跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭昭輝
研究生(外文):Chao-Hui Kuo
論文名稱:寡聚苯基乙烯及多苯代苯高分子於有機發光二極體之應用
論文名稱(外文):OPV and multiphenyl for organic light emitting diodes application
指導教授:謝國煌謝國煌引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:250
中文關鍵詞:有機發光二極體高分子發光
外文關鍵詞:Organic light emitting diodespolymer eitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:530
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在此論文主要探討有機發光二極體才料及元件之製造。在第一及第二章中分別介紹OLED原理及本論文所需之儀器。在第三章中使用不同urethane做鏈結以聚合發光二級體之單體。為了提高元件的效率,我們使用BCP作一電洞阻擋層,Alq3作一電子傳輸層和新的高分子材料(OPV-IPDI)作一電洞傳輸層,這樣的結構與只有PEDOT:PSS的元件相比可以提高六倍的電流效率。更進一步的,我們將PEDOT:PSS作一電洞注入層,OPV-IPDI和它的衍生高分子(OPV-OXD,OXD-IPDI和OPV-Si)作電洞傳輸層應用在小分子電激發光元件上。與使用傳統電洞傳輸材料NPB的元件相比,使用新的高分子材料(OPV-IPDI和OPV-OXD)製作的元件可以降低約兩伏的驅動電壓並且改善元件的電流效率達至兩倍以上。在第四章及第五章中藉由不同的合成策略開發並製造出整套PPV系列的共聚高分子。並探討其在熱穩定性質、電化學性質、光學性質、以及元件製備上對於不同結構所影響的因素與變化。首先,我們合成出一系列之PPV-Fluorene共聚高分子,並將不同的結構分成三個系統來加以探討 (1)不同分子量對於PLED性質之影響與探討 (2) 不同末端基對於PLED性質之影響與探討 (3) 共聚高分子與三聚高分子改變上之影響與探討 並藉此三系統的討論對PPV-Fluorene系列之光電高分子應用於有機發光二極體有更深入的了解。而不同末端對於元件之光電性質也有相當大的影響,其中又以導入三苯基胺之末端基其對於元件光電性質的提升有最大的助益。並藉由簡單的旋塗製程與光轉換原理,成功的製作發出黃白光CIE 1931 (0.31,0.32)的元件。其最大亮度為400 cd/m2,效率高達3 cd/A。另外,在導入dibromobenzo thiadiazole單體成為三聚高分子之後,我們成功製作出高亮度綠光元件,在發光的強度上也提升至4250cd/m2,效率為2.3cd/A。在第七章中以9-(五苯代苯)卡唑為核心,利用簡易的Suzuki Coupling及Horner-Wadsworth-Emmons反應與不同單體聚合形成高分子P1~P6,並在高分子主鏈中分別
The essay were discussed the organic light emitting diodes. In the chapter 2 and chapter were discussed the theories and equipments of PLED. The chapter 3 and chapter 4 were discussed the polyurethane effect in the PLED devices. A novel family of hole-transport polyurethanes (PUs) has been developed. The PUs were prepared from the condensation
polymerization of isophorone diisocyanate (IPDI) with
(E,E)-1,4-bis(2-hydroxystyryl)benzene, an oligo p-phenylene-(E)-vinylene (OPV) unit, and various amounts of 2,5-bis(4-hydroxyphenyl)-1,3,4-oxadiazole (OXD), as well as with
4-tert-butyl phenol as the terminal group. The PUs demonstrates superior properties that were concluded on the basis of the improved current injection in the corresponding hole-only device. When compared to the control device, the current efficiency was improved 2.37 times. The maximum brightness increased to 14900 cd/m2 in comparison to that of 5780 cd/m2 for the control device. The performance of the OLED devices was fine-tuned by adjusting the combination of the OPV and OXD units to reach electron-hole balanced conditions. The maximum current efficiency increased to 4.12 cd/A at 5.5 V when the PU layer of OPV:OXD ) 67:33 was used. In the chapter 5 and chapter 6, a series of PPV system polymers was synthesized and the relationships between chemical structure design and thermal stability、optical properties、electro-chemical properties or device performance are discussed. At first, a series of PPV-Fluorene system copolymers was synthesized and discussed into three aspects (1) Molecular Weight Effect in PLED. (2) End Group Effect in PLED. (3)
Copolymer and tricopolymer comparability in PLED. By doing research in these three systems, we interiorize the application of PPV-Fluorene system luminescent polymers in
Polymer light emitting diode (PLED). It is found that the molecular weight mainly affects the film quality in device manufacturing when molecular weight increasing to a certain degree.End group is also an important improvement factor for luminescent properties of device, especially for applying triphenylamine group. On the other hand, based on luminescence conversion mechanism, a high efficiency PLED based on yellowish-white light CIE 1931 (0.423, 0.429) is successfully fabricated by simple spin-coating process. The device has external quantum efficiency of 3% and brightness of 400cd/m2. By combining dibromobenzo thiadiazole group into PPV-Fluorene system copolymers as tricopolymers, a high brightness green light PLED device is also successfully fabricated. The device has external quantum
efficiency of 2.3% and brightness of 4250cd/m2. In the chapter 7, series of the co-polymers with huge hinder 4-pentaphenylphenyl-phenyl group as side chain were been synthesized by Suzuki coupling process. The co-polymers are introducing four different kinds of repeat unit when polymerized including carbazole, fluorene, benzothiadiazole and oligophenylenevinylene (OPV) with their own optical properties, respectively. Therefore, these co-polymers are not only to be the emitting layer by themselves but also be the host role in phosphorescence material when doping Ir(ppy)3 as guest and PBD in the PLED device. The optical performance of the co-polymers and device are measured, PL spectra, electroluminescence, UV-vis, turn-on voltage, efficiency are included in our research.
Contents
Chapter 1
Introduction 12
1-1 Evolution of Polymer Light Emitting Diode (PLED) 13
1-2 Theory of PLED Luminescence 15
1-3 Conjugated and Luminescent Materials 22
1-4 Poly (phenylene vinylene) (PPV) System 28
1-5 PLED Device Structure 31
1-6 Energy Transfer Mechanism in PLED 35
1-7 Reference 38

Chapter 2
Experiment and Equipment 40
2-1 Polymer materials 41
2-2 Small molecule materials 42
2-3 Experiment Equipment 43
2-4 Device Fabrication 45
2-5 Measurement System 47

Chapter 3
Novel Hole-Transport Polyurethanes applied for Polymer Light-Emitting Diodes 59
3-1 Abstract 59
3-2 Introduction 59
3-3 Experimental 60
3-4 Materials 62
3-5 Results and Discussion 64
3-6 Optical properties 66
3-7 Thermal properties 68
3-8 Eelectroluminescence properties 69
3-9 Conclusion 73
3-10 References 74

Chapter 4
High Performance Hole-injection and Hole-transport Polyurethanes for Light-Emitting Diodes Application 77
4-1 Abstract 77
4-2 Introduction 77
4-3 Results and Discussion 80
4-3-1 Polymer Synthesis and Characterization 81
4-3-2 Thermal Properties 86
4-3-3 Hole Injection and Transport Properties of Polymers 1-7 and 10 86
4-3-4 Effects of the PU layer on the EL performance 88
4-3-5 Current Characteristic of the OLED 89
4-3-6 Luminescence and spectral properties of the OLED Devices 90
4-3-7 Accelerated Lifetime Study 94
4-4 Conclusion 96
4-5 Experimental Sections 97
4-6 Reference 112

Chapter 5
Poly (phenylene vinylene)-co-Fluorene for Light-Emitting Application 118
5-1 Abstract 118
5-2 Introduction 119
5-3 Experimental 121
5-3-1 Synthesis of organic materials 123
5-3-2 Synthesis P1 to P5 124
5-3-3 Characterization 128
5-4 Results and discussion 129
5-4-1 Thermal properties 129
5-4-2 Electrochemical characteristics and optical absorption 131
5-4-3 Optical properties 132
5-4-4 Device performance 136
5-4-5 Modification of P3 in the PLED situation 139
5-5 Conclusion 144
5-6 Reference 145

Chapter 6
Optical and electroluminescent properties of new fluorene-Acceptor polyfluorene copolymers and their blends 147
6-1 Abstract 148
6-2 Introduction 148
6-3 Experimental 149
6-3-1 Characterization 149
6-3-2 Device Fabrication 150
6-3-3 Synthesis of organic materials 150
6-4 Results and discussion 154
6-4-1 Thermal Properties of the Copolymers 154
6-4-2 Optical Properties of the Polymers 156
6-4-3 Electrochemical Properties of the Polymers 158
6-4-4 EL Properties and Voltage–Luminance 159
6-4-5 P0 blends MEH-PPV 163
6-4-6 P50 to P0 blends Polyfluorene 167
6-5 Conclusion 170
6-6 Reference 171

Chapter 7
Synthesis and PLED devices fabrication of 9-(4-pentaphenylphenyl- phenyl )-9H- carbazole and fluorene copolymer 174
7-1 Abstract 174
7-2 Introduction 174
7-3 Experimental 179
7-4 Instrumentations 181
7-5 Device Fabrication 181
7-6 Results and Discussion 184
7-6-1 Synthesis and Characterization 184
7-6-2 Molecular weight and thermal properties of P1 to P5 185
7-6-3 Optics and electrochemical properties of co-polymers 187
7-6-4 Electrochemical characteristics 190
7-6-5 Electroluminescence Properties 191
7-6-6 The performance of the device with Ir(ppy)3 doping in emitting layer 195
7-7 Conclusion 198
7-8 Reference 199
NMR spectrums 202
Publication Lists 253
Chapter1
(1) Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64.
(2) Bernanose, P. Vouaux, J. Chim. Phys. 1953, 50, 261.
(3) Gurnee, R. Fernandez, US Patent .1965, 3172 862.
(4) W. Digby, M. Schadt, US Patent. 1971, 3621 321.
(5) R. Partridge, US Patent. 1976, 3995 299.
(6) C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 1987., 51, 913.
(7) D. D. C. Bradley J. H. Burroughes, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature. 1990, 347, 539.
(8) D. Braun, A. Heeger, Appl. Phys. Lett. 1982, 21, 58.
(9) M.F. Rubner, Conjugated polymeric materials. 1990, pp.65-85
(10) Gao, M., Richter, B., Kirstein, S., Mohwald, H. J. Phys. Chem. B. 1998, 102, 4096-4103.
(11) Murphy, A. R., Frechet, J. M. J., Chang, P., Lee, J., Subramanian, V. J. Am. Chem. Soc. 2004, 126, 1596-1597.
(12) Tao, X. T., Suzuki, H., Wada, T., Miyata, S., Sasabe, H. J. Am. Chem. Soc. 1999, 12, 9447-9448.
(13) Kim, J., McQuade, D. T.; Rose, A., Zhu, Z., Swager, T. M. J. Am. Chem. Soc. 2001, 123, 11488-11489.
(14) Zhang, R., Zheng, H., Shen, J. Macromolecules. 1996, 29, 7627-7628.
(15) Hsieh, B. R., Yu, Y., Forsythe, E. W., Schaaf, G. M., Feld, W. A. J. Am. Chem. Soc. 1998,120, 231-232.
(16) Zhang, Q. T., Tour, J. M. J. Am. Chem. Soc. 1997, 119, 5065-5066.
(17) Wan, X., Yan F., Jin, S., Liu, X., Xue, G. Chem. Mater. 1999, 11, 2400-2407.
(18) Qiu, H., Wan, M.; Matthews, B., Dai, L. Macromolecules. 2001, 34, 675-677.
(19) Jean Roncali, Chem. Rev. 1997, 77, 173-205.
(20) H. Detert, E. Sugiono, Synthetic Metals. 2000, 115.
(21) J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burn, and A. Holmes, Nature. 1990, 347, 539.
(22) D. Braun and A. Heeger, Appl. Phys. Lett. 1991, 58, 1982.
(23) C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913.
(24) C. Adachi, T. Tsutsui and S. Saito. Appl. Phys. Lett. 1989, 55, 1489.
(25) C. Adachi, S. Tokito, T. Tsutsui and S. Saito. Jan. J. Appl. Phys. Part 2. 1988, 27, 269.
(26) Scott, J. Kaufman, P. Brock, R. Dipieto, J. Salem, and J. Goitia. J. Appl. Phys. 1996, 79, 2745.
(27) J. Mort and G. Pfister, “Electronic Properties of Polymers,” edited by J.Mort and G. Pfister (Wiley Interscience, New York, 1982), pp. 215-265.

Chapter3
(1)(a) Gu G.; Shen Z.; Burrows, P. E.; Forrest S. R. Adv. Mater. 1997, 9. 725-728. (b) Tsutsui, T.; Fujita, K. Adv. Mater. 2002, 14, 949-952. (c) Yang, Y.; Huang, Q.; Metz, A. W.; Ni, J.; Jin, S.; Marks, T. J.; Madsen, M. E.; DiVenere, A.; Ho, S.-T. Adv. Mater. 2004, 16, 321-324. (d) Lee, K. J.; Motala, M. J.; Meitl, M. A.; Childs, W. R.; Menard, E.; Shim, A. K.; Rogers, J. A.; Nuzzo, R. G.. Adv. Mater. 2005, 17, 2332-2336. (e) Hide, F.; D
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top