跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱香蕙
研究生(外文):Hsiang-Hui Chu
論文名稱:利率期限結構風險溢酬之研究
論文名稱(外文):Risk Premiums in the Term Structure of Interest Rates
指導教授:李賢源李賢源引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:75
中文關鍵詞:利率期限結構流動性風險信用風險利率交換利差回復率
外文關鍵詞:Term Structure of Interest RatesLiquidity riskCredit riskInterest Rate Swap SpreadsRecovery Rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討隱含在利率期間結構的風險貼水問題。ㄧ般而言,影響這個風險貼水的因子很多,例如:流動性風險、信用風險、市場風險、作業風險、及法律風險等。這些風險當中,流動性風險與信用風險是最常被討論者,本論文分三個章節來探討這兩類的風險如何影響利率期間結構的風險貼水,及評價。其中,本論文的第二章探討流動性風險對利率交換利差的影響,第三章與第四章則探討有違約可能的金融商品的信用風險,並探討其風險貼水問題。
第二章“利率交換之利差期間結構模型—吻合殖利率曲線與分析解”,拓展Grinblatt (2001) 以流動性做為IRS利差期間結構決定因子的均衡理論模型,使之更一般化與吻合現今市場上的殖利率曲線,並將Grinblatt (2001)的模型納為一特例。根據本文建構的IRS利差期間結構模型做實證,可以矯正Grinblatt (2001)理論與實證不一致的問題。本文樣本內的實證結果與Grinblatt (2001)者相似,即模型配適樣本內的市場上實際之IRS利差資料非常好。再者,本文樣本外的實證結果顯示:模型對預測樣本外的IRS利差之趨勢,具備不錯的預測能力;但是,對於預測IRS利差的準確度上則是不足的。
第三章: “可調整信用風險貼水之一般化馬可夫鏈模型”,以擴大狀態空間的設定將公司信用評等改變的資訊納入模型中,進而求出更一般化的信用風險貼水調整函數。例如:假設公司信用評等分為A、B、C三個等級,其中A表示最好的信用評等狀況,B為中等的信用評等,C為差的信用評等狀況,目前債信評等為B的公司,它可能是由C B、B B或是A B,雖然這些公司目前的評等都是B,但是它們是從不同的等級改變到目前的B等級,給投資人是截然不同的信用風險感受。模型�釮 B、B B或是A B這三種公司的風險貼水調整函數應該不同,如此將信用評等改變的資訊納入模型中可賦予信用商品評價模型具備更一般化的結構。
第四章:“評價信用衍生性商品的一般化隨機倒帳機率之馬可夫鏈模型”, 指出Kodera模型會使得非倒帳狀態的推移機率之和有大於1的情況產生的缺點,並且介紹一個不同信用等級之信用價差波動性都不同的隨機變數矩陣,在此較一般化的模型下探討非倒帳狀態的推移機率之和有大於1的問題。
This dissertation investigates the risk premiums that are involved in the term structure of interest rates. Many factors may influence the risk premiums, including liquidity risk, credit risk, market risk, operation risk and legal risk. Among these risks, liquidity risk and credit risk are frequently discussed. This dissertation explores how the two risks influence the risk premiums in the term structure of interest rates. This dissertation comprises three chapters to discuss the term structure of interest rates. Particularly, it explores how the liquidity risk and credit risk affect the risk premium and how to evaluate it. Pricing the interest rate swap spreads induced by the liquidity risk is discussed in chapter two. In chapters three and four discuss two models for valuing credit derivatives.
Chapter two in this dissertation, “Term Structure of Interest Rate Swap Spreads--Consistent with Current Term Structure of Interest Rates and Analytical Solution,” follows Grinblatt’s idea that attributes the IRS spreads to the liquidity risk and overcomes the drawback for the inconsistency between the theory and empirical studies of Grinblatt (2001). This study assumes that the short rate and liquidity follow the Hull-White (1990b) model and computes the term structure of swap spreads, which can be exactly consistent with today’s term structure. The empirical results of this paper are comparable to those of Grinblatt (2001), and the model fits quite well the sample of actual IRS spreads. In addition, the empirical results conducted for out-samples indicate that this model has the capacity to accurately forecast the future trend of out-sample IRS spreads. However, the accuracy of the predictions of future IRS spreads for out-samples remains inadequate.
The chapter three in this dissertation, “A Generalized Markov Model for the risk premium adjustment” expands the state space to incorporate the credit rating changes into the model, and thus a more generalized risk premium adjustment function is achieved. For example, suppose credit rating for a firm is divided into three grades A, B and C, where A represents the highest credit class, B the second highest, and C the lowest credit class. If the credit rating of firms that are currently rated B, they may probably derive from C B, B B or A B. Despite the firms are rated B, it must be noted that they have turned to B from different grades, and that will give investors different feelings of the credit risk. In the model given, the risk premium adjustment function for the three different firms C B, B B or A B should be different. Therefore, if the information of the credit rating changes is incorporated into the model, it will be a more generalized structure for pricing the credit derivatives.
The chapter four in this dissertation, “A Generalized Markov Chain Model with Stochastic Default Rate for Valuation of Credit Spreads”, introduces a general stochastic matrix to discuss the shortcomings in Kodera’s model.
目 錄

口試委員會審定書…………………………………………………………………..i
誌謝…………………………………………………………………………………..ii
中文摘要……………………………………………………………………………..iii
英文摘要……………………………………………………………………………...v
第一章 緒論………………………………………………………………………..1
第二章 利率交換之利差期間結構模型—吻合殖利率曲線與分析解…………..8
第一節 前言……………………………………………………………… … 8
第二節 吻合市場殖利率曲線之IRS利差期間結構模型…… …………… 9
第三節 實證分析……………………………………………………………. 16
第四節 結論…………………………………………………………………..25
第三章 可調整信用風險貼水之一般化馬可夫鏈模型…………………………..27
第一節 前言…….…………………………………………………………….27
第二節 模型設定………………………………… ………………………….28
第三節 本模型之風險貼水調整項…………………………………………..36
第四節 數值例子……………………………………………………………..38
第五節 結論…………………………………………………………………..42
第四章 一般化隨機倒帳機率之馬可夫鏈模型評價信用衍生性商品…………..43
第一節 前言…………………………………………………………………..43
第二節 模型設定與分析……………………………………………………..44
第三節 結論…………………………………………………………………..50
第五章 結論與後續研究方向………………………………………………………52
參考文獻………………………………………………………………..……………55
附錄…………………………………………………………………………………. 61
1.Altman, Edward I., Brooks Brady, Andrea Resti, and Andrea Sironi, 2002, “The Link between Default and Recovery Rates: Implications for Credit Risk Models and Procyclicality,” Paper presented at the NTU International Conference on Finance, Taipei, Taiwan.
2.Altman, E., Andrea R. and Andrea S., 2004, “Default Recovery Rates in Credit Risk Modeling: A Review of the Literature and Empirical Evidence,” Economic Notes, 33(2), 183-208.
3.Amihud, Y. and H. Mendelson, 1991, “Liquidity, Maturity, and the Yields on U.S. treasury Securities,” Journal of Finance, 46, 1411-1425.
4.Arvanitis, A., Gregory, J. & Laurent, J.P., 1999, “Building Models for Credit Spreads,” The Journal of Derivatives,6, 27-43.
5.Bhanot, K., 2001, “Dynamics of Credit Spreads: A Non-Parametric Analysis,” The Journal of Fixed Income, 28-35.
6.Black, F., and Cox, J., 1976, “Valuing Corporate Securities: Some effects of Bond Indenture Provisions,” Journal of Finance, 31, 351-367.
7.Black, F., E. Derman, and W. Toy, 1990, “A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options,” Financial Analysts Journal, 33-39.
8.Black, F., and P. Karasinski, 1991, “Bond and Option Pricing When Short Rates Are Lognormal,” Financial Analysts Journal, July-August, 52-59.
9.Boudoukh, J. and R. Whitelaw, 1993, “Liquidity as a Choice Variable: A lesson from the Japanese Government Bond Market,” Review of Financial Studies, 6(2), 266-292.
10.Brace, A., D. Gatarek, and M. Musiela, 1997, “The market model of interest rate dynamics,” Mathematical Finance, 7, 127-155.
11.Carty, L., 1997, “Moody’s Rating Migration and Credit Quality Correlation, 1920-1996,” Special Comment, Moody’s Investor Service, New York.
12.Carty, L., and D. Lieberman, 1997, “Historical Default Rates of Corporste Bond Issuers 1920-1996,” Moody’s Investor Service, New York.
13.Carty, L., J. Fons, 1993, “Measuring Changes in Corporate Credit Quality,” Moody’s Special Report, Moody’s Investor Service, New York.
14.Chance, D., 1990, “Default Risk and the Duration of Zero Coupon Bonds,” Journal of Finance, 45(1), 265-274.
15.Cox, J. C., J. E. Ingersoll, and S. A. Ross, 1985b, “A Theory of the Term Structure of Interest Rates,” Econometrica, 53, 353-467.
16.Das, S. R., & Tufano, P., 1996, “P ricing Credit Sensitive Debt When Interest Rates, Credit Ratings, and Credit Spreads are Stochastic.” Journal of Financial Engineering, 5, 161-198.
17.Das, S.R., 1995,“Credit Risk Derivatives,” The Journal of Derivatives, 2,7-23.
18.Daves, P. and M. Erhardt, 1993, “Liquidity, Reconstitution, and the Value of U.S. Treasury Strips,” Journal of Finance, 48(1), 315-330.
19.Duffie, D., and M. Huang, 1996, “Swap rates and Credit Quality,” Journal of Finance, 51(3), 921-949.
20.Duffie, D., and K. Singleton, 1997, “An Econometric Model of the Term Structure of Interest-Rate-Swap Yields,” Journal of Finance, 52(4), 1287-1321.
21.Duffie, D., and K. Singleton., 1999, “Modeling the Term Structures of Defaultable Bonds,” Review of Financial Studies,12, 687-720.
22.Fons, J. S., 1994, “Using Default Rates to Model the Term Structure of Credit Risk,” Financial Anal. J. Septermber-October, 25-32.
23.Frydman, H. and T. Schuermann, 2004, “Credit Rating Dynamics and Markov Mixture Models,” Wharton Financial Institutions Center Working Paper No. 04-15.
24.Grinblatt, M., 2001, “An Analytical Solution for Interest Rate Swap Spreads,” International Review of Finance, vol. 2, No. 3, 113-149.
25.Grinblatt, M. and F. Longstaff, 2000, “Financial Innovation and the Role of Derivative Securities: An Empirical Analysis of the Treasury Strips Program,” Journal of Finance, 55(3), 1415-1436.
26.Gupton, Greg. M., 1997 “The New Talk of the Town: CreditMetrics, a Credit Value at Risk Approach,” The Journal of Lending & Credit Risk Management, August, 44-54.
27.Hamilton, D. and Cantor, R., 2004, “Rating Transitions and Defaults Conditional on Watchlist, Outlook and Rating History,” Moody’s Investor Service, Special Comment, February.
28.He, H., “Modeling Term Structures of Swap Spread,“ Working paper, Yale School of Management, 2000.
29.Heath, D., R. Jarrow, and A. Morton, 1990, “Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation”, Journal of Financial and Quantitative Analysis, 25, 419-440.
30.Heath, D., R. Jarrow, and A. Morton, 1992, “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation”, Econometrica, 60, 77-105.
31.Ho, T. S., and S. Lee, 1986, “Term Structure Movements and Pricing Interest Rate Contingent Claim,” Journal of finance, 41, 1011-1028.
32.Hull, J., Options, Futures, and Other Derivatives, 4th Edition, Prentice Hall, Upper Saddle River, New Jersey, 2003.
33.Hull, J. and A., White, 1990, “Pricing Interest Rate Derivative Securities,” The Review of Financial Studies, 4, 573-592.
34.Hull, J. and A., White, 1994, “Numerical Procedures for Implementing Term Structure Models I: Single-Factoe Models,“ The Journal of Derivatives, 2, 7-16.
35.Hull, J., and A. White., 1995,“The Impact of Default Risk on the Prices of Options and Other Derivative Securities,” Journal of Banking and Finance, 19, 299-322.
36.Jarrow, R., & Turnbull, S. M., 1995, “Pricing Derivatives on Financial Subject to Credit Risk,” Journal of Finance, 50, 53-68.
37.Jarrow, R., Lando, D. & Turnbull, S. M., 1997,“A Markov Model fort the Term Structure of Credit Risk Spreads.” The Review of Financial Studies, 10, 481-523.
38.Jarrow, R., & Turnbull, S. M., 2000,“The Intersection of Market and Credit risk.” Journal of Banking and Finance, 24, 271-299.
39.Jarrow, R. and F. Yu, 2001, “Counterparty Risk and the Pricing of Defaultable Securities,” Journal of Finance, 56(5), 1765-1799.
40.Jones, E., Mason, S. & Rosenfeld, E., 1984,“Contingent Claims Analysis of Corporate Capital Structures: An Empirical Investigation,” Journal of finance, 39, 611-627.
41.Kamara, A., 1994, “Liquidity, Taxes, and Short-Term Treasury Yields,” Journal of Financial and Quantitative Analysis, 29(3), 403-417.
42.Kijima, M., 1997, Markov Processes for stochastic Modeling. Chapman & Hall, London.
43.Kijima, M., & Komoribayashi, K., 1998,“A Markov Chain Model for Valuing Credit Risk Derivatives,” The Journal of Derivatives, 6, 97-108.
44.Kijima, M., 1998,“ Monotonicities in a Markov Chain Model for Valuing Corporate Bonds Subject to Credit Risk,” Mathematical Finance, 8, 229-247.
45.Kim I.J., K. Ramaswamy and S. Sundaresan.,1993,“Does Default Risk in Coupons Affect the Valuation of Corporate Bonds? A Contingent Claim Model,” Financial Management, 22, 117-131.
46.Kodera, E., 2001,“A Markov Chain Model with Stochastic Default Rate for Valuation of Credit Spreads,” The Journal of Derivatives, 9, 8-18.
47.Lando, D., 1998, “On Cox Processes and credit Risky Securities,” Review of Derivatives Research, 2, 193-230.
48.Lando, D., and T., Skodeberg, 2002, “Analyzing Rating Transitions and Rating Drift with Continuous Observations,” Journal of Banking & Finance 26 (2-3), 423-444.
49.Litterman, R. and T. Iben., 1991, “Corporate Bond Valuation and the Term Structure of Credit Spreads,” Financial Analysts Journal, Spring, 52-64.
50.Longstaff, F. and Schwartz, E., 1995,“Valuing Credit Derivatives,” Journal of Fixed Income, 5, 6-12.
51.Longstaff, F. and E. Schwartz, 1995, “A Simple Approach to Valuing Risky Fixed and Floating Rate Debt.” Journal of Finance, 50, 789-819.
52.Merton, R. C., 1974, “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.” Journal of Finance, 29, 449-470.
53.Minton, Bernadette, 1997, “An Empirical Examination of Basic Valuation Models for Plain Vanilla U.S. Interest Rate Swaps,” Journal of Financial Economics, 44 (2), 251-277.
54.Nielsen, L., J. Saa-Requejo, and P. Santa-Clara., 1993,“Default Risk and Interest Rate Risk: The Term Structure of Default Spreads,”Working paper, INSEAD.
55.Nickell, P., W. Perraudin and S. Varotto, 2000, “Stability of Rating Transitions,” Journal of Banking & Finance 24 (1-2), 203-227.
56.Richard, D., 1996, Probability: theory and examples. Duxbury Press.
57.Schumacher, M., 1998, “Swap Spread Do Matter,” The Journal of Fixed Income, 8, 59-64.
58.Shimko, D., N. Tejima and D.vanDeventer., 1993,“The Pricing of Risky Debt When Interest Rates are Stochastic,” Journal of Fixed Income, September, 58-66.
59.Solnik, B. and C. D., Pierre, 2001, “On the Term Structure of Default Premia in the Swap and LIBOR Market,” Journal of Finance, 56(3), 1095-1115.
60.Sundaresan, S., Valuation of Swaps, in Recent Developments in International Banking and Finance, S.Khoury, ed. Amsterdam: North Holland (Vols. IV and V,1991), 1991.
61.Sundaresan, S., Fixed Income Market and Their Derivatives, second edition. Ch16, 2002.
62.Vasicek, O. A., 1977, “An Equilibrium Characterization of the Term Structure, “ Journal of Financial Economics, 5, 177-188.
63.Warga, A., 1992, “Bond Returns, Liquidity, and Missing Data,” Journal of Financial and Quantitative Analysis, 27(4), 605-617.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊