跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉景仁
研究生(外文):Ching-Jen Liu
論文名稱:探討誘發劑及兩階段培養對樟芝深層發酵三萜類及抗癌作用之影響
論文名稱(外文):The Influence of Elicitors and Two-Stage Culture on Triterpenoids Production and Antitumor activity in Submerged Cultivation of Antrodia cinnamomea
指導教授:蔣丙煌蔣丙煌引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:115
中文關鍵詞:樟芝誘發劑兩階段培養三萜抗癌作用
外文關鍵詞:Antrodia cinnamomeaElicitorsTwo-stage cultureTriterpenoidsAntitumor activity
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1947
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樟芝(Antrodia cinnamomea)是台灣特有的食藥用真菌,因具有良好之抗腫瘤及護肝能力而聞名。藉由誘發劑(elicitor)的添加可使得真菌產生防禦反應(defense response),所以可有效地提升樟芝發酵液中二次代謝物(三萜類)之產量。本研究針對樟芝深層培養系統,選擇幾丁聚醣、氯化鈣及組合法(幾丁聚醣+氯化鈣)等誘發劑,探討其對三萜類生產的影響。由研究結果得知,雙網狀導管氣舉式發酵槽與第八天饋料批式發酵分別可獲得菌絲體濃度高達15.8與12.9 g/L。另外,在誘發劑實驗得知,以100 mg/L幾丁聚醣處理樟芝發酵液,不但菌體生長狀況較良好之外,尚可獲得最高總三萜類產量(1144 mg/L)。然而,因組合法嚴重影響樟芝之細胞膜通透性,使得其細胞漸失活性,故不利於長期培養,但可使樟芝在短時間即釋放出胞內三萜類。另外,結果顯示氯化鈣處理則不適合短期應用於誘發三萜類之合成。於兩階段培養中,研究證實利用氧氣限制與溫度波動策略將顯著提升三萜類產量,例如溫差靜置培養組得到的三萜類產量(1615 mg/L)顯著優於對照組。於癌細胞毒殺試驗中,經實驗結果顯示,溫差靜置培養組別所萃取的粗三萜具有良好的抑制子宮頸癌能力,其IC50約為28 μg/ml,且對於人類皮膚細胞(WS1)之生長不會有影響。
Antrodia cinnamomea was a popular folk medicine that has attracted great attention due to its antitumor activity. In the last decade, the triterpenoids were isolated from A. cinnamomea and their biological activities such as anticancer and hepatoprotection have been reported. Elicitors have been effective in inducing the synthesis of secondary metabolites (e.g., triterpenoids) in submerged cultivation of A. cinnamomea. A defense response was induced in the culture when elicitors were added. Elicitors can enhance the secondary metabolites in fungal cells. The objective of this study was to investigate the effects of different elicitors (chitosan, CaCl2 and combination (chitosan+CaCl2)) on the triterpenoids production in submerged cultivation system of A. cinnamomea. It was found that the maximum biomass reached 15.8 g/L and 12.9 g/L in airlift bioreactor with dual-net draft tube and fed-batch (day 8) cultures, respectively. The elicitors study showed that treatment of chitosan (100 mg/L) not only obtained more biomass than combination treatment, but also achieved the highest total triterpenoids production. However, combination seriously affected the permeability of cell membrane and resulted in the loss of cell viability. Although the use of combination was not appropriate for long-term cultivation, it did enhance the fungus to accumulate the intracellular triterpenoids in a short-term cultivation. In addition, feeding CaCl2 had little effect on accumulation of triterpenoids for short time cultivation, so it was suitable for long-term fermentation. For two-stage culture strategies, the results proved that triterpenoids production could be highly enhanced by means of the control of oxygen limitation and temperature-shift strategy. For instance, the maximum triterpenoids production (1615 mg/L) was observed at static culture with temperature fluctuation (TF-S group), which was significantly higher than the control. In vitro anticancer test, the results indicated that the crude triterpenoids from TF-S group at concentration of 28 μg/ml inhibited 50% cell viability of HeLa cells, while exhibiting under 100 μg/ml no significant cytotoxicity to WS1 (normal cells).
頁碼
中文摘要………………………………………………………………I
英文摘要……………………………………………………………II
目錄………………………………………………………………III
表次………………………………………………………………VII
圖次………………………………………………………………VIII
第一章、緒論……………………………………………………1
1.1 研究動機…………………………………………………1
1.2研究目的………………………………………………2
1.3實驗架構………………………………………………2

第二章、文獻回顧……………………………………………6
2.1樟芝簡介………………………………………………6
2.1.1名稱變革……………………………………………6
2.1.2型態特徵……………………………………………7
2.1.3產地…………………………………………………9
2.2生理活性物質與機能性研究………………………………9
2.2.1生物活性成分………………………………………10
2.2.1.1三萜類……………………………………10
2.2.1.2多醣體……………………………………16
2.2.2生理機能性研究………………………………17
2.2.2.1抗氧化功能………………………………17
2.2.2.2提升免疫及抗腫瘤功能…………………18
2.2.2.3護肝功能…………………………………19
2.2.2.4預防心血管疾病及降血脂功能…………20

2.3工業液態發酵……………………………………………20
2.4真菌細胞培養高代謝物的操作策略……………………22
2.4.1饋料批式培養………………………………………23
2.4.2兩階段培養…………………………………………23
2.4.3固定化培養…………………………………………24
2.5控制菌絲體形成與形態大小變化的因子………………26
2.5.1 物理因素……………………………………22
2.5.1.1 溫度………………………………26
2.5.1.2 通氣量…………………………………26
2.5.1.3 光照……………………………………27
2.5.1.4剪切力或攪拌……………………28
2.5.1.5 接菌量…………………………………28
2.5.1.6不同形式發酵槽………………………28
2.5.2 化學因素…………………………………………29
2.5.2.1 培養基組成……………………29
2.5.2.2 pH值…………………………………29
2.5.2.3 誘發劑…………………………………30

第三章、材料與方法………………………………………33
3.1 實驗材料…………………………………………………33
3.1.1 實驗菌腫…………………………………………33
3.1.2 實驗藥品…………………………………………33
3.1.3 實驗器材與儀器………………………………34
3.2 實驗方法…………………………………………………36
3.2.1 菌株保存與活化…………………………………36
3.2.2 培養基組成………………………………………36
3.2.3 操作條件…………………………………………38
3.2.4 分析方法…………………………………………38
3.3 樟芝粗三萜之生物活性測定…………………………41
3.3.1 細胞株……………………………………………41
3.3.2 細胞株保存………………………………………41
3.3.3 細胞株解凍………………………………………41
3.3.4 細胞株繼代培養…………………………………41
3.3.5 細胞株培養液組成………………………………42
3.3.6 動物細胞實驗流程………………………………43
3.4 統計分析………………………………………………43

第四章、結果與討論………………………………………44
4.1第一部分……………………………………………44
4.1.1批式與饋料批式對菌絲體之影響………………44
4.1.2批式與饋料批式對溶氧量(DO)之影……………47
4.1.3批式與饋料批式對pH值之影響………………49
4.1.4批式與饋料批式對總多醣之影響………………50
4.1.5雙網狀與實壁導管對菌絲體之影響……………51
4.1.6雙網狀與實壁導管對溶氧量(DO)之影響………53
4.1.7雙網狀與實壁導管對pH值之影響……………55
4.1.8雙網狀與實壁導管對總多醣之影響……………56
4.2第二部分…………………………………………58
4.2.1幾丁聚醣對菌絲體之影響……………………58
4.2.2幾丁聚醣對胞外三萜類之影響………………60
4.2.3幾丁聚醣對胞內三萜類之影響………………62
4.2.4氯化鈣對菌絲體之影響……………………64
4.2.5氯化鈣對胞外三萜類之影響………………66
4.2.6氯化鈣對胞內三萜類之影響………………67
4.2.7組合使用對菌絲體之影響…………………69
4.2.8組合使用對胞外三萜類之影………………71

4.2.9組合使用對胞內三萜類之影響……………73
4.3第三部分……………………………………………77
4.3.1兩階段培養對樟芝菌絲體之影響…………77
4.3.2兩階段培養對樟芝發酵液pH之影響……………79
4.3.3兩階段培養對總多醣之影響……………………81
4.3.4兩階段培養對胞外三萜之影響…………………83
4.3.5兩階段培養對胞內三萜之影響…………………85
4.4第四部分……………………………………………92
4.4.1粗三萜之治療指數……………………………92
4.4.2胞外三萜對子宮頸癌之影響…………………94
4.4.3胞內三萜對子宮頸癌之影響………………96
4.4.4胞內外三萜類與IC50之消長關係…………98

第五章、結論與建議………………………………………100
5.1結論…………………………………………………100
5.2建議…………………………………………………101

第六章、參考文獻…………………………………………102
水野卓、川合正允原著。賴慶亮譯。1997。菇類的化學、生化學。國立編譯館。
王伯徹。2000。具開發潛力食用菇介紹。食品工業。32: 1-17。
王伯徹、黃仁彰。2002。靈芝與樟芝之研發與市場面面觀。食品工業 34(5): 3-17。
王伯徹。2004。菇類菌種之長期保存。食品工業 36(5): 16-24。
王薇猗。2004。樟芝活性成分之研究及應用。食品工業 36(12): 14-24。
王德期。2003。真菌Aspergillus terreus增產其二次代謝物lovastatin:糖源饋料之效應。朝陽科技大學應用化學系碩士論文。
李振綱、吳誌明、蔡有癸。2001。化工技術 9(2): 163-175。
李一宏。2003a。樟芝菌絲體之培養及其多醣體抗乙型肝炎病毒活性評估。中國醫藥學院中國藥學研究所博士論文。
李宛蓁。2003b。樟芝菌絲體培養與生理活性成分生成之研究。東海大學化學工程研究所碩士論文。
朱建儒。2003。探討通氣量對於樟芝醱酵生產生物鹼之影響。中央大學化學工程與材料工程研究所碩士論文。
李炫璋。2002。牛樟芝菌絲體之體內保肝功能評估及其熱水萃物在體外對基質金屬蛋白水解酶活性之影響。國立中興大學食品科學研究所碩士論文。
江仟琦。2005。利用氣舉式發酵槽生產具有抑制肝癌及子宮頸癌細胞生長之樟芝發酵液。國立臺灣大學食品科技研究所碩士論文。
呂美津。2003。牛樟菇子實體乙醇萃取物誘導HL60細胞凋亡之研究。
屏東科技大學熱帶農業暨國際合作研究所碩士論文。
肖崇厚,陳蘊如。1989。中藥化學。科學技術出版社。P323-360。上海。
宋祖瑩。2003。樟芝深層培養液抗氧化及抗腫瘤特性之研究。國立中興大學食品科學研究所博士論文。
周柏甫。2001。探討菌體形態對於裂褶菌多醣體產生之影響。國立中央大學化學工程研究所碩士論文。
林永浩。2004。樟芝之牛樟樹宿主專一性。食品工業 36(5): 57-71。
林幼平。1994。子宮頸癌篩檢工具之評估。國立台灣大學公共衛生 研究所流行病學組碩士論文。
林苡芬。2004。不同發酵碳源之牛樟芝菌絲體發酵過濾液對人類肝癌細胞株之影響。國立臺灣大學食品科技研究所碩士論文。
林葦郁。2005。利用固定化菌體進行樟芝(Antrodia camphorata)的深層培養生產菌體代謝物之研究。東海大學食品科學研究所碩士論文。
吳文騰。1994。談發酵控制。生化工程專刊 41(3): 41-43。
吳文騰。2000。發酵槽之設計。生物產業 11(2): 91-97。
吳文騰、傅俊中、呂世源。2003。網狀內管氣舉式生化反應器。興大工程學刊 14(2): 77-86。
吳昇原。2002。牛樟抽出物對樟芝生長影響之探討。國立臺灣大學森林學研究所碩士論文。
吳德鵬。1995。樟芝微量成分的研究。台灣師範大學化學研究所碩士論文。
胡琦桂。1994。真菌球狀菌絲體生長之探討。食品工業26 (9): 37-45。
高曉薇。1991。台灣靈芝屬新種樟芝之三萜類成份研究。台北醫學院天然物醫學研究所碩士論文。
許勝傑、陳清農、陳勁初。2000。樟芝宿主專一性之探討。台灣農業化學與食品科學 38(6): 532-539。
曹巧吟。2003。樟芝中免疫調節蛋白的純化與其生理活性之探討。國立台灣大學園藝學研究所碩士論文。
陳美惠。2000。幾丁聚醣之抗菌作用。食品工業 32(4): 29-37。
陳小薇。2005。各種液態培養靈芝方式對產品之活性成分及抗過敏功能之影響。國立臺灣大學食品科技研究所碩士論文。
陳伯珠。2004a。高通量篩選出牛樟芝菌絲體抗肝癌先導藥物化合物,以p53、bax、bcl-2 之m-RNA 層次進行抗肝癌先導藥物化合物對人類肝癌細胞株HepG2凋亡途徑之探討。國立中正大學化學研究所碩士論文。
陳思瑋。2004b。不同培養時間生產之樟芝發酵液對癌細胞生長之影響。國立臺灣大學食品科技研究所碩士論文。
陳怡欣。2002。牛樟芝發酵過濾液對大白鼠肝臟生理機能之影響。中國醫藥學院營養研究所碩士論文。
陳勁初、呂鋒洲。2001。靈芝之王:台灣樟芝。元氣齋出版社,台北。p38-58。
陳勁初、林文鑫、陳清農、許勝傑、黃仕政、陳炎鍊。2001a。台灣特有真菌-樟芝菌絲體之開發。中華真菌學會會刊 16: 7-22
陳啟楨、蘇慶華、藍明煌。2001b。樟芝固體栽培及其生物活性之研究。中華真菌學會會刊 16: 65-72。
程一華。1994。樟芝之成份研究。國立台灣師範大學化學研究所碩士論文。
張東柱。1997。牛樟之病害。牛樟生物學及育林技術研討會論文集。林業叢刊 72: 127-131。
張中姿。2002。樟芝菌絲體之甲醇萃取部分對人類肝癌細胞株(HepG2)生長抑制作用的機轉探討。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文。
張文菀。2003。不同的液態培養條件對樟芝(Antrodia camphorata)菌絲生長及多醣形成的影響。東海大學食品科學系碩士論文。
張怡潔。2003。樟屬植物之牛樟芝菌絲體生長促進因子。臺北醫學大學生藥學研究所碩士論文。
張曉莉、薛文明、李恩慈、張瓊妃。2004。食藥用真菌產品純度及成份之鑑別。高苑學報 10: 73-83。
黃惟敏。1999。樟芝微量成分的研究(Ⅱ)。私立靜宜大學應用化學研究所碩士論文。
黃泰源、黃雯雯。2003。臺灣樟芝之組織培養及生體可用性。通識教育年刊 5: 247-255。
黃惠君。2004。食藥用菇的營養與藥用價值。食品工業 36(5): 25-32。
黃鈴娟。2000。樟芝與姬松茸之抗氧化性質及其多醣組成分析。國立中興大學食品科學系碩士論文。
傅俊中、呂世源、徐雍鎣、陳嘉祈、林奕忍、吳文騰。2002。塔式生化反應器混合成效的最佳化設計。第七屆生化工程研討會論文集。
傅俊中。2004。塔式生化反應器之混合分析及其應用。國立清華大學化學工程學系博士論文。
楊書威。1990。中藥樟芝活性成分之研究。臺灣大學藥學研究所碩士論文。
楊聖信、董桂森、林君穎、張國志。1993。人體藥理學。藝軒圖書出版社,台北。p6-7。
楊喻翔、曾耀銘、徐泰浩。1994。蘇力菌素在攪拌槽、氣泡塔及
網狀內管氣舉塔發酵製備之比較。大葉學報 3(1): 55-69.
董純婷。2001。網狀內管氣舉式反應器混合效能之探討。國立清華大學化學工程學系碩士論文。
廖英明。1998。菇類中的許不了~樟芝。農業世界雜誌 176: 76-79。
鄭海鵬。2001。多重網狀導流板氣舉式反應器之規模放大及其在細菌纖維素生產上之應用。國立清華大學化學工程學系碩士論文。
劉英俊、江金追。1990。微生物應用工業。中央圖書出版社。
劉俊仁。2003。樟芝活性多醣體之生物活性分析及其經由免疫調節抑制腫瘤生長之研究。國立臺灣大學生物化學暨分子生物學研究所博士論文。
劉翠玲。2002。樟芝對倉鼠體內脂質代謝與抗氧化狀況之影響。輔仁大學食品營養學研究所碩士論文。
臧穆、蘇慶華,1990,我國台灣產靈芝屬新種-樟芝(型態、定名)。雲南植物研究 12: 395-396。
蔡雁暉。2002。樟芝深層培養液及其多醣體之抗氧化特性。國立中興大學食品科學研究碩士論文。
簡秋源、姜宏哲、陳淑貞。1997。牛樟菇培養性狀及其三萜類成分分析之研究。牛樟生物學及育林技術研討會論文集。林業叢刊 72: 133-137。
薛文明。2003。樟芝(Antrodia camphorata)菌絲體培養及粒線體rDNA序列分析之研究。國立中山大學生物科學系研究所碩士論文。
Bautista-Banos S, Hernandez-Lauzardo AN, Velazquez-del Valle MG, Hernandez-Lopez M, Ait Barka E, Bosquez-Molina E, Wilson CL. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25: 108-118.
Brodelius P. 1985. The potential role of immobilization in plant cell biotechnology. Trends Biotechnol 3: 280-285.
Bush DS. 1995. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46: 95-122.
Chang HL, Chao GR, Chen CC, Mau JJ. 2001. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem 74: 203-207.
Chang TT, Chou WN. 2004. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Bot Bull Acad Sin 45: 347-352.
Chen CH, Yang SW, Shen YC. 1995. New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J Nat Prod 58: 1655-1661.
Chen SC, Lu MK, Cheng JJ, Wang DL. 2005. Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiol Lett 249: 247-254.
Cheng JJ, Huang NK, Chang TT, Ling WD, Lu MK. 2005. Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells. Life Sci 76: 3029-3042.
Cherng IH, Chiang HC. 1995. Three new triterpenoids from Antrodia cinnamomea. J Nat Prod 58: 365-371.
Cherng IH, Wu DP, Chiang HC. 1996. Triterpenoids from Antrodia cinnamomea. Phytochemistry 41: 263-267.
Chiang HC, Wu DP, Cherng IW, Ueng CH. 1995. A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinna- momea. Phytochemistry 39: 613-616.
Choi KH, Chisti Y, Moo-Young M. 1996. Comparative evaluation of hydrodynamic and gas-liquid mass transfer characteristics in bubble column and airlift slurry reactors. Chem Eng J 62: 223-229.
Connolly JD, Hill RA. 2003. Triterpenoids. Nat Prod Rep 20: 640-659.
Connolly JD, Hill RA. 2005. Triterpenoids. Nat Prod Rep 22: 230-248.
Fang QH, Tang YJ, Zhong JJ. 2002. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem 37: 1375-1379.
Fang QH, Zhong JJ. 2002a. Submerged fermentation of higher fungus Ganoderma lucidum for production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem 37: 769–774.
Fang QH, Zhong JJ. 2002b. Submerged fermentation of higher fungus Ganoderma lucidum for production valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem Eng J 10: 61-65.
Fang QH, Zhong JJ. 2002c. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem 37: 769–774.
Fang QH, Zhong JJ. 2002d. Two-stage culture process for improved production of Ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol 18: 51-54.
Fu CC, Lu SY, Hsu YJ, Chen GC, Lin YR, Wu WT. 2004. Superior mixing performance for airlift reactor with a net draft tube. Chem. Eng Sci 59: 3021-3028.
Fu CC, Wu WT, and Lu SY. 2003. Performance of airlift bioreactors with net draft tube. Enzyme Microb Technol 33: 332-342.
Hseu YC, Chang WC, Hseu YT, Lee CY, Yech YJ, Chen PC, Chen JY, Yang HL. 2002. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci 71: 469-482.
Hseu YC, Yang HL, Lai YC, Lin JG, Chen GW, Chang JH. 2004. Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutr Cancer 48: 189–197.
Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, Lai YC, Yang HL. 2005. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. Int Immunopharmacol 5: 1914-1925.
Hsiao G, Shen MY, Lin KH, Lan MH, Wu LY, Chou DS, Lin CH, Su CH, Sheu JR. 2003. Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agric Food Chem 51: 3302–3308.
Hsieh CY, Tseng MH, Liu CJ. 2006. Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme Microb Technol 38: 109-117.
Hsu YL, Kuo YC, Kuo PL, Ng LT, Kuo YH, Lin CC. 2005. Apoptoticeffects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 221: 77-89.
Hsu FL, Chou CJ, Chang YC, Chang TT, Lu MK. 2006. Promotion of hyphal growth and underlying chemical changes in Antrodia camphorata by host factors from Cinnamomum camphora. Int J Food Microbiol 106: 32-38.
Huang LC, Huang SJ, Chen CC, Mau JL. 1999. Antioxidant properties of Antrodia camphorate. Proceedings of 3rd International Conference on Mushroom Biology and Mushroom Products. p275-283.
Huang NK, Cheng JJ, Lai WL, Lu MK. 2005. Antrodia camphorata
prevents rat pheochromocytoma cells from serum deprive- ation-induced apoptosis. FEMS Microbiol Lett 244: 213-219.
Huang TK, Wang PM, and Wu WT. 2001. Cultivation of Bacillus thuringiensis in an airlift reactor with wire mesh draft tubes. Biochem Eng J 7: 35-39.
Jonathan SG, Fasidi IO. 2001. Studies on phytohormones, vitamins and mineral element requirements of Lentinus subnudus and Schizophyllum commune from Nigeria. Food Chem 75: 303–307.
Kanai T, Uzumaki T, Kawase Y. 1996. Simulation of airlift bioreactors: steady-state performance of continuous culture processes. Comput Chem Eng 20: 1089-1099.
Kuo PL, Hsu YL, Cho CY, Ng LT, Kuo YH, Lin CC. 2006. Apoptotic effects of Antrodia cinnamomea fruiting bodies extract are mediated through calcium and calpain-dependent pathways in Hep 3B cells. Food Chem Toxicol 44: 1316-1326.
Lee IH, Huang RL, Chen CT, Chen HC, Hsu WC, Lu MK. 2002. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett 209: 61-65.
Lin ES, Ko HC. 2005 Glucose stimulates production of the alka- line-thermostable lipase of the edible Basidiomycete Antrodia cinnamomea. Enzyme Microb Technol 37: 261-265.
Lin ES, Sung SC. 2006. Cultivating conditions influence exo- polysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Int J Food Microbiol 108: 182-187.
Lin ES, Wang CC, Sung SC. 2006. Cultivating conditions influence lipase production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Enzyme Microb Technol 39: 98-102.
Lu MK, Cheng JJ, Lai WL, Lin YR, Huang NK. 2006. Adenosine as an active component of Antrodia cinnamomea that prevents rat PC12 cells from serum deprivation-induced apoptosis through the activation of adenosine A2A receptors. Life Sci 79: 252-258.
Mahato SB, Sen S. 1996. Advances in triterpenoid research, 1990-1994. Phytochemistry 44: 1185-1236.
Mau JJ, Huang PN, Huang SJ, Chen CC. 2004. Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chem 86: 25-31.
McGarvey DJ and Croteau R. 1995. Terpenoid Metabolism. Plant Cell 7: 1015-1026.
Mizuno T. 1999. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (Review). Intl J Med Mushrooms 1: 9-29.
Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65: 55-63.
Nakamura N, Hirakawa A, Gao JJ, Kakuda H, Shiro M, Komatsu Y, Sheu CC, Hattori M. 2004. Five new maleic and succinic Acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J Nat Prod 67: 46-48.
Nes WD, Zhou X. 2002. Triterpenoids: higher. Encyclopedia of Life Sciences 12: 1-13.
Peng CC, Chen KC, Peng RY, Su CH, Hsieh-Li HM. 2006. Human urinary bladder cancer T24 cells are susceptible to the Antrodia camphorata extracts. Cancer Lett (In press).
Pitta–Alvarez SI, Spollansky TC, Giulietti AM.2000. The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26: 252-258.
Rao SR, Ravishankar GA. 2002. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv 20: 101-153.
Rau U, Gura E, Olszewski E, Wagner F. 1992. Enhance of glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol 9: 19-26.
Shen CC, Kuo YC, Huang RL, Lin LC, Don MJ, Chang TT, Chou CJ. 2003. New ergostane and Lanostane from Antrodia camphorata. J Chin Med 14: 247-258.
Shen YC, Chou CJ, Wang YH, Chen CF, Chou YC, Lu MK. 2004. Anti-inflammatory activity of the extracts from mycelia of Antrodia
camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbio Lett 231: 137-143.
Shih IL, Pan K, Hsieh CY. 2006. Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochem 41: 1129-1135.
Shu CH, Xu CJ, Lin GC. 2006. Purification and partial characterization of a lipase from Antrodia cinnamomea. Process Biochem 41: 734-738.
Shu CH, Lung MY. 2004. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochem 39: 931-937.
Song TY, Yen GC. 2002. Antioxidant Properties of Antrodia Cam- phorata in Submerged Culture. J Agric Food Chem 50: 3322-3327.
Song TY, and Yen GC. 2003. Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. J Agric Food Chem 51:1571-1577.
Song TY, Hsu SL, Yen CT, Yen GC. 2005 Mycelia from Antrodia
camphorata in submerged culture induce apoptosis of human
hepatoma HepG2 cells Possibly through regulation of Fas pathway.J Agric Food Chem 53: 5559-5564.
Song TY, Hsu SL, Yen GC. 2005. Induction of apoptosis in human hepatoma cells by mycelia of Antrodia camphorata in submerged culture. J Ethnopharmacol 100: 158-167.
Takafumi F, Hironori I, Takayoshi T, Tetsuya Y, Guowei H, Mami K, Mitsuyasu O. 2001. Kojic Acid Production in an Airlift Bioreactor Partially Hydrolyzed Raw Corn Starch Using Partially Hydrolyzed Raw Corn Starch. J Biosci Bioeng 92: 360-365.
Tang YJ, Zhong JJ. 2002. Fed-batch fermentation of Ganoderma
lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol 31:20–8.
Tang YJ, Zhong JJ. 2003. Role of oxygen supply in submerged
fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb Technol 32:478–84.
Tung HL, Chiou SY, Tu CC, Wu WT. 1997. An airlift reactor with double net draft tubes and its application in fermentation. Bioprocess Engineering 17: 1-5.
Vasconsuelo A, Morelli S, Picotto G, Giulietti AM, Boland R. 2005. Intracellular calcium mobilization: A key step for chitosan-induced anthraquinone production in Rubia tinctorum L. Plant Sci 169:712-720.
Wang GJ, Tseng HW, Chou CJ, Tsai TH, Chen CT, Lu MK. 2003. The vasorelaxation of Antrodia camphorata mycelia: Involvement of endothelial Ca2+-NO-cGMP pathway. Life Sci 73: 2769-2783.
Wu DP, Chiang HC. 1995. Constituents of Antrodia cinnamomea. J Chin Chem Soc 42: 797-800.
Wu SH, Ryvarden L, Chang TT. 1997. Antrodia camphorata (niu-chang-chi), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sin 38: 273-275.
Wu WT, Wu JY, Jong JZ. 1992. Mass Transfer in an Airlift Reactor with a Net Draft Tube. Biotechnol Prog 8: 465-468.
Yang FC, Huang HC, Yang MJ. 2003. The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme Microb Technol 33: 395-402.
Yang HL, Chen CS, Chang WH, Lu FJ, Lai YC, Chen CC, Hseu TH,
Kuo CT, Hseu YC. 2006. Growth inhibition and induction of
apoptosis in MCF-7 breast cancer cells by Antrodia camphorate. Cancer Lett 231: 215-227.
Yang SW, Shen YC, Chen CH. 1996. Steroids and triterpenoids of Antrodia cinnamomea-a fungus parasitic on cinnamomum
micranthum. Phytochemistry 41: 1389-1392.
Zhao J, Davis LC, Verpoorte R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23: 283-333.
Zhong JJ, Tang YJ. 2004. Submerged cultivation of medicinal
mushrooms for production of valuable bioactive metabolites. Adv Biochem Eng/Biotechnol 87: 25-59.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top