跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 21:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張誠茂
研究生(外文):Cheng-Mao Chang
論文名稱:硫磺怪方蟹對硫化氫的耐受度與解毒機制
論文名稱(外文):Sulfide tolerance and detoxification of the vent crab, Xenograpsus testudinatus
指導教授:戴昌鳳戴昌鳳引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:49
中文關鍵詞:硫磺怪方蟹龜山島淺海熱泉硫化氫解毒硫代硫酸根
外文關鍵詞:Xenograpsus testudinatusKueishan Islandshallow-water hydrothermal ventssulfide detoxificationthiosulfate
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1042
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對龜山島附近的淺海熱泉生物進行研究,自2005年8月起至2006年8月,一共完成8次的潛水調查與採樣,目前共紀錄包含4門6種大型底棲生物,包括兩種刺胞動物(Cnidaria):圓管星珊瑚Tubastraea aurea及一種未鑑定的海葵;兩種軟體動物(Mollusca):一種小型螺類Nassarius sp.及一種石鼈;環節動物(Annelida)一種:龍介蟲科(Serpulidae)的管蟲,與節肢動物(Athropod)一種:硫磺怪方蟹(Xenograpsus testudinatus)。其中硫磺怪方蟹數量十分龐大,並且主要在噴口中心區域活動,其牠物種均只出現在週圍區域。
硫化氫對水生生物來說是一種劇毒,它能滲入水族體內,阻抑電子傳遞鏈中細胞色素-c的正常功能,造成細胞死亡。由龜山島海域的水樣分析顯示,熱泉噴口中心區的海水硫化氫濃度高達2405.5 µM。將硫磺怪方蟹暴露在1000 µM及2000 µM的硫化氫中,半致死時間(LT50)分別為136及102小時,證實了怪方蟹對硫化氫具有很高的耐受度。分析暴露後的怪方蟹體內,發現大量的硫代硫酸根(S2O32-)累積在各部位的組織之中,藉著氧化作用,將硫化氫轉化為不具毒性的硫代硫酸根,再逐漸排出體外,可以克服硫化氫的毒性。淺海熱泉中硫化氫的毒性,不但排除了棲地中可能出現的競爭者與掠食者,也殺死潮水團中的浮游動物,讓浮游動物掉落,成為此處源源不絕的食物來源,硫磺怪方蟹慿著對硫化氫毒性的適應,得以在龜山島淺海熱泉區建立龐大的族群,成為最優勢的物種。
The study aims to investigate the marine macro fauna associated with the shallow-water hydrothermal vents off Kueishan Island. Six species representing 4 phyla were recorded, including a hexacoral Tubastraea aurea, an unidentified sea anemone, two species of mollusks (a snail Nassarius sp., an unidentified chiton), one serpulid polychaete, and the vent crab Xenograpsus testudinatus. The crab is the dominant species and often swarms in enormous populations at venting areas, while other species occur at the peripheral areas of the hydrothermal vents.
Sulfide is highly toxic to aquatic animals due to the inhibition of cytochrome-c oxidase, a critical enzyme for mitochondrial respiration. Seawater samples collected near the vents showed the highest concentration of sulfide as 2405.5 µM. The median lethal time(LT50)of X. testudinatus exposed to 1000 µM and 2000 µM of sulfide were 136 h and 102 h, respectively. Elevated levels of thiosulfate(S2O3-2)in the tissues of the crabs after exposure of sulfide showed that oxidation of sulfide to non-toxic thiosulfate is possibly the major detoxification mechanism. This mechanism enables X. testudinatus to tolerate to the high sulfide concentration in the environment. The hydrothermal fluid not only provides abundant food supply for the crabs by killing zooplankton and descent as ‘marine snow’ to the bottom, but also precludes the possible competitors and predators. The special adaptation of X. testudinatus to the toxicity of sulfide enables them to colonize successfully and become dominate in the shallow-water hydrothermal vent ecosystem off Kueishan Island.
目 錄
中文摘要………………………………………………………………………i
英文摘要………………………………………………………………………ii
1. Introduction………………………………………………………1
1.1. Production of sulfide in nature………………………….1
1.2. Effects of sulfide on aquatic animals…………………………………………………………………2
1.3. Hydrothermal vent crabs……………………………………………………………………3
2. Materials and methods………………………………………….4
2. 1. Study area.………………………………………………………………………….4
2.2. The animal………………………………………………………………….4
2.3. Experiments……………………………………………………………7
3. Results…………………………………………………………………12
3. 1. Description of the shallow vent areas……………………………………………………………………13
3.2. Background sulfide concentrations……………………….14
3.3. Tolerance experiments……………………………………………………………16
3.4. Sulfide metabolism in the crab…………………………………………………………………….17
4. Discussion…………………………………………………………21
4. 1. Distrubution of Xemograpsus testudinatus………………………………………………………….21
4.2. Species richness in hydrothermal vents……………………………………………………………………21
4.3. Sulfide tolerance………………………………………………………………22
4.4. Detoxification……………………………………………………….25
5. Conclusion…………………………………………………………29
Reference………………………………………………………………30
Appendix 1. Thiols …………………………………………………34
Appendix 2. Standard curve…………………………………………………………………..36 Appendix 3. Statistics…………………………………………………………….39
Appendix 4. Pictures……………………………………………………………….44
Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptation in aquatic organisms. Aquat. Toxicol. 24: 21-62
Bailly X, Vinogradov S (2005) The sulfide binding function of annelid hemoglobins: relic of an old biosystem? J. Inorg. Biochem. 99: 142-150
Bartholomew TC, Powell GM, Dodgson KS, Curtis CG (1980) Oxidation of Sodium Sulfide by Rat-Liver, Lungs and Kidney. Biochemical Pharmacology 29: 2431-2437
Biasi AMD, Bianchi CN, Aliani S, Cocito S, Peirano A, Dando PR, Morri C (2004) Epibenthic communities in a marine shallow area with hydrothermal vents (Milos island, Aegean sea). Chem. Ecol. 20 (supplement 1): S89-S105
Bourgeois RP, Felder DL (2001) Postexposure metabolic effects of sulfide and evidence of sulfide-base ATP production in callianassid ghost shrimp(Crustacea: Decapoda: Thalassinidea). J. Exp. Mar. Biol. Ecol. 263: 105-121
Butterworth KG, Grieshaber MK, Taylor AC (2004) Behavioural and physiological responses of the Norway lobster, Nephrops norvegicus(Crustacea: Decapoda), to sulfide exposure. Mar. Biol. 144: 1087-1095
Cardigos F, Colaco A, Dando PR, Avila SP, Sarradin PM, Tempera F, Conceicao P, Pascoal A, Santos RS (2005) Shallow water hydrothermal vent field fluids and communities of the D. Joao de Castro Seamount (Azores). Chemical Geology 224: 153-168
Chen CTA, Zeng ZG, Kuo FW, Yang TYF, Wang BJ, Tu YY (2005) Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology 224: 69-81
Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14: 454-458
Colaço A, Dehairs F, Desbruyères D (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-sea Res. 49: 359-412
Dorman DC, Moulin FJM, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci. 65: 18-25
Dover CLV (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, New Jersy
Fahey RC, Newton GL, Dorian R, Kosower EM (1981) Analysis of biological thiols: Quantitative determination of thiols at the picomole level based upon derivatization with monobromobimanes and separation by cation-exchange chromatography Anal. Biochem. 111: 357-365
Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphid oxidation enzymes in animals from sulphid-rich habitats. Nature 293: 291-293
Gamenick I, Abbiati M, Giere O (1998) Field distribution and sulphide tolerance of Capitella capitata (annelida: polychaeta) around shallow water hydrothermal vents off Milos (Aegean Sea). A new sibling species? Mar. Biol. 130: 447-453
Goffredi SK, Barry JP (2002) Species-specific variation in sulfide physiology between closely relatived Vesicomyid clams. Mar. Ecol. Prog. Ser. 225: 227-238
Gopakumar G, Kuttyamma VJ (1996) Effect of hydrogen sulfide on two species of penaeid prawns Penaeus indicus (H. Milne Edwards) and Metapenaeus dobsoni (Miers). Bull. Environ. Contam. Toxicol. 57: 824-828
Grieshaber MK, Völkel S (1998) Animal adaptation for tolerance and exploration of poisonous sulfide. Annu. Rev. Physiol. 60: 33-53
Gru C, Sarradin PM, Legoff H, Narcon S, Caprais JC, Lallier FH (1998) Determination of reduced sulfur compounds by high-performance liquid chromatography in hydrothermal seawater and body fluids from Riftia pachyptila. Analyst 123: 1289-1293
Hagerman L, Vismann B (1993) Anaerobic Metabolism, Hypoxia and Hydrogen-Sulfide in the Brackish-Water Isopod Saduria Entomon (L). Ophelia 38: 1-11
Hagerman L, Vismann B (1999) Effects of thiosulfate on haemocyanin oxygen affinity in the isopod Saduria entomon (L.) and the brown shrimp Crangon crangon (L.). J. Comp. Physiol. B. 169: 549-554
Hahlbeck E, Arndt C, Schiedek D (2000) Sulphide detoxification in Hediste diversicolor and Marenzelleria viridis, two dominant polychaete worms within the shallow coastal waters of the southern Baltic Sea. Comp. Biochem. Phys. B 125: 457-471
Hauschild K, Grieshaber MK (1997) Oxygen consumption and sulfide detoxification in the lugworm Arenicola marina at different ambient oxygen partial pressures and sulfide concentrations. J. Comp. Physiol. B. 167: 378-388
Hauschild K, Weber WM, Clauss W, Grieshaber MK (1999) Excretion of thiosulphate, the main detoxification product of sulphide, by the lugworm Arenicola marina L. Journal Of Experimental Biology 202: 855-866
Huang IH (2005) The analysis of fault systems in the Southernmost Part of Okinawa Trough and Northern Taiwan Institute of Applied Geosciences, National Taiwan Ocean University
Ingvorsen K, Jorgensen BB (1979) Combined measurement of oxygen and sulfide in water samples. Limnol. Oceanogr. 24: 390-393
Ivanov MV, Karavaiko GI (2004) Geological Microbiology. Microbiology 73: 493-508
Jahn A, Gamenick I, Theede H (1996) Physical adaptation of Cyprideis torosa (Crustacea, Ostracoda) to hydrogen sulphide. Mar. Ecol. Prog. Ser. 142: 215-223
Jahn A, Janas U, Theede H, Szaniawska A (1997) Significant of body size in sulphide detoxification in the Baltic clam Macoma balthica (Bivalvia, Tellinidae) in the Gulf of Gdańsk. Mar. Ecol. Prog. Ser. 154: 175-183
Jannasch HW (1985) Geomicrobiology of deep-sea hydrothermal vent. Science 229: 717-725
Jeng MS, Clark PF, Ng PKL (2004a) The first zoea, megalopa, and first crab stage of the hydrothermal vent crab Xenograpsus testudinatus (decapoda: brachyura: grapsoidea) and the systematic implications for the varunidae. J. Crustac. Biol. 24: 188-212
Jeng MS, Ng NK, Ng PKL (2004b) Hydrothermal vent crabs feast on sea ''snow''. Nature 432: 969
John A, Theede H (1997) Different degree of tolerance to hydrogen sulphide in populations of Macoma balthica (Bivalvia, Tellinidae). Mar. Ecol. Prog. Ser. 154: 185-196
Johns AR, Taylor AC, Atkinson RJA, Grieshaber MK (1997) Sulphide metabolism in thalassinidean crustacea. J. Mar. Biol. Assoc. U.K. 77: 127-144
Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep-sea res. 35: 1988
Joyner JL, Peyer SM, Lee RW (2003) Possible roles of sulfur-containing amino acids in a chemoautotrophic bacterium-mollusc symbiosis. Biol. Bull. 205: 331-338
Julian D, April KL, Patel S, Stein JR, Wohlgemuth SE (2005) Mitochondrial depolarization following hygdrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invetebrate. J. Exp. Biol. 208: 4109-4122
Julian D, Wieting SL, Seto SL, Bogan MR, Arp AJ (1999) Thiosulfate elimination and permeability in a sulfide-adapted marine invertebrate. Physiological And Biochemical Zoology 72: 416-425
Kamenev GM, Fadeev VI, Selin NI, Tarasov VG, Malakhov VV (1993) Composition and distribution of macro- and meibenthos around sublittoral hydrothermal vents in the Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research 27: 407-418
Kang J-C, Matsuda O (1994) Combined effects of hypoxia and hydrogen sulfide on early developmental stages of white shrimp Metapenaeus monoceros. J. Fac. Appl. Biol. Sci. 33: 21-27
Knezovich JP, Steichen DJ, Jelinski JA, Anderson SL (1996) Sulfide tolerance of four marine species used to evaluate sediment and pore-water toxicity. Bull. Environ. Contam. Toxicol. 57: 450-457
Kuo FW (2001) Preliminary investigation of the hydrothermal activities off Kueishan island. Institute of Marine Geology and Chemistry, National Sun Yat Sen university, Master thesis
Laudien J, Schiedek D, Brey T, Portner HO, Arntz WE (2002) Survivorship of juvenile surf clams Donax serra (Bivalvia, Donacidae) exposed to severe hypoxia and hydrogen sulphide. J. Exp. Mar. Biol. Ecol. 271: 9-23
Lawrence NS, Davis J, Compton RG (2000) Analytical strategies for the detection of sulfide: a review. Talanta 52: 771-784
Le Bris N, Sarradin PM, Caprais JC (2003) Contrasted sulphide chemistries in the environment of 13 degrees N EPR vent fauna. Deep-Sea Res. 50: 737-747
Libes SM (1992) An introduction to marine biogeochemistry. John Wiley & Sons, United States of America
Martin JW, Haney TA (2005) Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zoological Journal Of The Linnean Society 145: 445-522
Masatsune T, Hiroshi T, Hiroyuki S (1993) Occurrence of Xenograpsus novaeinsularis Takeda et Kurata (Crustacea: Decapoda: Brachyura) in the Tokara and Iwo Islands. Nat. Envir. Sci. Res. 6: 59-64
Newton GL, Doria R, Fahey RC (1981) Analysis of biological thiols: Derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal. Biochem. 114: 383-387
Ng NK, Huang JF, Ho PH (2000) Description of a new species of hydrothermal crab, Xenograpsus testudinatus (Crustacea: Decapoda: Branchyura: Grapsdae) from Taiwan. Natl. Taiwan Mus. Spec. Pub. Ser. 10: 191-199
Nicholls P, Kim JK (1982) Sulfide as an inhibitorand donor for the cytochrome c oxidase system. Can. J. Biochem. 60: 613-623
Oeschger R, Vetter RD (1992) Sulfide detoxification and tolerance in Halicryptus spinulosus (Priapulida): a multiple strategy. Mar. Ecol. Prog. Ser. 86: 167-179
Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press Ltd., Oxford
Powell MA, Somero GN (1985) Sulfide oxidation occurs in the animal tissue of the cutless clam, Solemya reidi. Biol. Bull. 169: 164-181
Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: Sites and mechanisms of detoxification and metabolism. Biol. Bull. 171: 274-290
Rau GH, Hedges JI (1979) Carbon-13 depletion in a hydrothermal vent mussel: suggention of a chemosynthetic food source. Science 203: 648-649
Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar. Ecol. Prog. Ser. 231: 121-138
Sandberg-Kilpi E, Vismann B, Hagerman L (1999) Tolerance of the Baltic amphipod Monoporeia affinis to hypoxia, anoxia and hydrogen sulfide. Ophelia 50: 61-68
Sanders NK, Childress JJ (1992) Specific effects of thiosulphate and L-lactate on hemocyanin-O2 affinity in a branchyuran hydrothermal vent crab
Mar. Biol. 113: 175-180
Takeda M, Kurata Y (1977) Crabs of the Ogasawara Islands. Bull. Natn. Sci. Mus. 3: 91-111
Tarasov VG (2006) Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific Advances in Marine Biology, Vol 50, pp 267-421
Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chemical Geology 224: 5-39
Tarasov VG, Gebruk AV, Shulkin VM, Kamenev GM, Fadeev VI, Kosmynin VN, Malakhov VV, Starynin DA, Obzhirov AI (1999) Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, PApua New Guinea) Cont. Shelf Res. 19: 79-116
Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campylocercoides-a result of internal sulphur formation? Mar. Ecol. Prog. Ser. 193: 251-259
Ubuka T (2002) Assay methods and biological roles of labile sulfur in animal tissue. J. Chromatogr., Biomed. Appl. 781: 227-249
Vetter RD, Wells ME, Kurtsman AL, Somero GN (1987) Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans. Physiol. zool. 60: 121-137
Vismann B (1990) Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Mar. Ecol. Prog. Ser. 59: 229-238
Vismann B (1991) Physiology of sulfide detoxification in the isopod Saduria (Mesidotea) entomon. Mar. Ecol. Prog. Ser. 76: 283-293
Vismann B (1996) Sulfide species and total sulfide toxicity in the shrimp Crangon crangon. J. Exp. Mar. Biol. Ecol. 204: 141-154
Völkel S (1995) Sulfide tolerance and detoxificantion in Arenicola marina and Sipunculus nudus. Amer. Zool. 35: 145-153
Völkel S, Grieshaber MK (1992) Mechanisms of sulphide tolerance in the peanut worm, Sipunculus nudus (Sipunculidae) and in the lugworm, Arenicola marina (Polychaeta). J. Comp. Physiol. B. 162: 469-477
Yang TF, Lan TF, Lee HF, Fu CC, Chuang PC, Lo CH, Chen CH, Chen CTA, Lee CS (2005) Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal 39: 469-480
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top