跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳怡蓁
研究生(外文):Yi-Zhen Chen
論文名稱:臺灣黑豬屠體性狀與體型及遺傳變異相關之分析
論文名稱(外文):Body Conformation Types, Carcass Traits, and Genetic Variation of Taiwan Black Pigs
指導教授:徐濟泰
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:93
中文關鍵詞:臺灣黑豬體型屠體性狀遺傳變異肌內脂肪
外文關鍵詞:Taiwan black pigsbody conformationcarcass traitsgenetic variationintramuscular fat
相關次數:
  • 被引用被引用:2
  • 點閱點閱:736
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臺灣於 2002 年加入世界貿易組織(World Trade Organization, WTO),使得國產豬肉面臨強大的市場壓力。臺灣黑豬可以提供作為具本土特色之品牌豬肉來源,但是民間的黑豬生產系統由於無政府的輔導,致使目前臺灣黑豬生產之遺傳育種、生長資料、飼養管理及營養需求等資料大都付之闕如;黑豬在肉品市場的標價方式以活體決價為主,並參照白毛肉豬的議價標準,但是白毛肉豬是以瘦肉率為訴求,與黑豬的肌內脂肪(intramuscular fat, IMF)的訴求相異,造成黑毛豬得不到肉質區隔的優勢,且黑毛豬飼養豬業者得不到應有的經濟效益。本研究針對民間黑豬養豬場進行調查,藉由體型、屠體性狀及遺傳變異等資料的收集與分析,以作為未來建立臺灣黑豬最適配種政策及屠體評級的參考資料。
本試驗收集自 7 個不同的養豬場收集了共 250 頭臺灣黑豬的資料,包括屠前體型測量值(活體重、體高、胸深、胸寬、臀寬、胸圍、體長及前管圍)、屠體性狀(屠體重、屠體長第 1 肋、最後肋及最後腰椎三點與此三點之平均背脂厚度)、第 9~10 肋間腰眼肌肉化學組成(水分、粗蛋白質及肌內脂肪含量)及抽取基因組 DNA 以 PCR-RFLP技術來分析臺灣黑豬的遺傳多態性(心臟型脂肪酸結合蛋白基因、肌肉調控因子基因—— myogenin 與 myf6及鈣離子釋放通道基因)。
試驗結果顯示,來自 7 個不同養豬場的臺灣黑豬在屠宰體重有顯著性差異(P<0.05),屠宰體重最重的是來自 Farm 1(147.37±1.38 kg),最輕的是來自 Farm 7(102.61±2.57 kg),顯示臺灣黑豬之最適屠宰體重尚無標準可依,故後續之統計分析均以屠宰體重 120 kg進行矯正。根據豬隻屠宰前進行體型測量及外觀觀察,可將臺灣黑豬分成 3 種體型:精肉型、醃肉型及肥肉型,並以此 3 種體型分組,結果顯示不同體型的豬隻在胸深、胸寬、胸圍、前管圍、屠體長、背脂厚度及肌肉內脂肪含量有顯著差異(P<0.05),未來可進一步利用胸深、胸寬、胸圍及前管圍等體型測量項目訂定適用於臺灣黑豬之體型評分指數,以及作為屠體評級的參考項目。
在本次採樣的臺灣黑豬族群中,並未發現心臟型脂肪酸結合蛋白基因、myogenin、myf6的 AvaI 切位及鈣離子釋放通道基因的不同型別在體型、屠體性狀及肌肉化學組成等有顯著差異(P>0.05),但是 myf6 的 BseRI 切位的不同基因型在體長、臀寬、前管圍、粗蛋白質含量、肌肉內脂肪含量及背脂厚度等有顯著差異(P<0.05)。
為了解本研究所採樣臺灣黑豬飼養場間之類緣關係,以H-FABP、myogenin、myf6 及 CRC 4 個基因共 8 個基因座,以及前白蛋白與白蛋白 2 個血型基因座之多態性繪出類緣關係樹狀分佈圖。結果顯示,在 CRC 基因僅 Farm 5具多態性,而其餘 9 個基因座在本次採樣的 7 個民間臺灣黑豬飼養場均具有多態性變異。而由類緣關係樹狀分佈圖之結果可大致將本次採樣的臺灣黑豬飼養場分為 5 個集團,分別為 Farm 1 與 Farm 6、Farm 4 與 Farm 7、Farm 5、Farm 2 及 Farm 3。Farm 3 與其他 6 場的遺傳距離最遠,其原因可能是來自 Farm 3 的試驗豬隻品種來源多為盤克夏豬種。
綜上所述,為建立具本土特色的優質黑毛豬肉,必須先釐清臺灣黑豬在配種及飼養管理上之問題,故本研究蒐集分析目前臺灣地區黑毛豬在體型、屠體性狀及肌肉化學組成之資料,期提供未來更進一步建立臺灣黑豬育種策略、飼養管理模式及適用於臺灣黑豬的屠體評級之參考資料。
Taiwan pork industry was confronted with market impact after joining the WTO (World Trade Organization) in 2002. In 1999, Taiwan Livestock Research Institute (TLRI) bred the “TLRI No. 1 Black Pig” to establish a new local breed of black pigs for the pork market, but it’s not well accepted by pig farms. On the other hand, our current carcass grading system is not suitable for Taiwan black pigs because it is based on the lean content and black pig is emphasized on its intramuscular fat (IMF) content. For these reasons, we want to identify black pig body conformation parameters related to carcass composition, and suitable genetic markers for carcass traits and chemical composition of meats.
In this study, we collected samples from 250 Taiwan black pigs in 7 different farms as experimental animals. Data collection includes body conformation measurements before slaughter, carcass traits, chemical composition (moisture, crude protein, crude fat contents) of the M. longissimus dorsi, and polymorphic genetic markers of heart fatty acid-binding protein (H-FABP) gene, muscle regulatory factor genes – myogenin and myf6, and calcium release channel receptor (CRC) gene by PCR-RFLPs.
The results showed significant differences in body conformation measurements, carcass traits, chemical composition of the M. longissimus dorsi among the different farms (P<0.05). According to body conformation measurements, Taiwan black pigs can be classified into 3 body conformation types: meat, bacon, and lard. All of chest depth, chest width, chest girth, girth of limb, carcass length, backfat thickness, and intramuscular fat are significantly different among three body condition types (P<0.05). There were two restriction sites of myf6 gene for AvaI and BseRI sites and we found significant differences of body length, rump width, girth of limb, crude protein and crude fat content, and backfat thickness on the last lumbar in different genotype of the BseRI site (P<0.05), whereas no differences among the AvaI genotypes. There were no significant differences in body conformation measurements, carcass traits, and chemical composition of M. longissimus dorsi among different genotypes of myogenin and CRC genes (P>0.05).
In order to understand the genetic similarity of Taiwan black pigs from different farms, the 8 loci of H-FABP, myogenin, myf6, and CRC, and 2 loci of serum protein polymorphisms were collected for gene constitution analyses. According to the matrix of genetic distance and cluster analysis, Taiwan black pigs from different farms could be divided into five groups: Farm 1 and Farm 6, Farm 4 and Farm 7, Farm 5, Farm 2, and Farm 3.
In conclusion, chest depth, backfat thickness, and genotypes of the BseRI site of myf6 gene were suitable candidates as indicators and genetic markers to classify body conformation types. Furthermore, chest depth, chest width, chest girth, girth of limb, and carcass length can used to as references for establishing the carcass grading system specific for Taiwan black pigs.
目 錄
頁次
目錄…………………………………………………………………………………… I
圖次…………………………………………………………………………………… II
表次……………………………………………………………………………………IV
中文摘要……………………………………………………………………………… 1
英文摘要……………………………………………………………………………… 3
壹、前言……………………………………………………………………………… 5
貳、文獻檢討………………………………………………………………………… 7
一、臺灣黑豬豬種發展與生長表現…………………………………………… 7
二、豬隻屠體組成……………………………………………………………… 17
三、臺灣黑豬肌肉品質評估…………………………………………………… 19
(一)心臟型脂肪酸結合蛋白基因之介紹……………………………… 19
(二)肌肉調控因子之介紹………………………..…………………….. 24
(三)豬隻緊迫敏感症候與鈣離子釋放通道接受體基因……………… 30
四、應用分子生物技術改善豬肉品質………………………………………… 32
參、材料與方法……………………………………………………………………… 35
肆、結果與討論……………………………………………………………………… 50
伍、結論……………………………………………………………………………… 86
陸、參考文獻………………………………………………………………………… 87
中國畜牧學會。2001。畜牧要覽養豬篇增修版。pp. 36-45。中國畜牧學會。台北市。
王佩華。1994。臺灣山羊血型之研究。碩士論文。國立臺灣大學畜產學研究所。台北市。
王佩華、黃添美、宋永義、姜延年。2004。臺灣本地小耳種與外國種豬血型之研究。中畜會誌。33 (3):183-194。
行政院農業委員會。2005。台灣地區養豬頭數調查報告。行政院農業委員會。台北市。
行政院農業委員會統計室。2005。農業統計年報。行政院農業委員會。台北。
行政院農業委員會畜產試驗所。2001。畜試黑豬一號發表會專輯。pp. 13-20。行政院農委會畜產試驗所。台南市。
宋永義、李登元、劉瑞珍、陳聯民、黃添美、徐淑芳。1988。改良台灣小耳種豬為實驗動物。第一屆家畜禽遺傳育種研討會專輯。
林德育。1997。台灣黃牛血型之探討。碩士論文。國立臺灣大學畜產學研究所。台北市。
莊榮輝。1984。水稻蔗糖合成酶之研究:其純化、生物化學及免疫學研究。博士論文。國立臺灣大學農業化學研究所。台北市。
張直、宋永義、姜延年、王佩華、朱慶誠。1996。應用骨骼肌鈣離子釋放管道接受體基因突變偵測篩選緊迫敏感豬。國立屏東技術學院學報。5:1-8。
陳明造。2000。肉品加工理論與應用(修訂版)。藝軒圖書公司。台北市。
黃鈺嘉、鍾博、池雙慶。1984。三品種雜交肉豬隻生長特性。畜產研究。17:255-265。
黃瑞如。2003。豬心臟型脂肪酸結合蛋白基因多態性與肌肉內脂肪酸含量之關係。國立屏東科技大學生物科技研究所。屏東縣。
戴謙、張秀鑾、黃鈺嘉、顏念慈。1997。台灣本地豬種之性能及種原利用。畜產研究。30:215-229。
顏宏達、戈福江。1981。不同品種豬隻的消化率、生長性能與屠體品質之探討。中畜會誌。10:71-83。
顏念慈、戴謙、黃木秋。2001。臺灣地區黑色豬隻的基因組及粒線體DNA分析。中畜會誌。30:18-23。
Andresen, E. 1970. Close linkage between the locus for phosphohexose iomerase (PHI)
and the H blood group locus in pigs. Anim. Blood Grps. Biochem. Genet. 1: 171-172.
Andresen, E. 1971. Linear sequence of the autosomal loci PHI, H and 6-PGD in pigs.
Anim. Blood Grps. Biochem. Genet. 2: 119-120.
Association of Official Analytical Chemists. 1984. Official Methods of Analysis. 14th Ed. Arlington. Virginia. USA.
Banaszak, L., L. Banaszak, N. Winter, Z. Xu, D. A. Bemlohr, S. Cowan, and T. A. Jones. 1994. Lipid-binding proteins: A family of fatty acid and retinoid transport proteins. Adv. Protein Chem. 45: 89-151.
Baker, L. N. 1968. New allele in the transferrin system of pigs, Tfames an apparent mutation. Vox Sang. 14: 446-451.
Binas, B., H. Danneberg, J. McWhir, L. Mullins, and A. J. Clark. 1999. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 13(8): 805-812.
Brody, S. 1945. Bioenergetics and growth. Reinhold Publishing Co., Inc. Cited by Pand, W. G. and Maner, J. H. 1974.
Cheah, K. S., A. M. Cheah, A. R. Crosland, and J. C. Casey. 1984. Relationship between Ca2+ release, sarcoplasmic Ca2+, glycolysis and meatquality in halothane-sensitive and halothane-insensitive pigs. Meat Sci. 10: 117-130.
Christie, W. W. 1973. Lipid Analysis: Isolation, Separation, Identification, and Structural Analysis of Lipids. Pergamon Press Ltd, Oxford, England.
Dwyer, C. M. and N. C. Stickland. 1991. Sources of variation in myofibre number within and between litters of pigs. Anim. Prod. 52: 527-533.

Dwyer, C. M., J. M. Fletcher, and N. C. Stickland. 1993. Muscle cellularity and postnatal growth in the pig. J. Anim. Sci. 71: 3339-3343.
Elseth, G. D. and K. D. Baumgardner. 1984. VI. Population and Quantitative Genetics. In : Genetics, pp. 529~557. Addison-Wesley Publishing Company, California.
Fujii, J., K. Otsu, F. Zorzato, S. D. Leon, V. K. Khanna, J. E. Weilo, P. J. O’Brien, and D. H. MacLennan. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448-451.
Gerbens, F., G. Rettenberger, J. A. Lenstra, J. H. Veerkamp, and M. F. W. te Pas. 1997. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm. Genome 8(5): 328-32.
Gerbens, F., A. J. M. van Erp, F. L. Harders, F. J. Verburg, T. H. E. Meuwissen, J. H. Veerkamp, M. F. W. te Pas. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77: 846-852.
Gerbens, F., D. J. de Koning, F. L. Harders, T. H. E. Meuwissen, L. L. G. Janss, M. A. M. Groenen, J. H. Veerkamp, J. A. M. Van Arendonk, and M. F. W. te Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78: 552-559.
Glasnak, V., A, Stratil, and W. Schleger. 1976. A transferrin variant TfI in crosses of wild and domestic pig. Anim. Blood Groups Biochem. Genet. 7: 59-64.
Glatz, J. F. and G. J. van der Vusse. 1990. Nomenclature of fatty acid-binding proteins. Mol. Cell Biochem. 98: 231-235
Glatz, J. F. and G. J. van der Vusse. 1996. Cellular fatty acid-binding proteins: Their function and physiological significance. Prog. Lipid Res. 35: 243-282.
Hamilton, R. J. and S. Hamilton. 1992. Lipid Analysis: A Practical Approach. IRL Press.
Handel, S. E. and N. C. Stickland. 1987. Muscle cellularity and birth weight. Anim. Prod. 44: 311-317.
Handel, S. E. and N. C. Stickland. 1988. Catch-up growth in pigs: a relationship with muscle cellularity. Anim. Prod. 47: 291-295.
Hedrick, J. L. 1985. Genetics of population. pp. 1~81. Jones and Bartlett Publishers, California.
Hertzel, A. V. and D. A. Bernlohr. 2000. The mammalian fatty acid-binding protein multigene family: Molecular and genetic insights into function. TEM 11(5): 175-180.
Hinterberger, T. J., D. A. Sassoon, S. J. Rhodes, and S. F. Konieczny. 1991. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Devel Biol. 147:144-156.
Houdel, A. and S. A. Pommier. 1993. Use of polymerase chain reaction technology to detect a mutation associated with malignant hyperthermia in different pig tissues. Meat Sci. 33: 349-358.
Hristic, V., M. Hesselholt, and D. Stostic. 1967. Serum protein polymorphism in some Yugoslavian pig breeds. Acta. Vet. Scand. 8: 43-49.
ImLah, P. 1964. Inherited variants in serum ceruloplasmins of the pig. Nature 203: 658-659.
ImLah, P. 1970. Evidence for the Tf locus being associated with an early lethal factor in a strain of pigs. Anim. Blood Grps. Biochem. Genet. 1: 5-13.
Knapp, J. R., J. K. Davie, A. Myer, E. Meadows, E. N. Olson, and W. H. Klein. 2006. Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133: 601-610.

Kristjamsson, F. K. 1960. Inheritance of a serum protein in swine. Science 131: 1681.
Kristjansson, F. K. 1963. Genetic control of two prealbumin in pigs. Genetics 48: 1059-1063.
Laurell, C. B. and B. Ingelman. 1947. The iron-binding protein of swine serum. Acta Chem. Scand 1: 770-776.
Lindon, C., D. Montarras, and C. Pinset. 1998. Cell cycle–regulated expression of the muscle determination factor myf5 in proliferating myoblasts. J. Cell Biol. 140 (1): 111-118.
Martin, A. H., H. T. Fredeen, G. M. Weiss, and R. B. Carson. 1972. Distribution and composition of porcine carcass fat. J. Anim. Sci. 35: 534-541.
Martin, A. H., A. P. Sather, H. T. Fredeen, and R. W. Jolly. 1980. Alternative market weights for swine. II Carcass composition and meat quality. J. Anim. Sci. 50: 699-705.
McIndoe, W. M. 1962. Occurrence of two plasma albumins in the domestic fowl. Nature 195 (4839): 353-354.
Meadus, W. J. 1998. Molecular techniques used in the search for genetic determinants to improve meat quality. Can. J. Anim. Sci. 78:483-492.
Nei, M. 1972. Genetic distance between populations. Amer. Natu. 106: 283-292.
O’Brien, P. J. 1986. Porcine malignant hyperthermia susceptibility: Hypersensitive calcium-release mechanism of skeletal muscle sarcoplasmic reticulum. Can. J. Vet. Res. 30: 318-328.
Oishi, T. 1977. Blood groups and serum protein polymorphism in pigs and their application as genetic marker. JARQ 11: 179-185.


O’Mara, F. M., S. E. Williams, J. D. Tatum, G. C. Hilton, T. D. Pringle, J. W. Wise, and F. L. Williams. 1998. Prediction of slaughter cow composition using live animal and carcass traits. J. Anim. Sci. 76: 1594-1603.
Potokar, M. C., B. Zlender, L. Lefaucheur, amd M. Bonneau. 1998. Effects of age and / or weight at slaughter on lingissimus dorsi muscle: biochemical traits and sensory quality in pigs. Meat Sci. 48: 287-300.
SAS. 2007. SAS/STAT User’s guide, Release 9.0 ed. Cary, NC, USA SAS Institute Inc.
Schroffel, J. 1966. New genetic variants of transferrins and haptoglobins in pigs. Nature 210: 1274-1275.
Shen, Q. W., K. R. Underwood, W. J. Means, R. J. McCormick, and M. Du. 2007. The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle. J. Anim. Sci. 85: 1054-1061.
Smithies, O. 1955. Zone electrophoresis in starch gel: Group variation in the serum of normal human adults. Biochem. J. 61: 629-941.
Soumillion A, J. H. Erkens, J. A. Lentra, G. Rettenberger, and M. F. W. te Pas. 1997. Genetic variation in the porcine myogenin gene locus. Mamm. Genome 8: 564-568.
Stalder, K. J., J. Maya, L. L. Christian, S. J. Moeller, and K. J. Prusa. 1998. Effects of preslaughter management on the quality of carcasses from porcine stress syndrome heterozygous marker hogs. J. Anim. Sci. 76: 2435-2443.
Stern, C. 1943. The Hardy-Weinberg Law. Science 97: 137-138.



te Pas, M. F. W., A. Slumillion, F. L. Harders, F. J. Verburg, T. J. van den Bosch, P. Galesloot, and T. H. E. Meuwissen. 1999. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J. Anim. Sci. 77:2352-2356.
te Pas, M. F. W., F. J. Verburg, C. L. M. Gerritsen, and K. H. de Greef. 2000. Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78: 69-77.
te Pas, M. F. W., M. E. Everts, and H. P. Haagsman. 2004. Muscle development of livestock animals: physiology, genetics, and meat quality. CABI Publishing. USA.
Tikhonov, V. N., and Ratiany, D. J. 1973. Blood groups frequency differences between
European and Asian pigs and their hybrids. Anim. Blood Grps. Biochem. Genet. 4:
181-182.
Van Nieuwenhoven, F. A., P. H. M. Willemsen, G. J. van der Vusse, and F. C. Glatz. 1999. Co-expression in rat heart and skeletal muscle of four genes coding for proteins implicated in long-chain fatty acid uptake. J. Biochem. Cell Biol. 31: 489-498.
Vykoukalova, Z., A. Knoll, J. Dvorak, G. A. RoHrer, and S. Cepica. 2003. Linkage and radiation hybrid mapping of the porcine MYF6 gene to chromosome 5. Anim Genet. 34 (3): 238-40.
Zhang, W., D. L. Kuhlers, and W. E. Rempel. 1992. Halothane gene and swine performance. J. Anim. Sci. 70: 1307-1313.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top