跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳玉春
研究生(外文):Yu-Chuen Chen
論文名稱:一參數化颱風模式適用性之探討
論文名稱(外文):On the Accuracy of a Parameterized Typhoon Model
指導教授:陳慶生陳慶生引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:69
中文關鍵詞:慣性流颱風模擬風場特徵參數滯留時間共振
外文關鍵詞:inertial currenttyphoonsimulated wind fieldcharacteristic parameterresidence timeresonance.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在許多觀測與研究中均顯示,南海中有很強烈的慣性流現象,尤其是在颱風通過時或之後。為了模擬此類上層海洋對於移動颱風的反應機制,我們需要其風場資訊做為動力的輸入。因海上實測與衛星遙測所能取得的颱風風場資料其時間與空間的密集度在直接應用上均有很大的不足,故一般在海洋的應用是以參數化方式建立一移動颱風的模擬風場,作為後續研究的風場來源。但普遍常用的模型如Rankine vortex和Holland(1980)所提模式是否真適用於南海範圍的颱風,其相關檢驗在國內的研究中卻並不多。
本論文即利用取自日本氣象廳的颱風特徵參數,代入Holland的風場計算模式,求出颱風風速的空間分布,並與SSM/I衛星風場資料作比對,藉以了解此一颱風模式的可行性。結果在所比對的8個颱風之中,有4個本文歸類為屬於好的比對者,其特徵是颱風結構較完整且形狀接近正圓,因為此模式的初始設定便是一軸對稱的壓力場分布型態,故符合此單純對稱情況的颱風便能套用此模式,這也顯示Holland模式關於颱風的基本架構是合理的,足以用來代表其主要風場。而比對結果較差者,本文歸納出主要原因是其颱風結構較不完整,例如在最後風力減弱即將消散時;或是颱風形狀較偏橢圓,例如其強度正經歷變動或附近有其他天氣型態時,Holland的單純模式便無法直接模擬套用,必須加以適當的修正;像是將壓力場分布改為不對稱的形式,或是調整颱風的特徵參數以較符合實際的情況,此方面的探討還需要後續更進一步的研究。
另外,本文亦針對1998至2000年在南海4個錨碇海流測站實際發現的慣性流運動,用Holland模式作出空間中一定點之風場在颱風期間的時間序列變化,討論該觀測到的慣性流事件與當時通過測站附近的颱風路徑和風場變化時間尺度的關聯性。結果顯示在南海中的颱風其k值常會有接近1的情形(k乃一無因次參數,定義是k = U/f L,式中 U為颱風前進速度,f為科氏參數,L為颱風範圍大小,在此是以17 m/s之風速直徑代入。),當k = 1即表示將颱風大小尺寸除以颱風前進速度所得之時間尺度(稱為滯留時間)與南海當地的慣性週期相等,這便可說明了為何南海經常能觀測到慣性流的事件,因為當颱風風場在其右側繞轉的週期與南海慣性週期接近時,兩者即會產生共振的現象,使得慣性運動能被加強而持續較久或影響較深。
Inertial currents are frequently observed in the South China Sea (SCS), especially during or after the passages of typhoons. To realize the mechanism of the upper-ocean response to a moving typhoon, researchers usually set up a simulated wind field for the specific case. However, only a few studies were made to examine the accuracy of mostly used typhoon models.
In this paper, the typhoon wind speeds of Holland (1980) model by utilizing the characteristic parameters from Japan Meteorological Agency are compared to those of SSM/I observations. It is found that some typhoons with such features as a near circular shape and a sound structure have better simulated results. This is due to the original assumption of a symmetric pressure distribution of the model. Thus it is also proved that Holland model can reasonably describe the major wind field of a typhoon.
Moreover, the model is applied to the typhoon cases associated with certain inertial motions observed by 4 current stations in SCS. It is shown that if the residence time of a typhoon matches the local inertial period, the resonance may occur and the winds will induce more persistent inertial motions in the ocean.
口試委員會審定書... i
誌謝...ii
中文摘要...iii
英文摘要... v
目錄... vi
表目錄....vii
圖目錄...viii
縮寫原文對照... x
一、 前言... 1
1-1 颱風... 1
1-2 颱風所引發的海洋上層反應... 4
1-3 本文研究動機與目的... 6
二、 颱風模式...10
2-1 Rankine vortex模式回顧... 10
2-2 Holland (1980) 模式理論... 11
2-3 參數使用與相關修正問題... 14
三、 Holland模式與衛星風場之比對... 18
3-1 衛星資料來源... 18
3-2 比對結果討論... 20
四、 由模式風場探討颱風所引發的慣性運動... 44
4-1 慣性流觀測事件... 44
4-2 相關風場分析... 46
五、 結論... 65
參考文獻... 67
Anthes, R. A., 1982: Tropical Cyclones –Their evolution, structure and effects. American Meteorological Society, 208 pp.
D’Asaro, E. A., C. C. Eriksen, M. D. Levine, P. Niiler, C. A. Paulson, and P. V. Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., Vol. 25, 2909–2936.
Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., Vol. 14, 1129–1151.
Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1990: Ocean surface wind speed measurements of the Special Sensor Microwave/Imager (SSMI). IEEE Trans. Geoscience Remote Sens., Vol. 28, 823–827.
Greatbatch, R. J., 1984: On the response of the ocean to a moving storm - parameters and scales. J. Phys. Oceanogr., Vol. 14, 59–78.
Harper, B. A., and G. J. Holland, 1999: An updated parametric model of the tropical cyclone. Proceedings of the 23rd Conference of Hurricane and Tropical Meteorology, 10-15 Jan., Dallas, Texas, American Meteorological Society, 893–896.
Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, Vol. 108, 1212–1218.
Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed-layer response to Hurricane Gilbert. J. Phys. Oceanogr., Vol. 30, 1407–1429.
Large, W. G., and G. B. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the Ocean Storms Experiment. J. Phys. Oceanogr., Vol. 25, 2831–2852.
Leslie, L. M., and G. J. Holland, 1995: On the bogussing of tropical cyclones in numerical models–A comparison of vortex profiles. Meteorol. Atmos. Phys., Vol. 56, 101–110.
Lin, I.-I., W. T. Liu, C.-C. Wu, J. C. H. Chiang, and C.-H. Sui, 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., Vol. 30, No. 3, 1131.
Phadke, A. C., C. D. Martino, K. F. Cheung, and S. H. Houston, 2003: Modeling of tropical cyclone winds and waves for emergency management. Ocean Engineering, Vol. 30, 553–578.
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., Vol. 11, 153–175.
——, 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., Vol. 13, 949–965.
Qi, H., R. A. de Szoeke, C. A. Paulson, and C. C. Eriksen, 1995: The structure of near-inertial waves during Ocean Storms. J. Phys. Oceanogr., Vol. 25, 2853–2871.
Tsai, Y.-L., C.-S. Chern, and J. Wang, 2007: The upper ocean response to a moving typhoon. Submitted to Journal of Oceanography.
Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes–a review. Meteorol. Atmos. Phys., Vol. 87, 257–278.
Wentz, F. J., 1997: A well calibrated ocean algorithm for SSM/I. J. Geophys. Res., Vol. 102, No. C4, 8703–8718. ( http://www.remss.com/papers/ssmi.pdf )
Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Monthly Weather Review, Vol. 132, 3033–3048.
Xie, L., S. Bao, L. J. Pietrafesa, K. Foley, and M. Fuentes, 2006: A real-time hurricane surface wind forecasting model–Formulation and verification. Monthly Weather Review, Vol. 134, 1355–1370.
林文宗,梁乃匡,2001:台灣颱風湧浪預警系統芻議。2001海洋數值模式研討會論文集,1-1~1-19。
陳譽愷,2006:颱風造成之南海內慣性運動。國立台灣大學海洋研究所碩士論文,95頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top