跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉芳宜
研究生(外文):Fang-Yi Liu
論文名稱:家禽脛軟骨組織在孵化時期之生理特性比較
論文名稱(外文):The physiological characteristics of tibial cartilage in poultry embryos
指導教授:陳保基陳保基引用關係
指導教授(外文):Bao-Ji Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:61
中文關鍵詞:脛軟骨細胞白肉雞有色肉雞北京鴨土番鴨
外文關鍵詞:Tibia chondrocyteBroilerNative chickenMule and Pekin Duck
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗旨在探討肉用家禽脛軟骨發育之差異,並建立肉用家禽軟骨細胞初代體外培養模式。試驗以白肉雞、有色肉雞、北京鴨與土番鴨之胚等作為研究脛軟骨生長發育之對象。為瞭解家禽胚階段其脛骨發育之情形,將白肉雞與有色肉雞胚於孵化第12-21天,北京鴨胚於孵化第16-29天,土番鴨於由孵化第17-32天,每天取其脛骨作組織切片染色,並測定葡萄糖胺聚醣與第二型膠原蛋白在脛骨切面中所佔之比例,藉以瞭解孵化時脛骨發育之形態。分別取孵化12天之雞胚、孵化16天之北京鴨胚以及孵化18天之土番鴨胚之軟骨細胞,建立肉用家禽軟骨細胞體外培養模式,連續培養15天。試驗期間,每三天逢機抽取軟骨細胞,分析各組之乳酸去氫酶、鹼性磷酸酶活性以及第二型膠原蛋白含量之差異。除此之外,利用Alizarin red S以及Alcian blue染色方式,觀察其鈣離子與葡萄糖胺聚醣之分泌型態,以比較各組之軟骨細胞在相同體外培養的模式下,生長表現之差異。結果顯示,脛軟骨組織中細胞外基質的分泌會隨著孵化時間與脛骨長度的增加而改變,可作為一檢視脛骨發育之參考指標。肉雞組與肉鴨組分別在孵化第14-15天及第23-24天時,脛骨長度與葡萄糖胺聚醣皆明顯增加,推測在此階段乃家禽脛骨發育之重要階段。體外培養模式中,肉鴨組可明顯觀測到葡萄糖胺聚醣與鈣離子沉積之現象,且所培養之軟骨細胞從第6天開始到12天,鹼性磷酸酶活性方面,有色肉雞組較白色肉雞組者高(P<0.05)。在細胞外基質方面,其第二型膠原蛋白之分泌量,肉鴨組皆高於肉雞組。綜合試驗結果,顯示此初代培養模式可使軟骨細胞成功分化,且在細胞外基質的表現上,與家禽胚發育階段之脛骨組織有相同趨勢。臺灣之肉雞普遍存在骨骼疾病方面的問題,使肉雞的育成率無法提昇,期本研究結果可幫助瞭解脛骨發育之機制,並比較不同肉用家禽其軟骨細胞在發育時之差異,可做為進一步探討影響肉雞軟骨發育的模式。
The purpose of the experiment was to investigate the physiological parameters of bone growth and to establish the avian tibial chondrocyte culture system. Native chicken, broiler, mule duck and Pekin duck were used as the experiment materials. In order to understand the tibial development process in the embryonic stage, type II collagen and glycosaminoglycans were assayed for studying of different sources morphology of chondrocyte in vivo. Growth plate from tibial cartilages of chicken embryos(12 days of incubation), Pekin duck embryos(16 days of incubation) and mule duck embryos(18 days of incubation) were cultured in vitro for 15 days. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH) activities and type II collagen contents in chondrocytes were measured every 3 days during the culturing period. Alizarin red S was used to measure the degree of mineralization. The results showed that we could not only recognize meat-type poultry tibia growth characteristics in the embryonic post-stage, but also understand the secretion of extracellular matrix. We found that meat-type chicken group had a significant longer tibia length and the amount of glycosaminoglycan in tibia at day14-15 after incubation. We also found that in meat-type duck group at day 23-24 after incubation in vitro experiment, we found ALP activity of native chickens were higher than that of broilers from day 6 to day 12(P<0.05)after culturing. The ALP activity of Pekin ducks were higher than those of mule ducks (437.67 vs. 265.81 U/mg), and ALP activity of native chickens were higher than those of broilers (390.13 vs. 171.41 U/mg) in chondrocytes. The protein concentration of type II collagen in ducks was higher than that of chickens in chondrocytes. The results revealed that the duck chondrocyte had earlier characteristics of mineralization in embryo stage than those of chickens. The established culture system may be used for the study of factors that affect the chondrocytes growth in poultry.
項目 頁次
目錄 I
圖次 II
表次 III
謝誌 IV
壹、 摘要………………………………………………… 1
貳、 緒言………………………………………………… 2
參、 文獻檢討…………………………………………… 4
肆、 材料與方法………………………………………… 14
伍、 結果與討論………………………………………… 21
陸、 結論………………………………………………… 49
柒、 參考文獻…………………………………………… 50
捌、 英文摘要…………………………………………… 55
玖、 附錄………………………………………………… 57
劉振軒,何逸僊,張文發,祝志平,王綉真。1996。組織病理染色技術與圖譜。
臺灣養豬科學研究所。
沈添富。2001。家禽的營養與需要。畜牧要覽家禽篇(增修板)。第165-190頁。中國畜牧學會。台北市。
陳保基。2001。肉雞的飼養與管理。畜牧要覽家禽篇(增修板)。第251-280頁。中國畜牧學會。台北市。
陳晉蒼。2001。孵化、孵化設備及孵化場之經營。畜牧要覽家禽篇(增修板)。第105-161頁。中國畜牧學會。台北市。
Aigner, J., J. Tegeler, P. Hutzler, D. Campoccia, A. Pavesio, C. Hammer, E. Kastenbauer and A. Naumann. 1998. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42: 172-181.
Allen, M. J. 2003. Biochemical markers of bone metabolism in animals: Uses and limitations. Vet Clin Pathol 32: 101-113.
Barak-Shalom, T., M. Schickler, V. Knopov, R. Shapira, S. Hurwitz, and M. Pines. 1995. Synthesis and phosphorylation of osteopontin by avian epiphyseal growth-plate chondrocytes as affected by differentiation. Comp. Biochem. Physiol. 111: 49-59.
Blumer, M. J., S. Longato, and H. Fritsch. 2004. Cartilage canals in the chicken embryo are involved in the process of endochondral bone formation within the epiphyseal growth plate. Anat Rec A Discov Mol Cell Evol Biol 279: 692-700.
Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. 2006. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (mscs) in different hydrogels: Influence of collagen type ii extracellular matrix on msc chondrogenesis. Biotechnol Bioeng 93: 1152-1163.


Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
Chen, C. W., Y. H. Tsai, W. P. Deng, S. N. Shih, C. L. Fang, J. G. Burch, W. H. Chen, and W. F. Lai. 2005. Type i and ii collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. J Orthop Res 23: 446-453.
Chubinskaya, S. and K. E. Kuettner. 2003. Regulation of osteogenic proteins by chondrocytes. Int J Biochem Cell Biol 35: 1323-1340.
de Crombrugghe, B., V. Lefebvre, and K. Nakashima. 2001. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 13: 721-727.
Eyre, D. 2002. Collagen of articular cartilage. Arthritis. Res. 4: 30-35.
Farquharson, C., C. Whitehead, S. Rennie, B. Thorp, and N. Loveridge. 1992. Cell proliferation and enzyme activities associated with the development of avian tibial dyschondroplasia: an in situ biochemical study. Bone 13: 59-67.
Farquharson, C., J. L Berry, E. B. Mawer, E. Seawright, and C. C. Whitehead. 1995. Regulators of chondrocyte differentiation in tibial dyschondroplasia: an in vivo and in vitro study. Bone 17: 279-286.
Farquharson, C. and D. Jefferies. 2000. Chondrocytes and longitudinal bone growth: The development of tibial dyschondroplasia. Poult Sci 79: 994-1004.
Farquharson, C. and C. C. Whitehead. 1995. Differentiation and mineralization in chick chondrocytes maintained in a high cell density culture: A model for endochondral ossification. In Vitro Cell Dev Biol Anim 31: 288-294.
Felisbino, S. L. and H. F. Carvalho. 2001. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of rana catesbeiana. Cell Tissue Res 306: 319-323.

Garimella, R., X. Bi, N. Camacho, J. B. Sipe, and H. C. Anderson. 2004. Primary culture of rat growth plate chondrocytes: An in vitro model of growth plate histotype, matrix vesicle biogenesis and mineralization. Bone 34: 961-970.
Hayashi, R., K. Matsuo, and T. Hirose. 1991. Tension lines of the auricular cartilage. Plast Reconstr Surg 87: 869-872.
Horiuchi, H., S. Furusawa, and H. Matsuda. 2006. Maintenance of chicken embryonic stem cells in vitro. Methods Mol Biol 329: 17-34.
Khan, M., M. Yamauchi, S. Srisawasdi, D. Stiner, S. Doty, E. P. Paschalis, and L. Boskey. 2001. Homocysteine decreases chondrocyte-mediated matrix mineralization in differentiating chick limb-bud mesenchymal cell micro-mass cultures. Bone 28: 387-398.
Kirsch, T., G. Harrison, E. E. Golub, and H. D. Nah. 2000. The roles of annexins and types ii and x collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J Biol Chem 275: 35577-35583.
LeBaron, R. G. and K. A. Athanasiou. 2000. Extracellular matrix cell adhesion peptides: Functional applications in orthopedic materials. Tissue Eng 6: 85-103.
Lee, J. W., W. N. Qi, and S. P. Scully. 2002. The involvement of beta1 integrin in the modulation by collagen of chondrocyte-response to transforming growth factor-beta1. J Orthop Res 20: 66-75.
Nie, D., Y. Ishikawa, Y. Guo, L. N. Wu, B. R. Genge, R. E. Wuthier, and G. R. Sauer. 1998. Inhibition of terminal differentiation and matrix calcification in cultured avian growth plate chondrocytes by rous sarcoma virus transformation. J. Cell. Biochem. 69: 453-462.
Ortega, N., D. J. Behonick, and Z. Werb. 2004. Matrix remodeling during endochondral ossification. Trends Cell Biol 14: 86-93.

Orth, M. W., T. L. Peters, and K. A. Chlebek-Brown. 2000. Cartilage turnover in embryonic chick tibial explant cultures. Poult Sci 79: 990-993.

Park, H. J., T. S. Park, T. M. Kim, J. N. Kim, S. S. Shin, J. M. Lim, and J. Y. Han. 2006 Establishment of an in vitro culture system for chicken preblastodermal cells. Mol. Reprod. Dev. 73(4): 452-61.
Qi, W. N. and S. P. Scully. 1998. Effect of type ii collagen in chondrocyte response to tgf-beta 1 regulation. Exp Cell Res 241: 142-150.
Qi, W. N. and S. P. Scully. 2003. Type ii collagen modulates the composition of extracellular matrix synthesized by articular chondrocytes. J Orthop Res 21: 282-289.
Reich, A., N. Jaffe, A. Tong, I. Lavelin, O. Genina, M. Pines, D. Sklan, A. Nussinovitch, and E. Monsonego-Ornan. 2005. Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization. J Appl Physiol 98: 2381-2389.
Rousche, K. T., B. C. Ford, C. A. Praul, and R. M. Leach. 2001. The use of growth factors in the proliferation of avian articular chondrocytes in a serum-free culture system. Connect Tissue Res 42: 165-174.
Schneiderbauer, M. M., C. M. Dutton, and S. P. Scully. 2004. Signaling "Cross-talk" between tgf-beta1 and ecm signals in chondrocytic cells. Cell Signal 16: 1133-1140.
Scott, J. E. and E. W. Hughes. 1986. Proteoglycan-collagen relationships in developing chick and bovine tendons. Influence of the physiological environment. Connect. Tissue Res. 14: 267-278.


Scully, S. P., J. W. Lee, P. M. A. Ghert, and W. Qi. 2001. The role of the extracellular matrix in articular chondrocyte regulation. Clin. Orthop. Relat. Res. 391: 72-89.
Shimoaka, T., T. Ogasawara, A. Yonamine, D. Chikazu, H. Kawano, K. Nakamura, N. Itoh, and H. Kawaguchi. 2002. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (fgf)-18 in comparison with fgf-2 and fgf-10. J. Biol. Chem. 277: 7493-7500.
Spalazzi, J. P., K. L. Dionisio, J. Jiang, and H. H. Lu. 2003. Osteoblast and chondrocyte interactions during coculture on scaffolds. IEEE Eng. Med. Biol. Mag. 22: 27-34.
Trippel, S. B. 1990. Articular cartilage research. Curr. Opin. Rheumatol. 2: 777-782.
Wu, L. N., B. R. Genge, Y. Ishikawa, T. Ishikawa, and R. E. Wuthier. 2006. Effects of 24r,25- and 1 alpha,25-dihydroxyvitamin d3 on mineralizing growth plate chondrocytes. J. Cell. Biochem. 98: 309-334.
Wu, L. N., Y. Ishikawa, B. R. Genge, T. K. Sampath, and R. E. Wuthier. 1997. Effect of osteogenic protein-1 on the development and mineralization of primary cultures of avian growth plate chondrocytes: Modulation by retinoic acid. J. Cell. Biochem. 67: 498-513.
Wu, L. N., Y. Ishikawa, B. R. Genge, and R. E. Wuthier. 2005. Chondrocytes isolated from tibial dyschondroplasia lesions and articular cartilage revert to a growth plate-like phenotype when cultured in vitro. J. Cell. Physiol. 202: 167-177.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top