胞產生凋亡,但高濃度的氯化汞及硫化汞及會產生細胞壞死,而高濃度的甲基汞則是同時增加細胞凋亡及壞死。
PDTC(Pyrrolidine dithiocarbamate是 dithiocarbamate的穩定衍生物,具有抗氧化及金屬螯合劑之功用。因汞離子對硫氫基具有高度親和力,推論PDTC可能會與硫化汞產生交互作用,而增加游離汞離子的含量,並且以PDTC-Hg的形式進入細胞。為驗證此一假說,選用倉鼠肺部纖維母細胞(V79 cell)探討PDTC對硫化汞的吸收與細胞毒性之影響。實驗數據顯示,同時暴露5µM PDTC及硫化汞會明顯增加細胞內的汞含量達3.4-10.7倍,而細胞毒性亦較硫化汞單獨暴露增加8倍。細胞內氧化性物質明顯增加,降低粒線體膜電位及GSH含量,同時導致細胞凋亡。
實驗顯示,非水溶性的硫化汞在腸胃道可以被微量吸收並分佈到其他的器官,經過5及28天餵食實驗,其在器官內的累積程度約為甲基汞的五千分之ㄧ(2 mg MeHg vs. 0.1 g HgS;5 days)到約三十萬分之ㄧ(0.2mg MeHg vs. 0.1 g HgS; 2 mg MeHg vs. 1 g HgS;28 days)。在細胞毒性部份,硫化汞和氯化汞及甲基汞皆會藉由增加細胞內氧化性壓力導致粒線體膜電位下降,抑制γ-GCS活性並降低GSH含量而產生細胞毒性,但其作用機制略有不同,硫化汞造成較明顯之活性氧化物質,但對GSH之生合成抑制作用較小,減輕其傷害。此外,金屬螯合劑(PDTC)能增加硫化汞被細胞吸收而增加毒性。
綜合實驗結果證明硫化汞之生物毒性與累積性較甲基汞及氯化汞為低,而更進一步探討其訊息調控機制之差異與活性氧化物質在其生物效應所扮演之角色,將是未來重要之課題。
Althought the toxic effects of mercuric chloride (HgCl2) and methylmercury chloride (MeHg) have been extensively studied, the insoluble HgS (the main constituent of a Chinese mineral drug, cinnabar, used as a sedative) was subjected fewer studies, and it has not been given the attention it needs.
Mercury contents in biological samples can be measured by cold vapor atomic absorption spectroscopy (CVAAS) combined with the flow injection analysis system (FIAS). However, water vapor in the absorption cell attenuated and distorted the signals. This study described the strategy to overcome this problem by adding an additional gas/liquid separator after the mixing/separator assembly. This modification can efficiently minimize the moisture in the transfer line and in the absorption cell. This improved technique was adopted to study the differential tissue distribution of MeHg and HgS after oral administration to the mice for 5 or 28 consecutive days. The present study suggests that the insoluble HgS can still be absorbed from gastrointestinal tract and distributed to various tissues including the brain. As compared with MeHg, the total amount of HgS accumulated in the tissues ranging about one five thousandth of MeHg (2 mg MeHg vs. 0.1 g HgS;5 days) or about 0.3 million times of that of HgS (0.2mg MeHg vs. 0.1 g HgS; 2 mg MeHg vs. 1 g HgS;28 days). In addition, the total Hg excreted by the feces was 34.99 mg (0.1g Hg) and 0.13 mg (0.2 mg MeHg), which were about 57.9% (0.1g Hg) and 61.0% (0.2 mg MeHg) of total administration of Hg in the mice, respectively.
Although the cytotoxic effects of mercuric chloride (HgCl2) and methylmercury chloride (MeHg) have been extensively studied, the insoluble HgS was subjected fewer studies. Because the traditional Chinese mineral drug, cinnabar (containing >95% HgS) has been and still currently used as an indispensable ingredient of sedative for infants, the pharmacological and toxicological effects of HgS need to be elucidated. In our previous experiments, HgS and cinnabar can still be absorbed from G-I tract and distributed in various tissues including lung. Therefore, in this experiment, a preliminarily examination of whether HgS could exert any oxidative stress in the mouse lung. Indeed, HgS reduced GSH contents and increased lipid peroxidation in the lung. Further studies on the cytotoxic effects and the possible action mechanisms of HgS were compared with those of HgCl2 and MeHg in the cultured lung fibroblast V79 cells. The results showed that HgS produced cytotoxic effects in a concentration (400-1200 μM) dependent manner with IC50 of 795.6 μM, as compared with those of HgCl2 and MeHg, 8.1 μM and 5.9 μM, respectively. In addition, the events of DNA fragmentation, increasing reactive oxygen species and decreasing mitochondrial membrane potential followed by decreased levels of intracellular ATP and GSH as well as increasing lipid peroxidation levels, were induced by HgS similar to those induced by HgCl2 and MeHg but with different toxicokinetic properties.
In our previous experiments, we have found that HgS and cinnabar can still be absorbed from G-I tract and produce ototoxicity. In addition, we have also demonstrated that HgS can be distributed in various tissues including lung. Therefore, in this experiment, we have examined on the cytotoxic mechanisms of HgS which were compared with those of HgCl2 and MeHg in the cultured lung fibroblast V79 cells. The results obtained showed that 1200 μM HgS produced cytotoxic effects in a time (8-24hr) dependent manner. Analysis of the time course (0.5~2 hr) of cellular oxidative stress produced by the mercurial compounds, we found that a sequential events of increasing reactive oxygen species and 1200 μM HgS was more potential than 10 μM HgCl2 and MeHg. In addition, the adverse effect produced by HgS on the activity of γ-GCS with IC50 of 1650 μM, which was higher than those of HgCl2 (8.5 μM) and MeHg (5.1 μM), respectively. Furthermore, V79 cells died by the apoptotic pathway after exposure for 24 hr of lower concentration mercurial compounds.
Pyrrolidine dithiocarbamate (PDTC), a stable analog of dithiocarbamate(DC), possesses antioxidant and metal chelating properties. Based on its high affinity toward thiol-containing group of Hg ions, we proposed that PDTC may chelate HgS to form a complex and thus enhanced the production of free Hg ion in cell culture medium and then transported into cells as a complex form of PDTC-Hg. In order to verify this proposal, we attempted in this study to investigate the effects of PDTC on the uptake and cytotoxic effects of HgS in the cultured lung fibroblast V79 cells. The results indicated that mercury contents (6.29×10-2 -0.41µg/mg protein) of V79 cells after treatment with HgS plus 5µM PDTC were significantly higher by 3.4-10.7 fold than those(5.87×10-3 -0.12µg/mg protein) treated with HgS alone. The signaling pathways of the enhanced cytotoxic effects (by 8 fold) induced by PDTC-Hg complex is compared with HgS alone were studied which suggested that PDTC-Hg complex markedly produced reactive oxygen species (ROS) followed by decreased intracellular contents of GSH, ATP and induction of cell necrosis. These findings provide for the first time the cellular mechanisms of enhanced cytotoxic effects of PDTC-Hg complex. The impact of this information on the dramatic enhancement of the frequently used PDTC as on agricultural pesticide on the biological toxicity of the precipitated waste HgS in the environment merits for further investigation.
Our data suggesting the HgS similar to the well known HgCl2 and MeHg induced cytotoxic effects of cultured V79 cells major through evaluated oxidative stress, γ-GCS inhibition, GSH depletion and disruption of mitochondrial membrane potential, but with a different toxicokinetic property. In addition, insoluble HgS (the main constituent of a Chinese mineral drug, cinnabar) can still be absorbed from gastrointestinal tract and distributed to various tissues. These findings provide for the useful information for understanding the mechanisms of toxic effects of HgS and cinnabar used in Chinese traditional mineral medicine.
口試委員會審定書­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-­­­­i
誌謝­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-­­­­ii
英文縮寫表­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-­­­­iii~iv
中文摘要­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-­­­v~vii
英文摘要­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­vii~x

第一章TISSUE DISTRIBUTION OF DIFFERENT MERCURIAL
COMPOUNDS ANALYZED BY THE IMPROVED FI-CVAAS
中文摘要­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 2
Abstract­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 2~3
Introduction­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 3~5
Materials and Methods­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 6~10
Results­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­10~14
Discussion­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­14~21
Reference­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­21~27
Figures­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­28~34
Tables­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­35~38

第二章STUDIES ON CELLULAR OXIDATIVE SIGNALINGS INVOLVED
IN CYTOTOXICITY INDUCED BY MERCURIC SULFIDE
中文摘要­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­40
Abstract­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­40~41
Introduction­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­41~44
Materials and Methods­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­44~52
Results­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­52~55
Discussion­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­55~60
Reference­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-60~66
Figures­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­67~75
Tables­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­76

第三章STUDIES ON THE MECHANISMS INVOLVED IN CYTOTOXICITY
INDUCED BY MERCURIC SULFIDE
中文摘要­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­78
Abstract­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­78~79
Introduction­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­79~82
Materials and Methods­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­82~86
Results­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­86~88
Discussion­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­89~92
Reference­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­92~97
Figures­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­98~115
Tables­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­116

第四章PYRROLIDINE DITHIOCARBAMATE ENHANCED CELLULAR
OXIDATIVE SIGNALINGS AND CYTOTOXICITY INDUCED BY
MERCURIC SULFIDE
中文摘要­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­118
Abstract­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­118~119
Introduction­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­119~122
Materials and Methods­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­122~127
Results­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­127~129
Discussion­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­130~135
Reference­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­135~141
Figures­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-142~151

第 五 章 BIOLOGICAL EFFECTS AND TISSUE DISTRIBUTION OF
DIFFERENT MERCURIAL COMPOUNDS FOLLOWING ORAL
ADMINISTRATION IN MICE
中文摘要­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­153
Abstract­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­153~154
Introduction­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­154~156
Materials and Methods­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­157~160
Results­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­160~163
Discussion­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­163~166
Reference­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­166~170
Figures­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-171~181

附 錄­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­-182~230
第 一 章
Aikoh, H., and Shibahara, T.,1993. Determination of mercury levels in human urine and blood by ultraviolet-visible spectrophotometry. Analyst. 118, 1329-1332.
Al-Shahristani, H., and Shihab, K., M.,1974. Variation of biological half-life of methylmercury in man. Arch. Environ. Health. 28, 342-344.
Ballatori, N., and Clarkson, T. M., 1984. Inorganic mercury secretion into bile as a low molecular weight complex. Biochem. Pharmacol. 33, 1087-1092.
Berlin, M., Mercury. In: Handbook on the toxicology of metals. L.Friberg,G. F. Nordberg, and V. Vouk. Eds., Vol II, Elsevier, Amsterdam, 1986, pp. 387 - 445.
Blotcky, A. J., Claassen, J. P., Fung, Y. K., Meade, A.G., and Rack, E. P., 1995. Optimization of procedures for mercury-203 instrumental neutron activation analysis in human urine. J. Radio. Nucl. Chem. 195,109-116.
Boyd, A. S., Seger D., Vannucci, S., Langley, M., Abraham, J. L., and King, Jr L. E. ,2000. Mercury exposure and cutaneous disease. J. Amer. Acad. Derm. 43,81-90.
Burguera, J. L., and Burguera, M.. 1988. Evaluation of ten digestion methods for use prior to mercury determination. J. Food Comp. Anal. 1,159-165.
Campos, R. C., Port da Silveria, C. L., and Lima, R., 1997. Detection limits for Hg determination by CV-AAS and CV-ICP-AES using gold trap preconcentration. At. Spectrosc. 18, 55-59.
Carmignani, M., Finelli, V. N., and Boscolo, P., 1983. Mechanisms in cardiovascular regulation following chronic exposure of male rats to inorganic mercury. Toxicol. Appl. Pharm. 69, 442-450.
Carrier, G., Brunet, R.C., Caza M. and Bouchard, M., 2001.Atoxicokinetic model for predicting the tissue distribution and elimination of organic and inorganic mercury following exposure to methylmercury in animals and humans. I. Development and validation of the model using experimental data in rats. Toxicol. Appl. Pharmacol. 171,38-49.
Cember, H., 1962The influence of the size of the dose on the distribution and elimination of inorganic mercury Hg(NO3)2 in the rat. Am. Ind. Hyg. Assoc. J. 23,304-313.
Chuu, J. J., Hsu, C. J., and Lin-Shiau, S. Y., 2001.Abnormal auditory brainstem responses for mice treated with mercurial compounds: involvement of excessive nitric oxide. Toxicology 162, 11-22.
Corns, W. T., Ebdon, L. C., Hill, S. J., and Stockwell, P. B., 1992. Effects of moisture on the cold vapor determination of mercury and its removal by use of a membrane dryer tube. Analyst. 117, 717.
Coyle, P. and Hartley, T., 1981. Automated determination of mercury in urine and blood by the Magos reagent and cold vapor atomic absorption spectrometry. Anal. Chem. 53, 354-356.
de Vargus, M. C. and Ronero, R. A., 1989. Alternative mineralization procedures for total mercury determination in biological materials by cold vapor atomic absorption spectrometry. At. Spectrosc. 10, 160-164.
Espinza, E. O., Mann, M. J. and Bleasdell, B., 1995. Arsenic and mercury in traditional Chinese herbal balls. N. Eng. J. Med. 333,803-804.
Farris, F. F., Dedrick, R. L., Allen, P. V. and Smith, J. C., 1993. Physiological model for the pharmacokinetics of methyl mercury in the growing rat. Toxicol. Appl. Pharm. 119,74-90.
Gallego, M., Castro, M. D. L., and Valcarcel, M., 1985. Atomic spectroscopic techniques in flow injection analysis: A review. At. Spectrosc. 6, 16-22.
Gerhardsson, L., and Skerfving, S., Concepts on Biological Markers and Biomonitoring for Metal Toxicity. In Toxicology of Metals., eds. L.W. Chang, Eds. CRC Press, Inc., Boca Raton, Florida, 1996, pp81-107.
Hanna, C. P., Tyron, J. F. and McIntosh, S., 1993. Determination of total mercury in waters and urine by flow injection atomic absorption spectrometry procedures involving on-and off-line oxidation of organomercury species. Anal. Chem. 65,653-656.
Hardisson, A., Gonzalez Padron, A., de Bonis, A. and Sierra, A., 1999. Determination of mercury in fish by cold vapor atomic absorption spectrometry. At. Spectrosc. 20,191-193.
Horvat, M., Covelli, S., and Faganeli, J., 1999. Mercury in contaminated coastal environments, a case study: the Gulf of Trieste. Sci.Total. Environ. 237,43-56
Kang-Yum, E. and Oransky, S. H., 1992. Chinese patent medicine as a potential source of mercury poisoning. Vet. Hum. Toxicol. 34,235-238
Kawada, J., Nishida ,M., Yashimura, Y. and Mitani, K., 1980. Effects of organic and inorganic mercurials on thyroidal functions. J. Pharm. Dynamics. 3,149-159.
Kershaw, T. G., Clarkson ,T. W. and Dhahir, P. H. , 1980. The relationship between blood levels and dose of methylmercury in man. Arch. Environ. Health. 35, 28-36.
Kuldvere, A., 1982. Apparent and renal reducing ability of polypropylene in cold-vapor atomic-absorption spectrophotometric determinations of mercury. 107,179-184.
Lippo, H., Jauhiainen, T., and Peramaki, P., 1997. Comparison of digestion methods for the determination of total mercury in environmental samples by flow injection CV-AAS. Atom. Spectrosc. 18,102-108.
Littejohn, D., Fell, G. S. and Ottaway, J. M., 1976. Modified determination of total and inorganic mercury in urine by cold vapor atomic absorption spectrometry. Clin. Chem. 22: 1719-1723.
Litman, R., Finston, H. L., and Williams, E.T., 1975. Evaluation of sample pretreatments for mercury determination. Anal. Chem. 47, 2364-2369.
Margel, S., and Hirsh, J., 1984. Reduction of organic mercury in water, urine, and blood by sodium borohydride for direct determination of total mercury content. Clin. Chem. 30, 243-245.
Marie, V., Mottet, N. K., Friberg, L., Lind, B., Shen, D. D. and Burbacher, T., 1994. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol. Appl. Pharm. 124, 221-229.
Miura, K., Naganuma, A., Himeno, S., and Imura, N. Mercury Toxicity. In Handbook of Experimental Pharmacology vol. 115. Toxicology of Metals - Biochemical Aspects. R.A. Goyer,and M.G. Cherian, Eds. Springer-Verlag, Berlin,1995, pp163-187.
Nixon, D. E., Mussmann, G. V. and Moyer, T.P., 1996. Inorganic, organic, and total mercury in blood and urine: cold vapor analysis with automated flow injection sample delivery. J. Anal. Toxicol. 20, 17-22.
Non, M. F. Md., Hamid, T. Abd., and Ismail, Z., 1998. Determination of mercury in urine by on-line digestion with a flow injection mercury system. At. Spectrosc. 19, 95-99,.
Rhee, H. M., and Choi, B. H., 1989. Hemodynamic and electrophysiological effects of mercury in intact anesthetized rabbits and in isolated perfused hearts. Exp. Mol. Path. 50, 281-290.
Rowland, I. R., Davie, M. J., and Evans, J. G., 1980. Tissue content of mercury in rats given methylmercuic chloride orally: influence of intestinal flora. Arch. Environ. Health. 35, 155-160.
Ryo-Segade, S., and Bendichou, C., 1999. Determination of total and inorganic mercury in biological and environmental samples with on-line oxidation coupled to flow injection-cold vapor atomic absorption spectrometry. Spectrochim. Acta Part B. 54,1129-1139.
Sakuma, A. M., deMaio, F. D., Utishiro, R.Q., Kira, C.S., de Fatima, M., 1999. Carvalho H., and Lichtig J. Optimization of parameters for trace inorganic mercury determination in urine by flow injection cold vapor AAS. At. Spectrosc. 20, 186-190.
Schuhmacher, M., Batiste, J., . Bosque, M. A, Domingo, J. L. and Corbella, J., 1994. Mercury concentrations in marine species from the coastal area of Tarragona Province, Spain. Dietary intake of mercury through fish and seafood consumption. Sci. Total Environ. 156,269-273.
Sin, Y. M., Lim, Y. F., and Wong, M.K.,1983. Uptake and distribution of mercury in mice from ingesting soluble and insoluble mercury compounds. Bull. Environ. Contam. Toxicol. 31,605-612.
Sin, Y. M., The, W. F. and Wong, M. K., 1989. Absorption of mercuric chloride and mercuric sulphide and their possible effects on tissue glutathione in mice. Bull. Environ. Contam. Toxicol. 42,307-314.
Sin, Y. M., The, W. F., Wong, M. K., and Reddy, P. K., 1990. Effect of mercury on glutathione and thyroid hormones. Bull. Environ. Contam. Toxicol. 44,616-622.
Stuart, D. C., 1978. Radiotracer investigation of the cold-vapour atomic absorption method of analysis for trace mercury. Anal. Chim. Acta. 101,429-432.
Stuart, D. C., 1978. Trace mercury analysis in biological material: use of 203Hg-labelled methylmercury chloride for in vivo labeling of fish to study the efficacy of various wet ashing procedures. Anal. Chim. Acta. 96,83-88.
Tsalev, D. L., Mercury. In: Atomic Absorption Spectrometry in Occupational and Environmental Health Practice. Vol III. Progress in Analytical Methodology. D. L. Tsalev. Eds. CRC Press. Inc., 2000 Corporate Blvd., N.W. Boca Raton, Florida, 1995, pp151-162.
Tsalev, D. L., Sperling, M., and Welz , B., 1992. On-line microwave sample pre-treatment for hydride generation and cold-vapour atomic absorption spectrometry. Part 1 The manifold. Analyst. 117: 1729-1733.
Tsalev, D. L., Sperling, M, and Welz, B., 1992. On-line microwave sample pre-treatment for hydride generation and cold-vapour atomic absorption spectrometry. Part 2 Chemistry and applications. Analyst. 117, 1735-1741.
Vassallo, D. V., Moreira, C. M., OliveirE,. M. Bertollo, D. M. and Veloso, T. C., 1999. Effects of mercury on the isolated heart. Toxicol. Appl. Pharm. 156,113-118.
Welz, B., The Techniques of Atomic Absorption Spectrometry. In Atomic Absorption Spectrometry. Second Completely Revised Edition, VCH, Verlagsgesellschaft mbH, Weinheim, Germany, 1985, pp243-250.
Welz, B., The Individual Elements. In Atomic Absorption Spectrometry. Second Completely Revised Edition, VCH, Verlagsgesellschaft mbH, Weinheim, Germany, 1985, pp300-304.
Welz, B. and Schubert-Jacobs, M., 1991. Evaluation of a flow injection system and optimization of parameters for hydride generation atomic absorption spectrometry. At. Spectrosc. 12, 91-104.
Welz, B., Tsalev, D. L. and Sperling, M., 1991. On-line microwave sample pretreatment for the determination of Hg in water and urine by flow-injection cold-vapour atomic absorption spectrometry. Anal. Chim. Acta. 261, 91-103.
Yeoh, T. S., Lee, A. S. and Lee, H. S., 1986. Absorption of mercuric sulphide following oral administration in mice. Toxicol. 41, 107-111.
Zalups, R. K., and Barfuss, D. W., 1998. Participation of mercuric Conjugates of cysteine, homocysteine, and n-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury. J. Am. Soc. Nephrol. 9,551-561.

第 二 章
Aebi, H., 1974. Catalase. In: Bergmeyer H.U., ed. Methods of enzymatic analysis,, pp673-678, Weinheim: Verlag Chemie.2.
Andersen, H.R., and Andersen, O., 1993. Effects of dietary alpha- tocopheral and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice. Pharmacol. Toxicol. 73, 192-201.
Ariza, M. E., Bijur, G. N., and Williams, M.V.,1998. Lead and mercury mutagenesis role of H2O2 , superoxide dismutase, and xanthine oxidase. Environ. Mol. Mutagen. 31,352-361.
Ariza, M.E., and Williams, M.V.,1996. Mutagenesis of AS52 cells by low concentrations of lead(Ⅱ) and mercury (Ⅱ). Environ. Mol. Mutagen. 27,30-33.
Barregard L., Sallsten G., Conradi N., 1999. Tissue levels of mercury determined in a decreased worker after occupational exposure. Int. Arch. Occup. Environ. Health. 72:169~173.
Belletti, S., Orlandini, G., Vettori, M.V., Mutti, A., Uggeri, J., Scandroglio, R., Alinovi, R., and Gatti, R.,2002. Time course assessment of methylmercury effects on C6 glioma cells: Submicromolar concentrations induce oxidative DNA damage and apoptosis. J. Neurosci. Res. 70,703-711.
Ben, H. C., Simon, Y., and Mario, R., 1996. The effects of glutathione glycoside in methylmercury poisoning. Toxicol. Appl. Pharmacol. 141,357-364.
Ben-Ozer, E.Y., Rosenspire, A.J., McCabe, Jr. M.J., Worth, R.G., Kindzelskii, A.L., Warra, N.S., and Petty, H.R.,2000. Mercuric chloride damages cellular DNA by a non-apoptotic mechanism. Mutat. Res. 470,19-27.
Bruce, J. S., Gou, T.L., and Shapiro, I.M. ,1998. Low-level methylmercury exposure causes human T-cells to undergo apoptosis:evidence of mitochondiral dysfunction. Environ. Res. Sec. A .77,149-159.
Chatterzee, S., Noack, H., Possed, H., Kellhoff, G., and Wolf, G.,1999. Glutathione levels in primary glial cultures: Monochlorobimme provides widence of cell type-specific distribution. GLIA. 27,152-161.
Chen, Y.W., Huang, C.F., Tsai, K.S., Yang, R.S., Yen, C.C., Yang, C.Y., Lin-Shiau, S.Y., and Liu, S.H., 2006. The role of phosphoinositide 3-kinase/Aktsignaling in low-dose mercury-induced mouse pancreatic β-cell dysfunction in vitro and in vivo. Diabetes.55,1614-1624.
Chung, J. H., Seo, J.Y., Lee, M.K., Eun, H.C., Lee, J.H., Kang, S., Fisher, G.J., and Voorhees, J.J.,2002. Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J. Invest. Dermatol. 119,507-512.
Chuu, J.J., Hsu, C.J., and Lin-Shiau, S.Y.,2001. Abnormal auditory brainstem responses or mice treated with mercurial compounds: involved of excessive nitric oxide. Toxicology. 162,11-22.
Clarkson, T.W., and Magos, L.,2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36,609-662.
Cossarizza, A., Franceschi, C., Monti, D., Salvioli, S., Bellesia, E., Rivabene, R., Biondo, L., Rainaldi, G., Tinar, A., and Malorni, W.,1995. Protective effect of N-acetylcysteine in tumor necrosis factor-α- induced apoptosis in U937 cells: the role of mitochondria. Exp. Cell Res. 220,232-240.
Denozot, F., and Lang, R.,1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth. 89,271-277.
Fuhr B.J., and Rabenstein D.L., 1973. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. Ⅸ. The binding of cadmium,zinc,lead,and mercury by glutathione. J. Amer.Chem.Soc. 95, 6944-6950.
Gerhardsson, L., and Skerfving, S.,1996. Concepts on Biological Markers and Biomonitoring for Meal Toxicity. In Toxicology of Metals. (Chang L.W., Eds.). pp.81-107. CRC Press, Boca Raton, Florida.
Gou, T.L., Miller, M.A., Shapiro, I.M., and Shenker, B.J.,1998. Mercuric chloride induces apoptosis in human T lymphocytes: evidence of mitochondrial dysfunction. Toxicol. Appl. Pharmacol. 153,250-257.
Gutteridge, J.M.C., and Quinlan, G.J.,1983. MDA formation from lipid peroxides in the TBA test: the role of lipid radicals, iron salts, and metal chelators. J. Appl. Biochem. 5,293-302.
Hare, M.F., McGinnis, K.M., and Atchison, W.D.,1993. Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108-15 cells. J. Pharmacol. Exp. Ther. 266,1626-1635.
Hoffmeyer, R.E., Singh, S.P., Doonan, C.J.,Ross, A.R.S.,Hughes, R.J., Pickering, I.J., and George, G.N.,2006. Molecular mimicry in mercury toxicology. Chem.Res.Toxicol. 19,753-759.
Huang, Z.Y., Shen, J.C., Zhuang, Z.X. Wang, X.R., and Lee, F. S.C., 2004. Investigation of metal-binding metallothioneins in the tissues of rat after oral intake of cinnabar. Anal.Bioanal.Chem. 379,427-432.
Koh, L.L., Wong, M.K., Ng, S.C., and Soh, S.M.,1976. Mercury in Chinese medicine. Technical report 5. Institute of Natural Sciences, Nanyang University, Singapore.
Konigsberg, M., Cope-Diazguerrero, N.E., Bucil,C., and Gutierrez-Ruiz, M.C., 2001. Uncoupling effect of mercuric chloride on mitochondira isolated from an hepatic cell line. J. Appl. Toxicol. 21,323~329.
Lide, D.R., 1990, CRC Handbook of Chemistry and Physics, 71st ed., Boca Raton, Florida, CRC Press, Inc.
Limke, T.L.,and Atchison, W.D.,2002. Acute exposure to methyl- mercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Toxicol. Appl. Pharmacol. 178, 52–61.
Mariggio, M.A., Minunno, V., Riccardi, S., Santacroce, R., De Rinaldis, P., and Fumarulo, R.,1998. Sulfide enhancement of PMN apoptosis. Immunol. Immunotoxicol. 20,399-408.
Marty, M. S., and Atchison, W. D.,1997. Pathways mediating Ca2+
entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol. Appl. Pharmacol.147, 319–330.
Marty, M. S., and Atchison, W. D.,1998. Elevations of intracellular Ca2+ as a probable contributor to decreased viability in cerebellar granule cells following acute exposure to methylmercury. Toxicol. Appl. Pharmacol. 150,98–105.
McKelvey-Martin, V.J., Green, M.H., Schmezer, P., Pool-Zobel, B.L., DeMeo, M.P., and Collins, A.,1993. The single cell gel electrophoresis assay (comet assay): A European review. Mutat. Res. 288, 47-63.
Miyajima, A., Nakashima, J., Yoshioka, K., Tachibana, M., Tazaki, H., and Murai, M.,1997. Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br. J. Cancer. 76,206-210.
Monnet-Tschudi, F., Zurich, M.G., Boschat, C., Corbaz, A., and Honegger, P., 2006. Involvement of environmental mercury and lead in the etiology of neurodegenerative disease. Rev. Environ. Health.21, 105-117.
Nichol, J., Bradbury, S., and Swartout, J.,1999. Derivation of wildlife values for mercury. J. Toxicol. Environ. Health. Part B. 2,325-355.
Oram, P.D., Fang, X., Fernando, Q., Letkeman, P., and Letkeman, D.,1996. The formation of constants of mercury (Ⅱ)-glutathione complexes. Chem. Res. Toxicol. 9,709-712.
Pourahmad, J., Mihajlovic, A., O’Brien, and P.J.,2001. Hepatocyte lysis induced by environmental metal toxins may involve apoptotic death signals initiated by mitochondrial injury. Adv. Exp. Med. Biol. 200,249-252.
Ratcliffe, H.E., Swanson, G.M., and Fisher, L.J., 1996. Human exposure to mercury: a critical assessment of the evidence of adverse health effects. J. Toxicol. Environ. Health. 49,221-270.
Sarafian, T., Hagler, J., Vartavarian, L., and Verity, M.A.,1989. Rapid cell death induced by methyl mercury in suspension of cerebellar granule neurons. J.Neuropathol. Exp. Neurol. 48,1-10.
Shamy, M.Y., EL-Gazzar, R.M., Taleb, A.N., Christie, N.T., and Elsaid, K.F.,1995. Somatic cell mutation in workers occupationally exposed to mercury vapors. J. Environ. Pathol. Toxicol. Oncol. 14,165-171.
Shenker, B. J., Guo, T.L., and Shapiro, I.M.,2000. Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptosis pathway is mercurial species dependent. Environ. Res. Sec. A .84,89-99.
Shimojo, N., Kumagai, Y., Homma-Takeda, S., Shinyashiki, M., Takasawa, N., and Kushida, K., 1996. Isozyme selective induction of mouse pulmonary superoxide dismutase by the exposure to mercury vapor. Environ. Toxicol. Pharm. 2,35-37.
Sin, Y.M., Teh, W.F., and Wong, M.K., 1989. Absorption of mercuric chloride and mercuric sulphide and their possible effects on tissue glutathione in mice. Bull. Environ. Contam. Toxicol. 42,307-314.
Sin, Y.M., Teh, W.F., Wong, M.K., and Reddy, P.K.,1990. Effect of mercury on glutathione and thyroid hormones. Bull. Environ. Contam. Toxicol. 44,616-622.
Sin, Y.M., Lim, Y.F., and Wong, M.K.,1983. Uptake and distribution of mercury in mice from ingesting soluble and insoluble mercury compounds. Bull. Environ. Contam. Toxicol. 31,605-612.
Sweet, L.I., and Zelikoff, J.T., 2001. Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J. Toxicol. Environ. Health. Part B. 4,161-205.
Taylor, A.L., Kudlow, B.A., Marrs, K.L., Gruentert, D.C., Guggino, W.B., and Schwiebert, E.M.,1998. Bioluminescence detection of ATP release mechanisms in epithelia. Am. J. Physiol. 275,C1391-C1406.
Troyano, A., Ferna’ndez, C., Sancho, P., Blas, E., and Aller, P.,2001. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. J.Biol.Chem. 276,47107-47115.
Vijayalakshmi, K., and Sood, P.P.,1994. Ameliorative capacities of vitamins and monothiols post therapy in the restoration of methylmercury altered glutathione metabolism. Cell Mol. Biol. 40,211-224.
WHO ,1990a. Methylmercury, Environmental Health Criteria 101, 1-144, World Health Organization. Geneva.
WHO,1990b. Inorganic Mercury, Environmental Health Criteria 118, 1-168, World Health Organization. Geneva.
Woods J.S., and Ellis M., 1995. Up-regulation of glutathione synthesis in rat kidney by methyl mercuey. Relationship to mercury-induced oxidative stress. Biochem. Pharmacol. 50,1719-1724.
Yee, S., and Choi, B.H. ,1996. Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology. 17,17-26.
Yen, C.C., Liu, S.H., Chen, W.K., Lin, R.H., and Lin-Shiau, S.Y.,2002. Tissue distribution of different mercurial compounds analyzed by the improved FI-CVAAS. J. Anal. Toxicol. 26,286-295.
Yeoh, T.S., Lee, A.S., and Lee, H.S., 1986. Absorption of mercuric sulphide following oral administration in mice. Toxicology 41,107-111.
Young, Y.H., Chuu, J.J., Liu, S.H., and Lin-Shiau, S.Y., 2002. Neurotoxic mechanism of cinnabar and mercuric sulfide on the vestibule-ocular reflex system of guinea pigs. Toxicol. Sci. 67,256-263.

第 三 章
Andersen, H.R., and Andersen, O., 1993. Effects of dietary alpha- tocopheral and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice. Pharmacol. Toxicol. 73, 192-201.
Ariza, M. E., Bijur, G. N., and Williams, M.V.,1998. Lead and mercury mutagenesis role of H2O2 , superoxide dismutase, and xanthine oxidase. Environ. Mol. Mutagen. 31,352-361.
Barregard L., Sallsten G., Conradi N., 1999. Tissue levels of mercury determined in a decreased worker after occupational exposure. Int. Arch. Occup. Environ. Health. 72:169~173.
Bruce, J. S., Gou, T.L., and Shapiro, I.M. ,1998. Low-level
methylmercury exposure causes human T-cells to undergo apoptosis:evidence of mitochondiral dysfunction. Environ. Res. Sec. A .77,149-159.
Chen, Y.W., Huang, C.F., Tsai, K.S., Yang, R.S., Yen, C.C., Yang, C.Y., Lin-Shiau, S.Y., and Liu, S.H., 2006. The role of phosphoinositide 3-kinase/Aktsignaling in low-dose mercury-induced mouse pancreatic β-cell dysfunction in vitro and in vivo. Diabetes.55,1614-1624.
Chuu, J.J., Hsu, C.J., and Lin-Shiau, S.Y.,2001. Abnormal auditory brainstem responses or mice treated with mercurial compounds: involved of excessive nitric oxide. Toxicology. 162,11-22.
Clarkson, T.W., and Magos, L.,2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36,609-662.
Denozot, F., and Lang, R.,1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth. 89,271-277.
Frey T. , 1997.Correlated flow cytometric analysis of terminal events in apoptosis reveals the absence of some changes in some model system. Cytometry 28:253-263.
Fuhr B.J., and Rabenstein D.L., 1973. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. Ⅸ. The binding of cadmium,zinc,lead,and mercury by glutathione. J. Amer.Chem.Soc. 95, 6944-6950.
Gerhardsson, L., and Skerfving, S.,1996. Concepts on Biological Markers and Biomonitoring for Meal Toxicity. In Toxicology of Metals. (Chang L.W., Eds.). pp.81-107. CRC Press, Boca Raton, Florida.
Gou, T.L., Miller, M.A., Shapiro, I.M., and Shenker, B.J.,1998. Mercuric chloride induces apoptosis in human T lymphocytes: evidence of mitochondrial dysfunction. Toxicol. Appl. Pharmacol. 153,250-257.
Green, D.R.,1998. Apoptotic pathway: The roads to ruin. Cell. 94,695-698.
Hare, M.F., McGinnis, K.M., and Atchison, W.D.,1993. Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108-15 cells. J. Pharmacol. Exp. Ther. 266,1626-1635.
Hoffmeyer, R.E., Singh, S.P., Doonan, C.J.,Ross, A.R.S.,Hughes, R.J., Pickering, I.J., and George, G.N.,2006. Molecular mimicry in mercury toxicology. Chem.Res.Toxicol. 19,753-759.
Huang, Z.Y., Shen, J.C., Zhuang, Z.X. Wang, X.R., and Lee, F. S.C., 2004. Investigation of metal-binding metallothioneins in the tissues of rat after oral intake of cinnabar. Anal.Bioanal.Chem. 379,427-432.
Kawano NM, Mihara K, Huang N, Tsujimoto T, Kuramoto A,,1995. Differentiation in early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis. Blood 85:487-494.
Koh, L.L., Wong, M.K., Ng, S.C., and Soh, S.M.,1976. Mercury in Chinese medicine. Technical report 5. Institute of Natural Sciences, Nanyang University, Singapore.
Mariggio, M.A., Minunno, V., Riccardi, S., Santacroce, R., De Rinaldis, P., and Fumarulo, R.,1998. Sulfide enhancement of PMN apoptosis. Immunol. Immunotoxicol. 20,399-408.
Marty, M. S., and Atchison, W. D.,1997. Pathways mediating Ca2+ entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol. Appl. Pharmacol.147, 319–330.
Miyajima, A., Nakashima, J., Yoshioka, K., Tachibana, M., Tazaki, H., and Murai, M.,1997. Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br. J. Cancer. 76,206-210.
Monnet-Tschudi, F., Zurich, M.G., Boschat, C., Corbaz, A., and Honegger, P., 2006. Involvement of environmental mercury and lead in the etiology of neurodegenerative disease. Rev. Environ. Health.21, 105-117.
Morries SM., McGarrity LJ, Domon OE, Chen JJ, Hinson WG, Bucci TJ, Warbritton AR, Casciano DA., 1994. The role of programmed cell death in the toxicity of the mutagens, ethyl methanesulfonate and N-ethyl-N’-nitrosourea, in AHH-1 human lymphoblastoid cells. Mutat Res:306:19-34.
Nichol, J., Bradbury, S., and Swartout, J.,1999. Derivation of wildlife values for mercury. J. Toxicol. Environ. Health. Part B. 2,325-355.
Oram, P.D., Fang, X., Fernando, Q., Letkeman, P., and Letkeman, D.,1996. The formation of constants of mercury (Ⅱ)-glutathione complexes. Chem. Res. Toxicol. 9,709-712.
Ormerod MG, Sun XM, Snowden RT, Davies R, Fearnhead H, Cohen GM., 1993. Increased membrane permeability of apoptotic thymocytes:a flow cytometric study. Cytometry 14:595-602.
Pourahmad, J., Mihajlovic, A., O’Brien, and P.J.,2001. Hepatocyte lysis induced by environmental metal toxins may involve apoptotic death signals initiated by mitochondrial injury. Adv. Exp. Med. Biol. 200,249-252.
Ratcliffe, H.E., Swanson, G.M., and Fisher, L.J., 1996. Human exposure to mercury: a critical assessment of the evidence of adverse health effects. J. Toxicol. Environ. Health. 49,221-270.
Sarafian, T., Hagler, J., Vartavarian, L., and Verity, M.A.,1989. Rapid cell death induced by methyl mercury in suspension of cerebellar granule neurons. J.Neuropathol. Exp. Neurol. 48,1-10.
Seelig, G.F., Meister, A., 1985. Glutathione biosynthesis: γ-glutamylcysteine synthetase from rat kidney. Methods Enzymol. 113, 379–390.
Shenker, B. J., Guo, T.L., and Shapiro, I.M.,2000. Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptosis pathway is mercurial species dependent. Environ. Res. Sec. A .84,89-99.
Shimojo, N., Kumagai, Y., Homma-Takeda, S., Shinyashiki, M., Takasawa, N., and Kushida, K., 1996. Isozyme selective induction of mouse pulmonary superoxide dismutase by the exposure to mercury vapor. Environ. Toxicol. Pharm. 2,35-37.
Sin, Y.M., Teh, W.F., and Wong, M.K., 1989. Absorption of mercuric chloride and mercuric sulphide and their possible effects on tissue glutathione in mice. Bull. Environ. Contam. Toxicol. 42,307-314.
Sin, Y.M., Teh, W.F., Wong, M.K., and Reddy, P.K.,1990. Effect of mercury on glutathione and thyroid hormones. Bull. Environ. Contam. Toxicol. 44,616-622.
Sin, Y.M., Lim, Y.F., and Wong, M.K.,1983. Uptake and distribution of mercury in mice from ingesting soluble and insoluble mercury compounds. Bull. Environ. Contam. Toxicol. 31,605-612.
Sweet, L.I., and Zelikoff, J.T., 2001. Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J. Toxicol. Environ. Health. Part B. 4,161-205.
Vijayalakshmi, K., and Sood, P.P.,1994. Ameliorative capacities of vitamins and monothiols post therapy in the restoration of methylmercury altered glutathione metabolism. Cell Mol. Biol. 40,211-224.
WHO ,1990a. Methylmercury, Environmental Health Criteria 101, 1-144, World Health Organization. Geneva.
WHO,1990b. Inorganic Mercury, Environmental Health Criteria 118, 1-168, World Health Organization. Geneva.
Woods J.S., and Ellis M., 1995. Up-regulation of glutathione synthesis in rat kidney by methyl mercuey. Relationship to mercury-induced oxidative stress. Biochem. Pharmacol. 50,1719-1724.
Worke-knirsch, J.M., Kartin, K., Carsten, S., Christel, A., Claus, F., and Harald, F.K., 2007. Nanoparticulate vanadium oxide potentiated vanadium toxicity in numan lung cells. Environ. Sci. Technol. 41, 331-336.
Yen, C.C., Liu, S.H., Chen, W.K., Lin, R.H., and Lin-Shiau, S.Y.,2002. Tissue distribution of different mercurial compounds analyzed by the improved FI-CVAAS. J. Anal. Toxicol. 26,286-295.
Yeoh, T.S., Lee, A.S., and Lee, H.S., 1986. Absorption of mercuric sulphide following oral administration in mice. Toxicology 41,107-111.
Young, Y.H., Chuu, J.J., Liu, S.H., and Lin-Shiau, S.Y., 2002. Neurotoxic mechanism of cinnabar and mercuric sulfide on the vestibule-ocular reflex system of guinea pigs. Toxicol. Sci. 67,256-263.

第 四 章
Andersen, H.R. and Andersen, O., 1993. Effects of dietary alpha- tocopheral and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice. Pharmacol. Toxicol. 73, 192-201.
Ariza, M.E., Bijur, G.N. and Williams, M.V., 1998. Lead and mercury mutagenesis role of H2O2 , superoxide dismutase, and xanthine oxidase. Environ. Mol. Mutagen. 31,352-361.
Belletti, S., Orlandini, G., Vettori, M.V., Mutti, A., Uggeri, J., Scandroglio, R., Alinovi, R. and Gatti, R., 2002. Time course assessment of methylmercury effects on C6 glioma cells: Submicromolar concentrations induce oxidative DNA damage and apoptosis. J. Neurosci. Res. 70,703-711.
Ben, H.C., Simon, Y. and Mario, R., 1996. The effects of glutathione glycoside in methylmercury posining. Toxicol. Appl. Pharmacol. 141,357-364.
Ben-Ozer, E.Y., Rosenspire, A.J., McCabe, Jr. M.J., Worth ,R.G., Kindzelskii, A.L,, Warra, N,S. and Petty, H.R., 2000. Mercuric chloride damages cellular DNA by a non-apoptotic mechanism. Mutat. Res. 470,19-27.
Bessho, R,, Matsubara, K., Kubota, M., Kuwakada, K., Hirota, H., Wakazono, Y., Lin, Y.W., Okuda, A., Kawai, M., Nishikomori, R., Heike, T.. 1994. Pyrrolidine dithicarbamate, a potent inhibitor of NF-κB activation, prevents apoptosis in human promyelocytic leukemia HL-60 cells and thymocytes. Biochem Pharmacol. 48,1883-1889.
Bolger, P.M., Schwetz, B.A., 2002, Mercury and health (Food and Drug Administration). N. Engl. J. Med. 347,1735-1736.
Bonner, W.A., Hulett, H.R., Sweet, R.G., Herzenberg, L.A., 1972. Fluorescence activated cell sorting. Rev Sci Instrum. 43,404-409.
Bruce. J,S., Gou, T.L. and Shapiro, I.M., 1998. Low-level methylmercury exposure causes human T-cells to undergo apoptosis:evidence of mitochondiral dysfunction. Environ. Res. Sec. A.77,149-159.
Chatterzee. S,, Noack. H., Possed, H., Kellhoff, G. and Wolf, G., 1999. Glutathione levels in primary glial cultures: Monochlorobimme provides widence of cell type-specific distribution. GLIA. 27,152-161.
Chen, Y.W., Huang, C.F., Tsai, K..S, Yang, R.S., Yen, C.C., Yang,C.Y., Lin-Shiau, S.Y., and Liu, S.H., 2006. The role of phosphoinositide 3-kinase/Aktsignaling in low-dose mercury-induced mouse pancreatic β-cell dysfunction in vitro and in vivo. Diabetes.55,1614-1624.
Chung, K.C., Park, J.H., Kim, C.H., Lee, H.W., Sato. N., Uchiyama, Y. and Ahn, Y.S., 2000. Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability intracellular zinc and copper ion levels, NF-κB, and MAP kinases. J. Neuros. Res. 59,117-125.
Chung, J.H., Seo, J.Y., Lee, M.K., Eun, H.C., Lee, J.H., Kang, S., Fisher, G.J. and Voorhees, J.J., 2002. Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J. Invest. Dermatol. 119,507-512.
Chuu, J.J., Hsu, C.J. and Lin-Shiau, S.Y., 2001. Abnormal auditory brainstem responses or mice treated with mercurial compounds: involved of excessive nitric oxide. Toxicology. 162,11-22.
Denozot, F. and Lang, R,. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth. 89,271-277.
Eguchi, Y., Shimizu, S. and Tsujimoto, Y., 1997. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 57, 1835-1840.
Fernandez-Martinez, R., Loredo, J., Ordonez, A., Rucandio, MI. 2005. Distribution and mobility of Hg in soils from an old mining area in Mieres, Asturias(Spain). Sci. Total. Environ. 346,200-212.
Frey, T,. 1997.Correlated flow cytometric analysis of terminal events in apoptosis reveals the absence of some changes in some model system. Cytometry. 28,253-263.
Furuta, S., Ortiz, F., Sun, X.Z., Wu, H.H., Mason, A. and Momand, J., 2002. Copper uptake is equired for pyrrolidine dithiocarbamate-mediated oxidation and protein level increase of p53 in cells. Biochem. J. 365,639-648.
Gou, T.L., Miller, M,A., Shapiro, I.M., and Shenker. B.J., 1998. Mercuric chloride induces apoptosis in human T lymphocytes: evidence of mitochondrial dysfunction. Toxicol. Appl. Pharmacol. 153,250-257.
Gutteridge, JMC., and Quinlan, G.J., 1983. MDA formation from lipid peroxides in the TBA test: the role of lipid radicals, iron salts, and metal chelators. J. Appl. Biochem. 5,293-302.
Hare, M.F., McGinnis, K.M., and Atchison, W.D., 1993. Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108-15 cells. J. Pharmacol. Exp. Ther. 266,1626-1635.
Huang, Z.Y., Shen, J.C., Zhuang, Z.X., Wang, X.R. and Lee , FSC., 2004. Investigation of metal-binding metallothioneins in the tissues of rat after oral intake of cinnabar. Anal.Bioanal.Chem. 379,427-432.
Kawano, N.M., Mihara, K., Huang, N., Tsujimoto, T., Kuramoto, A., 1995. Differentiation in early plasma cells on bone marrow stromal cells requires interleukin-6 for escaping from apoptosis. Blood. 85,487-494.
Koh, L.L., Wong, M.K., Ng, S.C. and Soh, S.M. 1976. Mercury in Chinese medicine. Technical report 5. Institute of Natural Sciences, Nanyang University, Singapore.
Konigsberg, M., Cope-Diazguerrero, N.E., Bucil, C. and Gutierrez-Ruiz, M.C., 2001. Uncoupling effect of mercuric chloride on mitochondira isolated from an hepatic cell line. J. Appl. Toxicol. 21,323~329.
Leist, M., Single, B., Castoldi, A.F., Kuhnle. S. and Nicotera, P., 1997. Intracellular adenosine triphosphate(ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185,1481-1486.
Lide, D.R., 1990. CRC Handbook of Chemistry and Physics, 71st ed., Boca Raton, Florida, CRC Press, Inc.
Limke, T.L. and Atchison, W.D., 2002. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebella granule cells. Toxicol. Appl. Pharmacol. 178,52–61.
Manahan, S.E., 2000. Fundamentals of Aquatic Chemistry. In:Environmental Chemistry. Manahan S.E. Eds. CRC Press. LLC, Boca Raton, Florida. 55-93.
Marty, M.S. and Atchison, W.D., 1997. Pathways mediating Ca2+
entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol. Appl. Pharmacol.147, 319–330.
Marty, M.S. and Atchison, W.D., 1998. Elevations of intracellular Ca2+ as a probable contributor to decreased viability in cerebellar granule cells following acute exposure to methylmercury. Toxicol. Appl. Pharmacol. 150,98–105.
Monnet-Tschudi, F., Zurich, M.G., Boschat, C., Corbaz, A. and Honegger, P., 2006. Involvement of environmental mercury and lead in the etiology of neurodegenerative disease. Rev. Environ. Health.21,105-117.
Muran, P.J., 2006. Mercury Climination with oral DMPS, DMSA, Vitamin C, and glutathione:an observational climical review 12,70-75.
Nobel, C.S.I., Kimland, K., Orrenius, L.B. and Slater, A.F.G., 1995. Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redox-active copper. J. Biol. Chem. 270,26202-26208.
Ormerod, M.G., Sun, X.M., Snowden, R.T., Davies, R., Fearnhead, H., Cohen, G.M., 1993. Increased membrane permeability of apoptotic thymocytes:a flow cytometric study. Cytometry. 14,595-602.
Pourahmad, J., Mihajlovic, A. and O’Brien, P.J., 2001. Hepatocyte lysis induced by environmental metal toxins may involve apoptotic death signals initiated by mitochondrial injury. Adv. Exp. Med. Biol. 200, 249-252.
Sarafian, T., Hagler, J., Vartavarian, L. and Verity, M.A., 1989. Rapid cell death induced by methyl mercury in suspension of cerebellar granule neurons. J.Neuropathol. Exp. Neurol. 48, 1-10.
Schenk, H., Klein, M., Erdbrugger, W., Droge, W., Schulze-Osthoff, K., 1994. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-κB, and AP-1. Proc. Natl. Acad. Sci. USA.91, 1672-1676.
Schreck, R., Meier, B., Mannel, D.N., Droge, W., Baeuerle, P.A., 1992. Dithiocarbamates as potent inhibitors of nuclear factor kappa B actibation in intact cells. J Exp. Med 175,181-1194.
Shenker, B.J., Guo, T.L. and Shapiro, I.M., 2000. Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptosis pathway is mercurial species dependent. Environ. Res. Sec. A .84, 89-99.
Sin, Y.M., The, W.F. and Wong, M.K., 1989. Absorption of mercuric chloride and mercuric sulphide and their possible effects on tissue glutathione in mice. Bull. Environ. Contam. Toxicol. 42,307-314.
Sin, Y.M., The, W.F., Wong, M.K. and Reddy, P.K., 1990. Effect of mercury on glutathione and thyroid hormones. Bull. Environ. Contam. Toxicol. 44, 616-622.
Sin, Y.M., Lim, Y.F. and Wong, M.K., 1983. Uptake and distribution of mercury in mice from ingesting soluble and insoluble mercury compounds. Bull. Environ. Contam. Toxicol. 31, 605-612.
Sweet, L.I. and Zelikoff, J.T., 2001. Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J. Toxicol. Environ. Health. Part B. 4, 161-205.
Taylor, A.L., Kudlow, B.A., Marrs, K.L., Gruentert, D.C., Guggino, W. B. and Schwiebert, E.M., 1998. Bioluminescence detection of ATP release mechanisms in epithelia. Am. J. Physiol. 275,C1391-C1406.
Thomas, J.A., Buchsbaum, R.N., Zimniak, A., Racker, F.. 1979. Intraceelular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18, 2210-2218.
Topping, R.J., Jones, M.M., 1988. Optimal dithiocarbamate structure of immunomodulator action. Med Hypoth 27,55-57.
Troyano, A., Ferna’ndez, C., Sancho, P., Blas, E. and Aller, P., 2001. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. J.Biol.Chem. 276,47107-47115.
Ueda, S. Nakamura, H. Masutani, H. Sasada, T. Yonehara, S. Takabayashi, A. Yamaoka, Y. and Yodoi, J. 1998. Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. J. Immunol. 161, 6689-6695.
Valentine, W.M., Amarnath, V., Graham, D.G. and Anthony, D.C., 1992. Covalent cross-linking of proteins by carbon disulfide. Chem. Res. Toxicol. 5,254-262.
Verhaegh, G.W, Richard, M.J., Hainaut, P., 1997. Regulation of p53 by metal ions and by antioxidants:dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol. Cell Biol. 17,5699-5706.
Vijayalakshmi, K. and Sood, P.P., 1994. Ameliorative capacities of vitamins and monothiols post therapy in the restoration of methylmercury altered glutathione metabolism. Cell Mol. Biol. 40,211-224.
Woods, J.S. and Ellis, M. 1995. Up-regulation of glutathione synthesis in rat kidney by methyl mercuey. Relationship to mercury-induced oxidative stress. Biochem. Pharmacol. 50, 1719-1724.
Yee, S. and Choi, B.H., 1996. Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology. 17, 17-26.
Yen, C.C., Liu, S.H., Chen, W.K., Lin, R.H. and Lin-Shiau, S.Y. 2002. Tissue distribution of different mercurial compounds analyzed by the improved FI-CVAAS. J. Anal. Toxicol. 26,286-295.
Yeoh, T.S., Lee, A.S. and Lee, H.S., 1986. Absorption of mercuric sulphide following oral administration in mice. Toxicology .41,107-111.
Young, Y.H., Chuu, J.J., Liu, S.H. and Lin-Shiau, S.Y., 2002. Neurotoxic mechanism of cinnabar and mercuric sulfide on the vestibule-ocular reflex system of guinea pigs. Toxicol. Sci. 67,256-263.

第 五 章
Aebi H., 1974. Catalase. In: Bergmeyer H.U., ed. Methods of enzymatic analysis, vol. 2. pp673-678, Weinheim: Verlag Chemie.
Al-Shahristani H., and Shihab K. M.,1974. Variation of biological half-life of methylmercury in man. Arch. Environ. Health. 28, 342-344.
Andersen, H.R., and Andersen, O., 1993. Effects of dietary alpha- tocopheral and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice. Pharmacol. Toxicol. 73, 192-201.
Ballatori, N., and Clarkson, T. M.,1984. Inorganic mercury secretion into bile as a low molecular weight complex. Biochem. Pharmacol. 33, 1087-1092.
Ben, H. C., Simon, Y., and Mario, R., 1996. The effects of glutathione glycoside in methylmercury poisoning. Toxicol. Appl. Pharmacol. 141,357-364.
Boyd, A. S., Seger, D., Vannucci, S., Langley, M., Abraham, J. L., and King, Jr. L. E.,2000. Mercury exposure and cutaneous disease. J. Amer. Acad. Derm. 43,81-90.
Carrier, G., Brunet, R.C., Caza, M. and Bouchard, M.,2001. Atoxicokinetic model for predicting the tissue distribution and elimination of organic and inorganic mercury following exposure to methylmercury in animals and humans. I. Development and validation of the model using experimental data in rats. Toxicol. Appl. Pharmacol. 171, 38-49.
Clarkson, T.W., and Magos, L.,2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36,609-662.
Eckhardt,W., Bellmann, K., Kolb, H., 1999. Regulation of inducible nitric oxide synthase expression in beta cells by environmental factors: Heavy metals. Biochem. J. 338, 695–700.
Espinza, E. O., Mann, M. J., and Bleasdell, B.,1995. Arsenic and mercury in traditional Chinese herbal balls. N. Eng. J. Med. 333,803-804.
Farris, F. F., Dedrick, R. L., Allen, P. V., and Smith, J. C.,1993. Physiological model for the pharmacokinetics of methyl mercury in the growing rat. Toxicol. Appl. Pharm. 119,74-90.
Fuhr, B.J., and Rabenstein, D.L., 1973. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. Ⅸ. The binding of cadmium,zinc,lead,and mercury by glutathione. J. Amer.Chem.Soc. 95, 6944-6950.
Gerhardsson, L., and Skerfving, S.,1996. Concepts on Biological Markers and Biomonitoring for Meal Toxicity. In Toxicology of Metals. (Chang L.W., Eds.). pp.81-107. CRC Press, Boca Raton, Florida.
Hoffmeyer, R.E., Singh, S.P., Doonan, C.J.,Ross, A.R.S.,Hughes, R.J., Pickering, I.J., and George, G.N.,2006. Molecular mimicry in mercury toxicology. Chem.Res. Toxicol. 19,753-759.
Huang, Z.Y., Shen, J.C., Zhuang, Z.X. Wang, X.R., and Lee, F. S.C., 2004. Investigation of metal-binding metallothioneins in the tissues of rat after oral intake of cinnabar. Anal.Bioanal.Chem. 379,427-432.
Kershaw, T. G., Clarkson, T. W., and Dhahir, P. H.,1980. The relationship between blood levels and dose of methylmercury in man. Arch. Environ. Health. 35, 28-36.
Kim, S.H., Johnson, V. J., Sharma, R.P.,2002. Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-κB and p38 MAPK signaling pathways. Nitric Oxide. 7, 67-74.
Koh, L.L., Wong, M.K., Ng, S.C., and Soh, S.M.,1976. Mercury in Chinese medicine. Technical report 5. Institute of Natural Sciences, Nanyang University, Singapore.
Kang-Yum, E., and Oransky, S. H.,1992. Chinese patent medicine as a potential source of mercury poisoning. Vet. Hum. Toxicol. 34,235-238.
Littejohn, D., Fell, G. S., and Ottaway, J. M.,1976. Modified determination of total and inorganic mercury in urine by cold vapor atomic absorption spectrometry. Clin. Chem. 22, 1719-1723.
Nixon, D. E., Mussmann, G. V., and Moyer, T.P.,1996. Inorganic, organic, and total mercury in blood and urine: cold vapor analysis with automated flow injection sample delivery. J. Anal. Toxicol. 20, 17-22.
Non, M. F. Md., Hamid, T. Abd., and Ismail, Z.,1998. Determination of mercury in urine by on-line digestion with a flow injection mercury system. At. Spectrosc. 19, 95-99.
Oram, P.D., Fang, X., Fernando, Q., Letkeman, P., and Letkeman, D.,1996. The formation of constants of mercury (Ⅱ)-glutathione complexes. Chem. Res. Toxicol. 9,709-712.
Rowland, I. R., Davie, M. J., and Evans, J. G.,1980. Tissue content of mercury in rats given methylmercuic chloride orally: influence of intestinal flora. Arch. Environ. Health. 35, 155-160.
Ryo-Segade, S., and Bendichou, C.,1999. Determination of total and inorganic mercury in biological and environmental samples with on-line oxidation coupled to flow injection-cold vapor atomic absorption spectrometry. Spectrochim. Acta Part B. 54, 1129-1139.
Sakuma, A. M., de Maio, F. D., Utishiro, R.Q., Kira, C.S., de Fatima, M., Carvalho, H., and Lichtig, J. Optimization of parameters for trace inorganic mercury determination in urine by flow injection cold vapor AAS. At. Spectrosc. 20, 186-190.
Sin, Y.M., Lim, Y.F., and Wong, M.K.,1983. Uptake and distribution of mercury in mice from ingesting soluble and insoluble mercury compounds. Bull. Environ. Contam. Toxicol. 31,605-612.
Sin, Y.M., Teh, W.F., Wong, M.K., and Reddy, P.K.,1990. Effect of mercury on glutathione and thyroid hormones. Bull. Environ. Contam. Toxicol. 44,616-622.
Vijayalakshmi, K., and Sood, P.P.,1994. Ameliorative capacities of vitamins and monothiols post therapy in the restoration of methylmercury altered glutathione metabolism. Cell Mol. Biol. 40,211-224.
Yen, C.C., Liu, S.H., Chen, W.K., Lin, R.H., and Lin-Shiau, S.Y.,2002. Tissue distribution of different mercurial compounds analyzed by the improved FI-CVAAS. J. Anal. Toxicol. 26,286-295.
Yeoh, T.S., Lee, A.S., and Lee, H.S., 1986. Absorption of mercuric sulphide following oral administration in mice. Toxicology. 41,107-111.
Zalups, R. K., and Barfuss, D. W.,1998 Participation of mercuric Conjugates of cysteine, homocysteine, and n-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury. J. Am. Soc. Nephrol. 9, 551-561.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top