跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡安廷
研究生(外文):An-Ting Chien
論文名稱:高分子基脫層型蒙脫石奈米複合材料之研製
論文名稱(外文):Study on Polymer/Exfoliated Montmorillonite Nanocomposites
指導教授:林金福林金福引用關係
指導教授(外文):King-Fu Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:127
中文關鍵詞:高分子乳液蒙脫石奈米複合材料
外文關鍵詞:EmulsionMontmorilloniteNanocomposite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
A series of partial and fully water-soluble monomers, including methyl methacrylate, methyl acrylate, vinyl acetate, acrylamide, and glycidyl methacrylate, were used to fabricate polymer-Montmorillonite(MMT) nanocomposite through soap-free emulsion polymerization or solution polymerization, while MMT was intercalated by potassium persulfate(KPS) initiator in advance.

Due to the confined space of clay interlayer regions, the polymerizing chains were aggregated into a disk-like or irregular domain depending on their intrinsic properties. The growing domains would trigger the exfoliation of MMT, and further polymerization afforded the latex particles of Polymer-MMT nanocomposites. In addition, for fully water soluble monomer, such as acrylamide, the growing chain would also exfoliate MMT. However, they formed a hydrogel system with dispersed exfoliated MMT nanoplatelets. In brief, the exfoliated polymer-MMT nanocomposite could be fabricated from partial or fully water-soluble monomers through polymerization in the interlayer regions of MMT.

In order to study the effect of dispersed MMT nanoplatelets on the properties of polymers, exfoliated poly(vinyl acetate)-montmorillonite (PVAc-MMT) nanocomposite films and crosslinked poly(vinyl acetate- Glycidyl methacrylate)-montmorillonite (PVAc-GMA-MMT) crosslinked nanocomposite films were fabricated for further analysis. These transparent smooth films performed many superior properties, such as mechanical properties, vapor barrier properties, chemical resistance and fire retardation. In conclusion, MMT nanoplatelets acted as nano-size scaffolds in the nanocomposite structure to improve physical properties.
中文摘要 ………………………………………………………………I
Abstract ……………………………………………………………III
Table of Contents …………………………………………………V
Table Lists …………………………………………………………IX
Figure Lists …………………………………………………………X
Chapter 1 Introduction ……………………………………………1
1-1 Preface …………………………………………………………1
1-2 Polymer-Silicates(Clay) Nanocomposites ………………3
1-2-1 Nanocomposites and Nanotechnology ………………4
1-2-2 Montmorillonite and Exfoliated Silicates…11
1-2-3 Intercalation and Exfoliation of Polymer-Clay
Nanocomposites……………………………………20
1-2-4 Specific Properties of Polymer-Clay Nanocomposites………………22
1-3 Emulsifier-free Emulsion Polymerization…………28
1-3-1 Introduction to Emulsion Polymerization………29
1-3-2 Theory of Emulsifier-free Emulsion Polymerizaiton……30
1-3 Brief Introduction of Some Polymers…………………33
1-5 Literature Reviews………………………………………38
1-6 Motivation and Outline…………………………………42
Chapter 2 Experimental Section …………………………45
2-1 materials…………………………………………………45
2-2 Equipments………………………………………………46
2-2-1 Modification of MMT by KPS and Fabrication of
polymer-MMT nanocomposites and MMT nanoplatelets…46
2-2-2 Preparation of Polymer-Clay Nanocomposites Films………46
2-2-3 Molecular Weight Analysis………………………47
2-2-4 Morphology and Structure Analysis……………47
2-2-5 Analysis of Physical Properties………………48
2-3 Fabrication of Polymer-Clay Nanocomposites ……50
2-3-1 Purifacation of Monomers………………………50
2-3-2 Modification of Montmorillonite by KPS……51
2-3-3 Fabrication of Polymer-MMT nanocomposite Latexes and Pure Polymer Latexes with KPS-MMT……………………52
2-3-4 Fabrication of Polymer-MMT nanocomposite Hydrogel and Pure Polymer Hydrogel with KPS-MMT…………………53
2-4 Preparation of Polymer-MMT Nanocomposite Films……55
2-4-1 PVAc-MMT nanocomposite and pure PVAc films……55
2-4-2 PVAc-GMA-MMT nanocomposite and pure
PVAc-GMA films…………………………………………55
2-5 Purification of Clay Nanoplatelets……………………56
2-6 Morphology and Structure Analysis……………………57
2-6-1 X-ray Diffraction (XRD)……………………………57
2-6-2 Transmission Electron Microscopy (TEM)………58
2-6-3 Scanning Electron Microscopy (SEM)……………59
2-6-4 Atomic Force Microscopy (AFM) …………………59
2-7 Physical Properties……………………………………59
2-7-1 Optical Properties…………………………………60
2-7-2 Thermal Properties…………………………………60
2-7-3 Mechanical Properties……………………………61
2-7-4 Inflammable Properties…………………………62
2-7-5 Chemical Resistance ………………………………62
2-7-6 Water Vapor Permeability…………………………63
Chapter 3 Results and Discussions ………………………66
3-1 The Study of Exfoliation Process of MMT during Fabricating PMMA-MMT Nanocomposites………………………66
3-1-1 Investigation by TEM ………………………………66
3-1-2 Investigation by XRD ……………………………68
3-1-3 A brief mechanism for the formation of latex particles of PMMA-MMT nanocomposite………………………69
3-2 An Investigation on the Morphology of Polymer-MMT
Nanocomposite and Exfoliation Process of MMT for Different Polymer Bases……………………………………71
3-2-1 X-Ray Diffraction…………………………………71
3-2-2 PVAc-MMT and PMA-MMT nanocomposite…………72
3-2-3 PAAm-MMT nanocomposite …………………………73
3-2-4 PVAc-MMA-MMT, PVAc-GMA-MMT, and
PAAm-MMA-MMT nanocomposite ……………………74
3-2-5 A Brief Summary for Different Polymer Base Polymer-MMT Nanocomposite …………………………………………75
3-3 An Observation of MMT Nanoplatelets ………………76
3-4 The Physical Properties of PVAc-MMT and PVAc-GMA-MMT
Nanocomposite Films………………………………………77
3-4-1 XRD and TEM Investigation………………………78
3-4-2 Molecular weight and Thermal properties of polymer-MMT nanocomposite……………………………………………78
3-4-3 Surface morphology and Optical Properties ……………79
3-4-4 Mechanical Properties (Tensile Test)…………………………80
3-4-5 Water Vapor Permeability ……………………………………81
3-4-6 Chemical Resistance …………………………………………83
3-4-7 Inflammable Properties ………………………………………84
Chapter 4 Conclusions …………………………………85
Chapter 5 References …………………………………87
[1]Gomez-Romero, P.; Sanchez, C. Functional Hybrid Materials; Wiely-VCH: Weinheim, 2004.

[2]Friedrich, K.; Fakirov, S.; Zhang, Z. Polymer Composites; Spring: New York, 2005.

[3]Utracki, L. A. Clay-Containing Polymeric Nanocomposites; Rapra Technology: Shrewsbury, 2004.

[4]Ke, Y. C.; Stroeve P. Polymer-Layered Silicate and Silica Nanocomposites; Amstertam: Boston, 2005

[5]Pinnavaia, T. J.; Beall, G. E. Polymer-Clay Nanocomposites; John Wiely & Sons: New York, 2000.

[6]Olphen, H. V. An Introduction to Clay Colloid Chemistry; Krieger Publishing Company: Malabar, 1991

[7]http:// www.nano.gov/

[8]Maksimov, R. D.; Gaidukovs, S.; Kalnins, M.; Zican, J.; Plume, E. Mechanics of Composite Materials, 42, 2006

[9]http://www.geoclassroom.com/mineralogy/phyllosilicates.html

[10](a) Fornes, T. D.; Hunter, D. L.; Paul, D. R. Macromolecules 2004, 37, 1793. (b) Tsai, T. Y.; Li, C. H.; Chang, C. H.; Cheng, W. H.; Hwang, C. L.; Wu, R. J. Adv. Mater. 2005, 17, 1769.; (c) Zha, W.; Choi, S.; Lee, K. M.; Han, C. D. Macromolecules 2005, 38, 8418.; (d) Voorn, D. J.; Ming, W.; Herk, A. M. Macromolecules 2006, 39, 4645.; (e) Ma, J.; Yu, Z. Z.; Kuan, H. C.; Dasari, A.; Mai, Y. W. Macromol. Rapid. Commun. 2005, 26, 830.

[11](a) Ma, J.; Yu, Z. Z.; Zhang, Q. X.; Xie, X. L.; Mai, Y. W.; Luck, I. Chem. Mater. 2004, 16, 757.; (b) Fan, X.; Xia, C.; Advincula, R. C. Langmuir 2005, 21, 2537.(c) Choi, Y. S.; Ham, H. T.; Chung, I. J. Polymer 2003, 44, 8147.; (d)Choi, Y. S.; Chung, I. J. Polymer 2004, 45, 3827. (e) Meneghetti, P.; Qutubuddin, S. Langmuir 2004, 20, 3424.

[12](a) Haraguchi, K.; Ebato, M.; Takehisa, T. Adv. Mater. 2006, 18, 2250-2254.; (b) Ji, Y.; Li, B.; Ge, S.; Sokolov, J. C.; Rafailovich, M. H. Langmuir 2006, 22, 1321. (c) Garai, A.; Kuila, B. K.; Naudi, A. K. Macromolecules 2006, 39, 5410. (d)Chen, B.; Evans, J. R. G. Macromolecules 2006, 39, 747

[13](a) Zanetti, M.; Camino, G.; Canavese, D.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2002, 14, 189. (b) Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2001, 13, 3774. (c) Marius C.; Costache, D. D.; Jiang, C. A.; Wilkie Polymer 2005, 46 6947. (d) Nanetti, M.; Kashiwagi, T.; Falqui, L.; Camino, G. Chem. Mater. 2002, 14, 881.

[14](a) Yano, K.; Usuki, A.; Okada, A. J. Polym. Sci. A: Polym. Chem. 1997, 35, 2289. (b) Russo, G. M.; Simon, G. P., Incarnato, L. Macromolecules 2006, 39, 3855. (c) Triantafyllidis, K. S.; LeBaron, P. C.; Park, I.; Pinnavaia, T. J. Chem. Mater. 2006, 18, 4393.

[15]Nielsen, L. E. J. Macromol. Sci. Chem. 1967, A1, 929.

[16]Bharadeaj, R. K. Macromolecules 2001, 34, 9189.

[17](a)Ruiz-Hitzky, E.; Aranda, P. Adv. Mater. 1990, 2, 545. (b) Vaia, R. A.; Vasudevan, S. V.; Krawiec, W.; Scanlon, L. G., Giannelis, E. P. Adv. Mater. 1995, 7, 154.
[18]Odian, G. Principles of Polymerization; Wiely-Interscience: Hoboken, 2004.

[19](a) Li, J. Q.; Salovey, R. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3181.; (b) Ni, H.; Du, Y.; Ma, G.; Nagai, M.; Omi, S. Macromolecules 2001, 34, 6577. (c) Lin, K. F.; Shieh, Y. D. J. Appl. Polym. Sci. 1998, 69, 2069. (d) Lin, K. F.; Shieh, Y. D. J. Appl. Polym. Sci. 1998, 70, 2313.

[20](a) Goodall, A. R.; Wilkinson, M. C.; Hearn, J. J. Polym. Sci.: Polym. Chem. Ed. 1977, 15, 2193.; (b) Song, S.; Poehlein, G. W. J. Colloid Interface Sci. 1989, 128, 486.; (c)Hansen, F. K.; Ugelstad, J. J. Polym. Sci.: Polym. Chem. Ed. 1978, 16, 1953. (d) Fitch, R. M.; Tsai, C. H. In Polymer Colloids; Fitch, R. M., ed.; Plenum Press: New York, 1971; p 73. (e) Chen, Y. C.; Lee, C. F.; Chiu, W. Y. J. Appl. Polym. Sci. 1996, 61, 2235.

[21](13) Warson, H.; Finch, C. A. Application of synthetic Resin Latices; JohnWiley & Sons: New York, 2001.

[22]Bohidar, H. B.; Dubin, O.; Osada, Y. Polymer Gels; Fundamentals and Applications; American Chemical Society: Washington DC, 2002.

[23]Osada, Y.; Khokhlov, A. R. Polymer Gels and Networks; Marcel Dekker: New York, 2002.

[24]Mark, J. E. Polymer Data Handbook; Oxford University Press: New York, 1999

[25](a) McManus, A. J.; Doremus, R. H.; Siegel, R. W.; Bizios, R. J. Biomed. Mater. Res., Part A 2005, 72, 98. (b) Larraz. E.; Elvira, C.; Roman, J. S. Bioacromolecules 2005, 6, 2058

[26]Zhang, W.; Chen, D.; Zhao, Q.; Fang, Y. Polymer 2003, 44, 7953.

[27](a) Huang, X.; Brittain, W. J. Macromolecules 2001, 34, 3255.; (b) Wang, D.; Zhu, J.; Yao, Q.; Wilkie, C. A. Chem. Mater. 2002, 14, 3837.; (c) Meneghetti, P.; Qutubuddin, S. Langmuir 2004, 20, 3424.

[28]Voorn, D. J.; Ming, W.; Herk, A. M. Macromolecules 2006, 39, 2137

[29]Tong, Z.; Deng, Y Ind. Eng. Chem. Res. 2006, 45, 2641

[30]Chou, C. C. and Lin, J. J. Macromolecules 2005, 38, 230

[31]Cauvin, S.; Colver, P. J.; Bon, S. A. F. Macromolecules 2005, 38, 7887.

[32]Voorn, D. J.; Ming, W.; Herk, A. M. Macromolecules 2006, 39, 4654

[33](a) Choi, Y. S.; Choi, M. H.; Eang, K. H.; Kim, S. O.; Kim, Y. K.; Chung, I. J. Macromolecules 2001, 34, 8978.; (b) Choi, Y. S.; Ham, H. T.; Chung, I. J. Polymer 2003, 44, 8147.; (c)Choi, Y. S.; Chung, I. J. Polymer 2004, 45, 3827.

[34]Viville, P.; Lazzaroni, R.; Pollet, E.; Alexandre, M.; Dubois, P. J. Am. Chem. Soc. 2004, 126, 9007

[35]Zhang, W. D.; Phang, I. Y.; Liu, T. Adv. Mater. 2006, 18, 73

[36]Usuki, A.; Hasegawa, N.; Kadoura, H.; Pkamoto, T. Nano Lett. 2001, 1, 271.

[37](a)Lin, J. J.; Chu, C. C.; Chou, C. C.; Shieu, F. S. Adv. Mater. 2005, 17, 301. (b) Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. J. Phys. Chem. B. 2006; 110; 18115

[38]Piner, R. D.; XU, T. T.; Fisher, F. T.; Qiao, Y.; Ruoff, R. S. Langmuir 2003, 19, 7995.

[39]Drummy, L. F.; Koerner, H.; Farmer, K.; Tan, A.; Farmer, B. L., Vaia, R. A. J. Phys. Chem. B 2005, 109, 17868.

[40]Sato, H.; Yamagishi, A.; Kawamura, K. J. Phys. Chem. B 2001, 105, 7990

[41]Yeom, E. H.; Kim, W. N.; Kim, J. K.; Lee, S. S.; Park, M. Mol. Crtst. Liq. Cryst. 2004, 425, 85.

[42]Lin, K. F.; Lin, S. C. Chien, A. T.; Hsieh, C. C.; Yen, M. H.; Lin, C. S.; Chiu, W. Y.; Lee, Y. H. J. Polym. Sci., Part A: Polym. Chem. 2006, 31, 1755.

[43](a) Napper, D. G.; Parts, A. G. J. Polym. Sci. 1962, 61, 113. (b) Dunn, A. S.; Taylor, P. A. Makromol. Chem. 1965, 53, 207. (c) Nomura, M.; Sasaki, S. L. J. Appl. Polym. Sci. 1978, 22, 1043. (d)Moustafa, B.; Abd el Hakim, A. A.; Mohamed, G. A. J. Appl. Polym. Sci. 1997, 63, 239.

[44](a) Naetti, M.; Camino. G.; Thomann. R.; Mulhaupt, R. Polymer 2001, 42, 4501. (b) Zhang, W.; Chen, D.; Zhao, Q.; Fang, Y. Polymer 2003, 44, 7953. (c) Gelfer, M. Y.; Burger, C.; Chu, B.; Hsiao, B. S.; Drozdov, A. D.; Si, M.; Rafailovich, M.; Sauer, B. B.; Gilman, J. W. Macromolecules 2005, 38, 3765.

[45]Yu, Y. H.; Lin, C. Y.; Yeh, J. M.; Lin, W. H. Polymer 2003, 44, 3553.

[46]Lin, K. F.; Hsu, C. Y.; Huang, T. S.; Chiu, W. Y.; Lee, Y. H.; Young, T. H. J. Appl. Polym. Sci. 2005, 98, 2042.

[47](a)http://www.tu-darmstadt.de/fb/ms/student/fs/german/lab/w5/mse5-1.htm. (b) ASTM D368

[48](a)Brown, R. P. Handbook of Plastics Test Method; G. Godwin in association with the Plastics and Rubber Institute: London, 1981. (a) ASTM E96

[49](a) http://www.ptli.com/testlopedia/tests/water_vapor_trans-E96.asp. (b) http://www.ptli.com/testlopedia/tests/water_vapor_trans-E96.asp.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top