跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/13 07:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏汝薇
研究生(外文):Nu-Wei Vivian Wei
論文名稱:軸孔珊瑚種間關係的探討
論文名稱(外文):Interspecies relationships in Acropora (Cnidaria: Scleractinia)
指導教授:戴昌鳳戴昌鳳引用關係
指導教授(外文):Chang-Feng Dai
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:82
中文關鍵詞:軸孔珊瑚同步集體產卵網狀演化生物種概念祖先多型性種的範圍界定染色體組型
外文關鍵詞:Acroporamass spawningBiological Species Conceptreticulate evolutionancestral polymorphismspecies boundaryKaryotype
相關次數:
  • 被引用被引用:1
  • 點閱點閱:479
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
軸孔珊瑚(Acropora spp.)是石珊瑚(Scleractinia)中種類數最多的一屬, 種類數多達113種以上。根據Wallace(1999)的分類可分成四大主要系群(clade)。生態上,軸孔珊瑚常為同域共存(sympatric)。生殖上,同域共存的軸孔珊瑚在進行同步集體產卵(synchronous spawning)時,可能提供種間雜交的機會,進而造成種間界定(species boundary)模糊的網狀演化( reticulate evolution )。因此,軸孔珊瑚是近十年來(1997-2006)用於探討石珊瑚藉由集體產卵可能導致雜交種化和網狀演化的主要研究對象。然而,應用分子親緣關係和族群遺傳學方法探討雜交種化、網狀演化和祖先多型性(ancestral polymorphism)的現象,仍存在模糊不清的爭議。本論文以澎湖青灣海域同域共存的四種軸孔珊瑚種為研究對象,進行種間關係的研究,用以檢驗造礁珊瑚雜交種化理論的可行性。
針對軸孔珊瑚集體產卵的有性生殖方式,本論文探討:(1)利用軸孔珊瑚集體產卵時間觀察探討生殖時間隔離(temporal isolation);(2)利用人工配子雜交實驗探討合子前隔離(prezygotic isolation);(3)依據軸孔珊瑚染色體組型(karyotype)的觀察,探討合子後隔離(postzygotic isolation)的可能性 ;及(4)重新檢視普遍被使用於探討軸孔珊瑚演化模式的核糖體轉錄區間和5.8S片段(ribosomal ITS1-5.8S-ITS2),利用親緣關係分析方法重新檢視與推論軸孔珊瑚的分子演化。
於2002至2005年,在澎湖本島的青灣內灣(23031’N;119033’E)研究美麗軸孔珊瑚(Acropora muricata)、變異軸孔珊瑚(A. valida)、桌形軸孔珊瑚(A. hyacinthus)和趾形軸孔珊瑚(A. humilis)等四種同域珊瑚的集體生殖。結果發現軸孔珊瑚的集體產卵日分佈,在不同年之間呈現不一致的現象。青灣內灣的軸孔珊瑚產卵時間為國曆的四月和五月,所記錄的產卵日分佈從月圓前七天(-7)到月圓後十天(+10)皆有。當日的產卵時間則從日落後ㄧ個半小時到四個小時。四種軸孔珊瑚呈現相似的產卵時間和日期。然而,推估種間同時產卵的機率,發現種內(珊瑚群體間)和任兩種之間的同步產卵的機率較高,而四個種間的同步產卵機率最低。此現象顯示青灣內灣的四種軸孔珊瑚產卵時間雖然相近,但每個產卵日和時間參與同步產卵的軸孔珊瑚種類不同,仍具有一些時間隔離。
在人工雜交實驗方面,青灣內灣的四種軸孔珊瑚呈現種內配子受精成功率高,而種間配子受精成功率低的現象。由種間配子不相容的狀況,表示青灣內灣的四種同域的軸孔珊瑚呈現清楚的種間界限。與前人研究軸孔珊瑚種間配子雜交成功的相關文獻比較,顯示具有較高種間雜交記錄的軸孔珊瑚物種多為Wallace(1999)依據外型特徵所分出的C系群(clade)的軸孔珊瑚。而青灣內灣的四種軸孔珊瑚中,兩種屬於A系群(趾型軸孔珊瑚和變異軸孔珊瑚)、一種屬於B系群(美麗軸孔珊瑚)、一種屬於C系群(桌型軸孔珊瑚)。
在軸孔珊瑚染色體組方面,本論文共檢視110個染色體組。結果發現青灣內灣的四種軸孔珊瑚皆擁有28個染色體。與前人所發表的石珊瑚染色體數目比較,21種軸孔珊瑚中,16種軸孔珊瑚擁有28個染色體,只有3種軸孔珊瑚呈現可能非整倍體(aneuploid)的數目(30和24)、3種軸孔珊瑚可能為多倍體(polyploidy)的數目(42、48、54)。其中,變異軸孔珊瑚(A. valida)擁有28個(青灣內灣樣本)和42個(關島樣本)兩種染色體數。另外,同科的表孔珊瑚屬(Montipora)也具有28個染色體,因此擁有28個染色體並非軸孔珊瑚屬內多倍體種化的結果。而其他具有整倍體或多倍體數目的軸孔珊瑚可能是獨立事件的結果。
在石珊瑚的核糖體片段(ITS1-5.8S-ITS2)親緣分析方面,總共取得石珊瑚12科、28屬、78種的DNA序列參與分析。在遺傳距離(p-distance)分布方面,只有軸孔珊瑚具有高度的種內遺傳距離和種間遺傳距離變異。而其他石珊瑚則呈現種間與種內相同保守的遺傳變異,或種間遺傳變異高於種內遺傳變異的情形。而在核糖體5.8S DNA序列親緣關係樹方面,軸孔珊瑚屬較其他石珊瑚具有長分支的單系群。另一方面,應用分子鐘假設(molecular-clock hypothesis)的可能性比例測試(likelihood ratio test)原理,測試珊瑚所擁用的核糖體5.8S DNA序列,呈現顯著不一致的演化速率。在更仔細的分群之下,發現軸孔珊瑚屬(包含subgenera Acropora and Isopora)呈現屬內一致的演化速率,而軸孔珊瑚屬與其他石珊瑚則呈現不一致的演化速率。因此,軸孔珊瑚核糖體片段序列相較於其他石珊瑚呈現高遺傳變異的獨特現象。
綜合本論文針對軸孔珊瑚種間關係的探討,獲得下列結論:
(ㄧ)澎湖青灣內灣四種同域共存的軸孔珊瑚 ,雖然任兩種之間的同步產卵的機率較高,但四個種間的同步產卵機率最低。此現象顯示青灣內灣的四種軸孔珊瑚雖然共域且產卵時間相近,但是仍可能有時間差的生態隔離(ecological isolation)作為第ㄧ道維持種間界限的機制。
(二)雜交實驗的結果顯示,青灣內灣的四種軸孔珊瑚間即使具有同步產卵的機會,配子亦無法受精,顯示這四種珊瑚間的配子發展出可能的辨識機制,而具有合子前隔離(prezygotic isolation)第二道防線。
(三) 染色體數目的資料顯示青灣內灣軸孔珊瑚並無多倍體或非整倍體的存在,不支持在澎湖青灣海域的四種軸孔珊瑚之間有雜交種存在的可能性。
(四) 軸孔珊瑚核糖體5.8S片段呈現種內和種間高遺傳變異,此現象導致軸孔珊瑚呈現分子網狀模式(molecular reticulate pattern)的種間關係。因此核糖體5.8S片段的分子訊息不適合用於探討軸孔珊瑚種間關係。另一方面, 軸孔珊瑚屬相較於其他石珊瑚呈現快速演化的現象,也不適合用於探討石珊瑚網狀演化的可能性。
本論文中的生態與生殖證據顯示澎湖青灣內灣的軸孔珊瑚呈現清楚的種間界限,然而在分子親緣關係仍呈現不清楚的種間關係。因此建議往後探討珊瑚演化的相關機制時,必須同時考慮生態、行為、生殖和分子遺傳的證據。
Acropora species often coexist sympatrically and their mass-spawning behavior provides the opportunities for interspecific hybridization. The reticulate patterns of Acropora have been widely documented from 1997 to 2006 and have been used as a generalisation of reticulate history for scleractinian evolution. The possible reproductive isolations including temporal isolation of spawning time, the post-mating isolations, and the cytogenetic types were studied. In addition, the phylogenetic analyses of ribosomal internal transcribed spacer (ITS) and 5.8S gene region were conducted to deduce the reticulate evolutionary history.
Four sympatric Acropora corals, including A. muricata, A. valida, A. hyacinthus, and A. humilis, were studied in the Chinwan Inner Bay, Penghu Islands from 2002 to 2005. The spawning dates of Acropora are highly variable among years and months, ranging from 7 days before full moon to 10 days after full moon. Major spawning peaks can be splitted on April or May. Within the spawning days, field monitoring indicated an overlapping in spawning time among these four species in the Chinwan Inner Bay, suggesting synchronously spawning occurred. On the other side, the four Acropora species shared some overlapping in spawning days and spawning time in Chinwan Inner Bay. However, the probabilities of synchronization showed that synchrony mainly occurred within species and between two species. Cross experiments showed very low or none interspecific hybridization among species, indicating gametic incompatibilities and prezyotic isolation existed. Cytogenetic typing showed the chromosome numbers were 28 in developed coral larvae for all the four Acropora species.
For the molecular phylogenetic analysis, I examined the molecular evolution of the internal transcribed spacers (ITS) and 5.8S rDNA sequences from 78 species, representing 28 genera, and 12 families of scleractinian corals. Genetic distances (measured by p-distances) and frequency distribution analyses revealed that both extremely high intra- and interspecific heterogeneity of the ITS-5.8S rDNA were specific to the Acropora. The 5.8S rDNA phylogeny clearly showed a significantly long branch length leading to the cluster of Acropora. The molecular-clock hypothesis tested by likelihood ratio test indicated a highly significant difference in global evolutionary rate for scleractinian 5.8S rDNA. The relative rate tests showed that Isopora, Caribbean Acropora, and Indo-Pacific Acropora evolved at constant tempos in their rDNA, indicating that highly divergent rDNA persisted in Acropora before splitting into these three lineages. In contrast, rate constancy was rejected in most of comparisons between Acropora/ Isopora and other coral genera, suggesting that the rates of evolution of 5.8S differed between Acropora/ Isopora and other lineages, and the evolutionary rate of Acropora/ Isopora was accelerated after divergence from the common ancestor of scleractinian corals.
In summary, I have applied the BSC to examine the species boundary of symatric Acropora corals which spawned relatively synchronous in their reproductive seasons. Strong prezygotic isolation existed among Acropora suggested that a gamete recognition system could have operated the incomparability of sperm and egg interaction during mass spawning events the corals in Chinwan Inner Bay, Penghu. In addition, revisiting the molecular phylogenetic analysis of ITS clearly showed the high heterogeneity of rDNA is a unique feature of Acropora. Thus using this unique case to conclude the reticulate evolution as a general pattern of scleractinain corals should be cautious. The unusual heterogeneous rDNA characteristics might be applied to the whole nuclear genome of Acropora, and thus deductions of species boundary based on molecular markers are still far from completed. Under this circumstance, ecological and reproductive examinations based on the BSC criterion continue to be an effective approach to delineate the species boundary in corals. Although debates of reticulate evolution in scleractinian corals remain unsettled, future applications of ecological, behavioral, reproductive, and molecular genetics are still to be the coordinated approaches to reveal the evolutionary mechanism of coral speciation.
Signature Page……………………………………………………..…………………..i
Acknowledgements…………………………………………...……………………… ii
Chinese abstract ……………………………………..………………………………. v
English abstract ……………………………………………………………..……… ix
Contents…………………………………………………………………………….. xii
Contents of figures ………………………………………………………………. xiv
Contents of tables …………………………………………………………………. xvi
Chapter 1 Introduction to the dissertation…………………………………….......... 1
Chapter 2 The prezygotic isolation in four Acropora species …………………….. 13
2.1 Abstract……………………………………………………...………….…13
2.2 Introduction………………………………………………………………. 14
2.3 Materials and methods………………………………………...…………. 15
2.4 Results…………………………………………………...………………. 17
2.5 Discussion……………………………………………………………….. 20
Tables ………………………………………………………......…………23
Figures …………………………………………………...………………. 24
Chapter 3 The karyotypes of Acropora species…………………..…………..…….. 29
3.1 Abstract……………..…………………………….………………………. 29
3.2 Introduction……………………..……………………………………….. 30
3.3 Materials and methods……………………………………..……...…....... 31
3.4 Results……………………………………..……………………..………. 32
3.5 Discussion………………………………..…………...…………………. 32
Tables …….............................................................................…………… 34
Figures ………………………………………………….………..……… 35
Chapter 4 Analyses of the ribosomal internal transcribed spacers (ITS) and 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia: Acroporidae)…………………….40
4.1 Abstract…………………………………….…………………….……… 40
4.2 Introduction………………………………………….………...………… 42
4.3 Materials and methods……………………………………....………….. 44
4.4 Results…………………………………………………………………… 47
4.5 Discussion……………………………………………….………….….... 50
Tables ………………………………………………….……………........ 56
Figures ……………………………………………….………………...... 62
Chapter 5 Conclusions …………………………………………………...…..…..... 66
References………………………………………………………………………..... 72
Alverez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417-434.
Avise JC (2004) Molecular markers, natural history, and evolution, 2nd ed. Sinauer, Sunderland, Massachusetts, USA.
Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar Biol 90:379-394.
Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phyl Evol 1:3-16.
Bermas NA, Alino PM, Atrigenio MP, Uychiaoco A. (1992) Observations on the reproduction of scleractinian and soft corals in the Philippines. Proc 7th Int Coral Reef Symp, Guam 1:443-447.
Buckler ES IV, Holtford TP (1996) Zea systematics: ribosomal ITS evidence. Mol Biol Evol 13:612-622.
Budd AF, Stemann TA, Johnson KG (1994) Stratigraphic distributions of neogene to recent Caribbean reef corals: a new compilation. J Paleontol 68:951-959.
Bullini L (1994) Origin and evolution of animal hybrid species. Trends Ecol Evol 9:422-426.
Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14(12):491-495.
Carroll A, Harrison P, Adjeroud M (2006) Sexual reproduction of Acropora reef corals at Moorea, French Polynesia. Coral Reefs 25:93-97.
Chen CA, Yu JK, Wei NW (2000) Strategies for amplification by polymerase chain reaction of the complete sequence of nuclear large subunit ribosomal RNA-encoding gene in corals. Mar Biotech 6:558-570.
Chen CA, Wallace CC, Wolstenholme J (2002) Analysis of mitochondrial 12S RNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Mol Phyl Evol 23:137-149.
Chen CA, Chang CC, Wei NV, Chen CH, Lein YT, Lin HE, Dai CF, Wallace CC (2004) Secondary structure and phylogenetic utility of the ribosomal internal transcribed spacer 2 (ITS2) in scleractinian corals. Zool Stud 43:759-771.
Coyne JA, Orr HA (2005) Speciation. Sinauer Associates. Sunderland, Massachusetts, USA.
Dai CF, Soong K, Fan TY (1992) Sexual reproduction of corals in northern and southern Taiwan. Proc 7th Int Coral Reef Symp, Guam 1:448-455.
De Greef M, Geertjes GJ, Videler JJ (1999) Observations on spawning of scleractinian corals and other invertebrates on the reefs of bonaire (Netherlands, Caribbean). Bull Mar Sci 64:189-194.
Diekmann OE, Bak RPM, Stam WT, Olsen JL (2001) Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar Biol 139:221-223.
Dover GA (1982) Molecular drive, a cohesive model of species evolution. Nature 299:111-117.
Dowling TE, Secor CL (1997) The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst 28:593-619.
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368-376.
Forsman ZH (2003) Phylogeny and phylogeography of Porites & Siderastrea (Scleractinia: Cnidaria) species in the Caribbean and eastern Pacific; based on the nuclear ribosomal ITS region. PhD Dissertation. University of Houston, Texas, USA.
Forsman ZH, Guzman HM, Chen CA, Fox GE, Wellington GM (2005) An ITS region phylogeny of Siderastrea (Cnidaria; Anthozoa): Is S. glynni endangered or introduced? Coral Reefs 24: 343-347.
Forsman, ZH, Hunter CL, Fox GE, Wellington GM (2006) Is the ITS region the solution to the ‘species problem’ in corals? Intragenomic variation and alignment permutation in Porites, Siderastrea and outgroup taxa. Proc 10th Int Coral Reef Sym, Okinawa:14-23.
Fukami H, Omori M, Hatta M (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689-696.
Fukami H, Omori M, Shimoike K, Hayashibara T, Hatta M (2003) Ecological and genetic aspects of reproductive isolation by different spawning time in Acropora corals. Mar Biol 142:679-684.
Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832-835.
Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324-337.
Gilbert DC (1994) SeqApp 1.9. A biological sequence editor and analysis program for Macintosh computers. Available via anonymous ftp at ftp://bio.indiana.edu.
Grant V (1981) Plant speciation, 2nd edition. Columbia University Press, NY, USA.
Gtant PR, Grant BR, Petren K (2005) Hybridization in the recent past. Am Nat 166: 56-67.
Harrison PL, Babcock RC, Bull GD, Oliver JK, Wallace CC, Willis BL (1984). Mass spawning in tropical reef corals. Science 223:1186-1189.
Hartl DL (2000) A primer of population genetics, 3rd edition. Sinauer Associates, Sunderland, Massachusetts, USA.
Hatta M, Fukami H, Wang W, Omori M, Shimoike K, Hayashibara T, Ina Y, Sugiyama T (1999) Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol Biol Evol 16(11): 1607-1613.
Hayashibara T, Shimoike K, Kimura T, Hosaka S, Heyward A, Harrison P, Kudo K, Omori M (1993) Patterns of coral spawning at Akajima Island, Okinawa, Japan. Mar Ecol Prog Ser 101:253-262.
Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411-453.
Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308-310.
Hsieh HJ, Wei NV, Lu Y-L, Jeng M-S, Tsai W-S, Chen CA (2001) Unexpectedly high coral coverage in Chinwan Inner Bay, Pescadores: a proposed site for a Marine Protected Area. Coral Reefs 20:316-317.
Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proc 8th Int Coral Reef Sym, Panama 2:1599-1602.
Joly S, Rauscher JT, Sherman-Broyles SL, Brown AHD, Doyle JJ (2004) Evolutionary dynamics and preferential expression of homeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial Glycine allopolyploids. Mol Biol Evol 21: 1409-1421.
Kenyon JC (1992) Sexual reproduction in Hawaiian Acropora. Coral Reefs 11:37-43.
Kenyon JC (1997) Models of reticulate evolution in the coral genus Acropora based on chromosome: parallels with plants. Evolution 51:756-767.
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111-120.
Knowlton N, Mate JL, Guzman HM, Rowan R, Jara J (1997) Direct evidence for reproductive isolation among the three species of the Montastraea annularis complex in Central America (Panama and Honduras). Mar Biol 127:705-711.
Lam K, Morton B (2003) Morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence distinctions between two species Playtygyra (Cnidaria; Scleractinia) from Hong Kong. Mar Biotechnol 5:555-567.
Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308-323.
Li P, Bousquet J (1992) Relative-rate test for nucleotide substitutions between two lineages. Mol Biol Evol 9:1185-l189.
Li WH (1997) Molecular evolution. Sinauer, Sunderland, Massachusetts, USA.
Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution in plants. Am J Bot 91:1700-1708.
Lopez J, Knowlton N (1997) Discrimination of species in the Montastraea annularis complex using multiple genetic loci. Proc 8th Int Coral Reef Sym, Panama 2:1613-1618.
Mai JC, Coleman AW (1997) The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J Mol Evol 44:258-271.
Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229-237.
Marquez LM, van Oppen MJH, Willis BL, Reyes A, Miller DJ (2002) The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Mol Ecol 11:1339-1349.
Marquez LM, van Oppen MJH, Willis BL, Miller DJ (2002) Sympatric populations of the highly cross-fertile coral species Acropora hyacinthus and Acropora cytherea are genetically distinct. Proc R Soc Lond B 269:1289-1294.
Marquez LM, Miller DJ, MacKenzie JB, van Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077-1086.
Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421-424.
Mayr E (1963) Animal species and evolution. Cambridge, MA, USA.
Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89-97.
Miller DJ, van Oppen MJH (2003) A ‘fair go’ for coral hybridization. Mol Ecol 12:805-807.
Moothien Pillay KR, Asahida T, Chen CA, Terashima H, Ida H (2006) ITS ribosomal DNA distinctions and genetic structure of populations of two sympatric species of Pavona (Cnidaria; Scleractinia) from Mauritius. Zool Stud 45:132-144.
Muir G, Fleming CC, Schlotterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol Biol Evol 18:112-119.
Muse SV, Weir BS (1992) Testing for equality of evolutionary rates. Genetics 132:269-276.
Odorico DM, and Miller DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; scleractinia): patterns of variation consistent with reticulate evolution. Mol Biol Evol 14(5):465-475.
Oliverio M, Cervelli M, Mariottini P (2002) ITS2 rRNA evolution and its congruence with the phylogeny of muricid neogastropods (Caenogastropoda, Muricoidea). Mol Phyl Evol 25:63-69.
Penland L, Kloulechad J, Idip D, van Woesik R (2004) Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. Coral Reefs 23:133-140.
Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817-818.
Robinson M, Gouy M, Gautier C, Mouchiroud D (1998) Sensitivity of the relative-rate test to taxonomic sampling. Mol Biol Evol 15:1091-1098.
Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Mol Ecol 11:1177-1189.
Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67: 1043-1068.
Sang T, Zhong Y (2000) Testing hybridization hypotheses based on incongruent gene trees. Syst Biol 49: 422-434.
Schlotterer C, Hauser M, von Haeseler A, Tautz D (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol 11: 513-522.
Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502-504.
Shimoike K, Hayashibara T, Kimura T, Omori M (1992) Observations of split spawning in Acropora spp. at Akajima Island, Okinawa. Proc 7th Int Coral Reef Sym, Guam 1:484-488.
Shlesinger Y, Loya Y (1985) Coral community reproductive patterns: red sea versus the Great Barrier Reef. Science 228: 1333-1335.
Soong K, Cho LC (1998) Synchronized release of medusae from three species of hydrozoan fire corals. Coral Reefs 17:145-154.
Swofford DL. 2002. PAUP 4.0b10: Phylogenetic Analysis Using Parsimony (and other methods). Sunderland, MA: Sinauer Associates.
Szmant AM, Weil E, Miller MW, Colon DE (1997) Hybridization within the species complex of the scleractinian coral Montastraea annularis. Mar Biol 129:561-572.
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL X: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673-4680.
Van Oppen MJH, Willis BL, van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363-1373.
Van Oppen MJH, McDonald BJ, Willis B, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18:1315-1329.
Van Oppen MJH, Willis BL, van Rheede T, Miller DJ (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol Ecol 11:1363-1376.
Van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar Biol 144:9-18.
Veron JEN (1995) Coral in space and time: the biogeography and evolution of the Scleractinia. Sydney: UNSW Press. Australia.
Veron JEN (2000) Corals of the world. Australian institute of Marine Science, Townsville, Australia.
Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296: 2023-2025.
Vollmer SV, Palumbi SR (2004) Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol Ecol 13: 2763-2772.
Vrijenhoek RC (2006) Polyploid hybrids: mutiple origins of a treefrog species. Curr Biol 16: R245-247.
Wallace CC (1999) Staghorn corals of the world: a revision of the coral genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) worldwide, with emphasis on morphology, phylogeny and biogeography. CSIRO Publishing, Collingwood, Australia.
Weekers PHH, de Jonckheere FJ, Dumont HJ (2001) Phylogentic relationships inferred from ribosomal ITS sequences and biogeographics patterns in representative of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent west European zone. Mol Phyl Evol 20:89-99.
Wei NV (2001) Molecular evolution of the ribosomal internal transcribed spacer 2 in Acropora (Cnidaria; Scleractinia): effects of paralogy and ancestral polymorphism. Master dissertation, National Taiwan University, TAIWAN. pp. 34.
Wild C, Tollrian R, Huettel M (2004) Rapid recycling of coral mass-spawning products in permeable reef sediments. Mar Ecol Prog Ser 271:159-166.
Willis BL, Babcock RC, Harrison PL, Wallace CC (1997) Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16 (Suppl): S53-S65.
Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol Syst 37:489-517.
Wilson JR, Harrison PL (2003) Spawning patterns of scleractinian corals at the Solitary Islands〈a high latitude coral community in eastern Australia. Mar Ecol Prog Ser 260:115-123.
Wolstenholme JK, Wallace CC, Chen CA (2003) Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22:155-166.
Wolstenholme JK (2004) Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar Biol 144:567-582.
Wu CI, Li WH (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741-1745.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 莊謙本(1999)。教育評鑑指標的建構。技術及職業教育雙月刊,52,7-9。
2. 高新建(2002)。學校本位課程評鑑的理念與實踐—學校本位課程評鑑的相關概念 。教育資料與研究,44,1-13。
3. 林偉人(1999)。淺論學校本位課程發展。國教之友,51(2),3-12。
4. 林瑞榮(2000)。國小鄉土教材的評鑑與設計。課程與教學季刊,3(3),73-90。
5. 林佩璇(2001a)。學校本位課程評鑑。教育研究資訊,9(4),83-96。
6. 方德隆(2001)。學校本位課程的理論基礎。課程與教學季刊,4(2),1-24。
7. 陳美如、郭昭佑(2001b)。教師如何從事課程評鑑:從賦權增能評鑑理念淺。教育研究月刊,88 期,83-89。
8. 陳美如(2001)。教師作為課程評鑑者--從理念到實踐。課程與教學季刊,4(4),93-112。
9. 陳伯璋(1999)。九年一貫新課程綱要修訂的背景與內涵。台北:教育研究資訊(1)。
10. 陳木金(1999)。國民小學教師班級經營策略評鑑指標建構之研究。藝術學報,64,147-168。
11. 王保進(2001)。國民中小學校務評鑑模式之內涵分析。教育研究月刊,91,52-61。
12. 王保進(1996)。教育指標基本概念之分析。教育研究資訊,4(3),1-17。
13. 郭昭佑(2000b)。學校本位課程評鑑—對九年一貫課程發展的啟示。教育研究資訊,8(6),16-34。
14. 郭昭佑(2000c)。學校本位評鑑理念在課程評鑑上的應用。國教學報,12,21-38。
15. 郭昭佑(2001)。教育評鑑指標建構方法探究。國教學報,13,251-265。