跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈康寧
研究生(外文):Kang-Ning Shen
論文名稱:以微衛星DNA探討澳洲東部三種淡水鰻(澳洲花鰻、澳洲短鰭鰻和紐西蘭大鰻)的族群遺傳結構及其演化史
論文名稱(外文):The population genetic structure and evolutionary scenario of three freshwater eels Anguilla reinhardtii, A. australis and A. dieffenbachii in the eastern Australia as revealed by microsatellites
指導教授:曾萬年曾萬年引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:動物學研究研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:淡水鰻澳洲花鰻澳洲短鰭鰻紐西蘭大鰻微衛星DNA族群結構
外文關鍵詞:Freshwater eelA. reinhardtiiA. australisA. dieffenbachiiMicrosatellitesPopulation genetic structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:507
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
為了瞭解澳洲東部的三種淡水鰻 (Anguilla spp):熱帶性澳洲花鰻 (A. reinhardtii, Steindachner 1867),以及溫帶性澳洲短鰭鰻 (A. australis, Richardson 1841) 和紐西蘭大鰻 (A. dieffenbachii, Gray 1842) 的族群遺傳結構及其演化關係,本研究以微衛星DNA為遺傳標記,分析6-7個微衛星基因座的遺傳變異性。總共使用了1277尾鰻線標本,分別是1997-1999年採自澳洲六個河口的澳洲花鰻 (799尾) 和澳洲短鰭鰻 (287尾) 以及1995-1996年採自紐西蘭南北島的三個河口澳洲短鰭鰻 (101尾) 和紐西蘭大鰻 (90尾)。其中,澳洲東岸Albert River的澳洲花鰻標本連續採集12個月以上。

分析結果發現澳洲花鰻雖然終年產卵,但其族群遺傳結構並無時間或空間的分化現象,這可能和其仔魚浮游期短、散佈範圍窄以及終年產卵基因容易交流有關。相反地,澳洲短鰭鰻的仔魚漂浮期長、分佈域含蓋澳洲及紐西蘭兩地,地區間卻有明顯的族群遺傳分化現象。紐西蘭大鰻為已知仔魚浮游期最長的淡水鰻,但族群分化情形並不明顯,可能和可散佈陸域範圍太小 (僅局限於紐西蘭島) 有關。紐西蘭大鰻的外部型態及其基因結構比同一個演化支序的澳洲短鰭鰻保留更多的祖徵。顯示溫帶性紐西蘭大鰻可能是上述鰻鱺屬 (Anguilla) 的三個種類中最早抵達紐澳地區的的淡水鰻。本研究結果顯示微衛星基因座的等位基因變異特性,可以提供澳洲三種淡水鰻的族群擴散及演化的部分訊息。
Population genetic structure and evolutionary scenario were investigated with the microsatellites analysis for three species of the freshwater eels, tropical Anguilla reinhardtii (Steindachner 1867), and temperate Anguilla australis (Richardson 1841) and Anguilla dieffenbachii (Gray 1842) in Australia and New Zealand. A total of 1277 glass eel specimens were used: 388 from East Australia and New Zealand for A. australis, 90 from both North and South Island of New Zealand for A. dieffenbachii, and 799 from East Australia for A. reinhardtii, including a series of monthly collections for over 12 months from the Albert River estuary. The specimens were collected from East Australis in 1997-1999 and New Zealand in 1995-1996.
For A. reinhardtii there was no significant spatial and temporal differentiation in the genetic structure. This may be due to the fact that it has a short pelagic larval duration, narrow distribution range, but a long, all the year round spawning period, that facilitate the gene flow. For A. australis that has comparatively longer pelagic larval duration than that of A. reinhardtii, two geographical populations were recognized in East Australia and New Zealand, respectively. For A. dieffenbachii in New Zealand that has the longest duration of the pelagic larval stage has no population genetic differentiation due to the small land mass for dispersal. A. dieffenbachii is characterized with more ancient morphological and genetic characters than the A. australis in the same evolutionary lineage. These may suggest that temperate eel A. dieffenbachii is the earliest arrival of the freshwater eel in Oceania. Genetic variation in microsatellite loci may provide a useful tool in examining evolution and population dispersal of freshwater eels.
口試委員會審定書………………………………………………………………………i
誌謝……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
英文摘要……………………………………………………………………..…….…...iv
一、前言........……………………………………………………………………...……1
1. 淡水鰻的類緣關係及其生活史的比較………………….………….……...…1
2. 淡水鰻族群遺傳研究的進展…………………………..………….……….….3
3. 澳洲東部三種淡水鰻的分佈及生活史特徵……………………………….…5
4. 問題與假設……………….……………………………………………………7
5. 研究動機與目的…………………………………………...…….…………….9
二、材料與方法…………………………………………………………………….….11
1. 鰻線之採集與保存……………………………………………………...…....11
2. 微衛星DNA的特性………………………….………………….….…….….11
3. 微衛星DNA基因座上基因型之分析……….………………….….…….…..13
3.1 DNA萃取………………………………….……………….….…………13
3.2 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 及基因型分析 (genotyping)…………………………………………………………….13
3.3 微衛星DNA基因片段的定序……………………………………….…14
4. 資料分析…………………………………………………………….………..14
4.1 遺傳變異性 (genetic variability) 的分析…………………………......14
4.2 哈溫平衡(Hardy-Weinberg equilibrium)的檢定…………….………15
4.3 族群間的分化程度……………………………………………………...16
4.4 遺傳距離 (genetic distance) 的計算與親緣關係樹 (phylogenetic tree) 的建構………………………………………………………………….16
4.5 連結不平衡 (linkage disequilibrium) 測試……….………….……..…17
4.6 無效等位基因及評分錯誤 (null allele or scoring error) 之偵測……...17
4.7 遺傳距離與時空距離關係之測試……………………………………...17
4.8 近交之檢定…………………………………………………………...…17
4.9 來自不同族群的個體之分配測試 (assignment test)…………………..18
三、結果…………………………………………………………………………….…19
1. 澳洲花鰻的族群遺傳結構……………………………………………….......19
1.1 遺傳變異性及哈溫平衡檢定……………………………………...........19
1.2 族群遺傳結搆的時空變化………………………………………….…..20
1.3 樣本間的遺傳距離..………………………………………………….....20
1.4 時間樣本間的遺傳距離…………………………………………….…..21
1.5 地點之間的遺傳距離……………………………………………….......21
2. 澳洲短鰭鰻的族群遺傳結構…………………………………………….......22
2.1 遺傳變異性及哈溫平衡檢定…………………………………………...22
2.2 族群遺傳分化現象………………………………………………...........23
2.3 成對遺傳距離和成對遺傳分化指數的顯著性差異…………………...23
2.4 澳洲短鰭鰻的親緣地理………...…………………………………..…..24
3. 大洋洲兩種溫帶性澳洲短鰭鰻及紐西蘭大鰻族群遺傳變異特性的比較……………………………………………………………………………..24
3.1 參數變異的種間比較……………………………………………….......25
3.2 等位基因種類及頻率的種間比較………………………………….......26
3.3 微衛星基因座序列的種間比較…………………………………….......26
3.4 澳洲短鰭鰻和紐西蘭大鰻的族群遺傳結構的比較……………….......26
四、討論……………………………………………………………………………….28
1. 淡水鰻族群的特性…………………………………………………………...28
2. 澳洲花鰻族群遺傳結構之探討…………………………...............................29
2.1 澳洲花鰻微衛星基因座等位基因多型性及序列變化…………………………………………………...…………………..29
2.2 微衛星基因座數及樣本數在澳洲花鰻族群遺傳結構分析之探討……………………………………………………………………….30
2.3 澳洲花鰻族群遺傳結構不具時空變化的可能原因…………..…..…...30
3. 澳洲短鰭鰻族群結構之探討………………………………………………...31
3.1 時間效應是否對族群遺傳結構產生影響?……….………………......32
3.2 族群遺傳分化指數的比較………………………….………………......32
3.3 仔魚從外洋產卵場至河口域的可能漂送途徑…….………………......33
4. 澳洲短鰭鰻和紐西蘭大鰻的演化秩序……………………….……………..35
4.1 大西洋及大洋洲兩個鰻魚支序的演化歷史之比較…….………...…...35
4.2 大洋洲的澳洲短鰭鰻由紐西蘭大鰻演化而來的可能性..………..…...36
4.3 澳洲短鰭鰻族群膨脹的證據……………………………………...…....36
4.4 族群分化程度和陸地效應的關係…………………………………...…37
5. 三種澳洲鰻可能的種化路線與地質年代的關係………………………...…38
五、總結論…………………………………………………………………………….40
六、參考資料………………………………………………………………………….41
七、表………………………………………………………………………………….56
八、圖………………………………………………………………………………….77
九、附錄……………………………………………………………………………97
Allen AP, Brown JH, Gillooly JF (2002) Global Biodiversity, Biochemical Kinetics and the Energetic-Equivalence Rule. Science 297:1545-1548.
Aoyama J, Kobayashi T, Tsukamoto K (1996) Phylogeny of eels suggested by mitochrondrial DNA sequences. Nippon Suisan Gakkaishi 62: 370-375.
Aoyama J, Mochioka N, Otake T, Ishikawa S, Kawakami Y, Castle P, Nishida M, Tsukamoto K (1999) Distribution and dispersal of anguillid leptocephali in the western Pacific Ocean revealed by molecular analysis. Mar Ecol Prog Ser 188: 193-200.
Aoyama J, Mutsumi N, Tsukamoto K (2001) Molecular phylogeny and evolution of the freshwater eel, genus Anguilla. Mol Phylogenet Evol 20: 450-459.
Aoyama J, Tsukamoto K (1997) Evolution of the freshwater eels. Naturwissenschaften 84: 17–21.
Arai T, Limbong D, Otake T, Tsukamoto K (1999a) Metamorphosis and inshore migration of tropical eels, Anguilla spp, in the Indo-Pacific. Mar Ecol Prog Ser 182: 283-293.
Arai T, Limbong D, Otake T, Tsukamoto K (2001) Recruitment mechanisms of tropical eels Anguilla spp. and implications for the evolution of oceanic migration in the genus Anguilla. Mar Ecol Prog Ser 216: 253-264.
Arai T, Otake T, Jellyman DJ, Tsukamoto K (1999b) Differences in the early life history of the Australian shortfinned eel Anguilla australis from Australia and New Zealand, as revealed by otolith microstructure and microchemistry. Mar Biol 135: 381-389.
Arai T, Tsukamoto K (2000) Timing of metamorphosis and larval segregation of the Atlantic eels Anguilla rostrata and A. anguilla, as revealed by otolith microstructure and microchemistry. Mar Biol 137: 39-45.
Avise JC, Helfman GS, Saunders NC, Hales LS (1986) Mitochondrial-DNA differentiation in North-Atlantic eels - Population genetic consequences of an unusual life-history pattern. Proc Natl Acad Sci USA 83: 4350-4354.
Bay LK, Crozier RH, Caley MJ (2006) The relationship between population genetic structure and pelagic larval duration in coral reef fishes on the Great Barrier Reef. Mar Biol 149(5): 1247-1256.
Beckman JS, Weber JL (1992) Survey of human and rat microsatellites. Genomics 12: 627-631.
Castle PHJ, Williamson GR (1974) On the validity of the fresh-water eel species, Anguilla ancestralis Ege, from Celebes. Copeia 1974: 569-570.
Chan KK, Chan DKO, Lee SC, Tsukamoto K (1997) Genetic variability of the Japanese eel Anguilla japonica (Temminck & Schlegel) related to latitude. Ecol Freshw Fish 6(1): 45-49.
Cheng PW, Tzeng WN (1996) Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 131: 87-96.
Chisnall BL, Jellyman DJ, Bonnett ML, Sykes JRE (2000) Studies on glass eels in New Zealand. NIWA, Wellington, Water Atmosph 8(4): 21-22.
Chung MY, Ranum LPW, Duvick LA, Servadio A, Zoghbi HY, Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nat Genet 5: 254-258.
Comparini A, Rizzotti M, Rodino E (1977) Genetic-control and variability of phosphoglucose isomerase (pgi) in eels from Atlantic Ocean and Mediterranean Sea. Mar Biol 43: 109-116.
Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989-2000.
Daemen E, Cross T, Ollevier F, Volckaert FAM (2001) Analysis of the genetic structure of European eel (Anguilla anguilla) using microsatellite DNA and mtDNA markers. Mar Biol 139(4): 755-764.
Daemen E, Volckaert F, Cross T, Ollevier F (1997) Four polymorphic microsatellite markers in the European eel Anguilla anguilla (L.). Anim Genet 28 (1): 68.
Dannewitz J, Maes GE, Johansson L, Wickström H, Volckaert FAM, Jarvi T (2005) Panmixia in the European eel: a matter of time. Proc R Soc Lond B 272: 1129–1137.
Dekker W (2003) Worldwide decline of eel resources necessitates immediate action. Fisheries 28: 28-30.
DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56: 461-473.
Dijkstra LH, Jellyman DJ (1999) Is the subspecies classification of the freshwater eels Anguilla australis australis Richardson and A. a. schmidtii Phillipps still valid? Mar Freshw Res 50: 261-263.
Ege V (1939) A revision of the genus Anguilla Shaw, a systematic, phylogenetic and geographical study. Dana Rep 3: 1-256.
Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Garza J, Slatkin M, Freimer N (1995) Microsatellite allele frequencies in humans and chimpanzees with implications for constraints on allele size. Mol Biol Evol 12: 594-603.
Goldstein DB, Schlötterer C (2000) Microsatellite: Evolution and applications, 2 edn. Oxford University Press, New York.
Gottelli D, Sillerozubiri C, Applebaum GD, Roy MS, Girman DJ, Garciamoreno J, Ostrander EA, Wayne RK (1994) Molecular genetics of the most endangered Canid - the Ethiopian wolf Canis simensis. Mol Ecol 3: 301-312.
Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Version 2.9.3. Available from http://www.unil.ch/izea/softwares/fstat.html.
Grant WS, Waples RS (2000) Spatial and temporal scales of genetic variability in marine and anadromous species: Implications for fisheries Oceanography. In: Parson T, Harrison P (eds) Fisheries Oceanography. Blackwell Science, Oxford, UK, p. 61-93.
Grimaldi MC, Crouau-Roy B (1997) Microsatellite allelic homoplasy due to variable flanking sequences. J Mol Evol 44(3): 336-340.
Hearne CM, Ghosh S, Todd JA (1992) Microsatellites for linkage analysis of genetic traits. Trend Genet 8: 288-294.
Ishikawa S, Tsukamoto K, Nishida M (2001) Characterization of microsatellite loci from the Japanese eel Anguilla japonica Mol Ecol Notes 1: 140–142.
Ishikawa S, Tsukamoto K, Nishida M (2004) Genetic evidence for multiple geographic populations of the giant mottled eel Anguilla marmorata in the Pacific and Indian Oceans. Ichthyol Res 51: 343-353.
Jellyman DJ (1987) Review of the marine life history of Australian temperate species of Anguilla. In Dadswell MJ, Klauda RJ, Moffitt CM, Saunders RL, Rulifson RA, Cooper JE (eds) Common strategies of anadromous and catadromous fishes. Am Fish Soc Symp 1: 276-285.
Jellyman DJ, Chisnall BL, Bonnett ML, Sykes JRE (1999) Seasonal arrival patterns of juvenile freshwater eels (Anguilla spp.) in New Zealand. New Zeal J Mar Freshw Res 47: 1037-1040.
Jones AG, Kvarnemo C, Moore GI, Simmons LW, Avise JC (1998) Microsatellite evidence for monogamy and sex-biased recombination in the Western Australian seahorse Hippocampus angustus. Mol Ecol 7: 1497-1505.
Kruskal JB (1964) "Nonmetric multidimensional scaling: a numerical method". Psychometrika 29: 115-129.
Lecomte-Finiger R (1992) Growth history and age at recruitment of European glass eels (Anguilla anguilla) as revealed by otolith microstructure. Mar Biol 114: 205-210.
Lessa EP (1990) Multidimensional analysis of geographic genetic structure. Syst Zool 39: 242-252.
Li CC, Horvitz DG (1953) Some methods of estimating the inbreeding coefficient. Am J Human Genet 5: 107-117.
Ligny WD, Pantelou E (1973) Origin of European eel. Nature 246: 518-519.
Lin YS, Poh YP, Tzeng CS (2001) A phylogeny of freshwater eels inferred from mitochondrial genes. Mol Phylogenet Evol 20: 252-261.
Lintas C, Hirano J, Archer S (1998) Genetic variation of the European eel (Anguilla anguilla). Mol Mar Biol Biotechol 7: 263-269.
Litt M, Luty JA (1989) A hypervariable microsatellite revealed by invitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Amer J Human Genet 44: 397-401.
Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol. 16: 650-659.
Mank JE, Avise JC (2003) Microsatellite variation and differentiation in north Atlantic eels. J Hered 94 (4): 310-314.
Marui M, Arai T, Miller MJ, Jellyman DJ, Tsukamoto K (2001) Comparison of early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructure and microchemistry. Mar Ecol Prog Ser 213: 273-284.
Maruyama T, Fuerst PA (1984) Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when population from zero variability. Genetics 108: 745-763.
Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111: 675-689.
Matsui I (1972) Eel biology—biological study. Koseisha-Koseikaku, Tokyo.
Maynes CL, Lawver LA, Sandwell DT (1990) Tectonic history and new isocron chart of the South Pacific. J Geophys Res 95: 8543-8567.
McDowall RM (1990) New Zealand freshwater fishes. A natural history and guide. Auckland: Heinemann Reed.
Minegishi Y, Aoyama J, Inoue JG, Miya M, Nishida M, Tsukamoto K (2005) Molecular phylogeny and evolution of the freshwater eel, genus Anguilla based on the whole mitochondrial genome sequences. Mol Phylogenet Evol 34: 134-146.
Neff BD, Fu P, Gross MR (1999) Microsatellite evolution in sunfish (Centrarchidae). Can J Fish Sci 56: 1198-1205.
Nei M (1978) Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals. Genetics 89: 583-590.
Nei M (1983) Genetic polymorphism and the role of mutation in evolution. In: Evolution of genes and proteins (Nei M, Koehn R eds). Sunderland MA: Sinauer Associates; 165–190.
Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press , New York (333 pp).
Nielsen EE, Hansen MM, Loeschcke V (1996) Genetic structure of European populations of Atlantic salmon (Salmo salar L.) inferred from RFLP analysis of PCR amplified mitochondrial DNA. Heredity 77: 351-358.
Nishida M (2001) Population structure of the Japanese eel. Proc Int Symp Adv Eel Biol. The University of Tokyo, Tokyo, pp. 7-9.
Ota T (1993) DISPAN: genetic distance and phylogenetic analysis. Pennsylvania State University Park, PA.
Patterson C (1993) Osteichthyes: Teleostei. In “The Fossil Record” (Benton MJ Ed.), (Chapman & Hall, London) 2: 621-656.
Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 502-503.
Primmer CR, Veselov AJ, Zubchenko A, Poututkin A, Bakhmet I, Koskinen MT (2006) Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol 15(3): 653–666.
Pujolar JM, Maes GE, Volckaert FAM (2006) Genetic patchiness among recruits in the European eel Anguilla anguilla. Mar Ecol Prog Ser 307: 209-217.
Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Nat Acad Sci USA 94: 9197-9221.
Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact test and ecumenism. J Hered 86: 248–250.
Rice WR (1989) Analyzing tables of statistical tests. Evolution 43: 223–225.
Richards RI, Sutherland GR (1994) Simple repeat DNA is not replicated simply. Nat Genet 6: 114–116.
Rico C, Rico I, Hewitt G (1996) 470 million years of conservation of microsatellite loci among fish species. Proc R Soc Lond Ser B Biol Sci 263: 549-557.
Ruzzante DE (1998) A comparison of several measures of genetic distance and population structure with microsatellite data: bias and sampling variance. Can J Fish Aquat Sci 55: 1−14.
Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol Biol Evol 4: 406-425.
Sanchez JA, Clabby C, Ramos D, Blanco G, Flavin F, Vasquez E, Powell R (1996) Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon) Heredity 77: 423-432.
Sang TK, Chang HY, Chen CT, Hui CF (1994) Population structure of the Japanese eel, Anguilla japonica. Mol Biol Evol 11: 250-260.
Schmidt J (1923) The breeding places of the eel. Phil Trans R Soc 211(8):179-208.
Schmidt J (1925) The breeding places of the eel. Ann Rep Smithsonian Inst 1924: 279-316.
Schmidt J (1928) The freshwater eels of Australia with some remarks on the shortfinned species of Anguilla. Rec Aus Mus 16: 179-210.
Schneider S, Roessli D, Excoffier L (2000) Arlequin: A software for population genetics data analysis. ver 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva, Geneva, Switzerland.
Shiao JC, Tzeng WN, Collins A, Jellyman DJ (2001) Dispersal pattern of glass eel stage of Anguilla australis revealed by otolith increments. Mar Ecol Prog Ser 219: 241-250.
Shiao JC, WN Tzeng, A Collins, Y Iizuka (2002) Role of marine larval duration and growth rate of glass eels in determining the distribution of Anguilla reinhardtii and A. australis on Australian eastern coasts. Mar Freshw Res 53: 1-10.
Silberschneider V (2001) Recruitment dynamics of Anguilla australis and A. reinhardtii glass eels in New South Wales, Australia. Proc Int Symp Adv Eel Biol, Jap soc promotion sci 131-133.
Sinclair M (1988) Marine Populations: An Essay on Population Regulation and Speciation. Washington Sea Grant Program, University of Washington Press, Seattle, Washington, USA. 252 pp.
Sinclair M, MJ Tremblay (1984) Timing of spawning of Atlantic herring (Clupea harengus harengus) populations and the match-mismatch theory. Cana J Fish Aqua Sci 41: 1055-1065.
Smith PJ, Benson PG, Stanger C, Chisnall BL, Jellyman DJ (2001) Genetic structure of New Zealand eels Anguilla dieffenbachii and A. australis with allozyme markers. Ecol Freshw Fish 10: 132-137.
Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco.
Stallings RL (1994) Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: implications for human genetic diseases. Genomics 21: 116-121.
StatSoft Inc (2001) STATISTICA (data analysis software system), version 6. www.statsoft.com.
Stehli FG, Douglas RG, Newell ND (1969) Generation and maintenance of gradients in taxo- nomic diversity. Science, N.Y. 164: 947-949.
Sugeha HY, Arai T, Miller MJ, Limbong D, Tsukamoto K (2001) Inshore migration of the tropical eels Anguilla spp. recruiting to the Poigar River estuary on north Sulawesi Island. Mar Ecol Prog Ser 221: 233-243.
Tabeta O, Tanimoto T, Takai T, Matsui I, Imamura T (1976) Seasonal occurrence of anguillid elvers in Cagayan River, Luzon Island, the Philippines. Bull Jpn Soc Sci Fish 42: 421-426.
Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463-6471
Tesch FW (1977) ‘The Eel: Biology and Management of Anguillid Eels.’ 1st Edn. (Chapman & Hall, London).
Tesch FW, Wendt T, Karlsson L (1992) Influence of geomagnetism on the activity and orientation of the eel, Anguilla anguilla (L.), as evident from laboratory experiments. Ecol Freshw Fish 1: 52-60.
Tilburg CE, Hurlburt HE, O’Brien JJ, Shriver JF (2001) The dynamics of the East Current System: The Tasman Front, the East Auckland Current, and the East Cape Current. J Phys Oceanogr 31: 2917-2943.
Tseng MC, Chen CA, Kao HW, Tzeng WN, Lee SC (2001a) Polymorphisms of GA/GT microsatellite loci from Anguilla japonica. Mar Biotechnol 3: 275-280.
Tseng MC, Lee SC, Tzeng WN (2001b) Genetic variation of the Japanese eel Anguilla japonica based on microsatellite DNA. J. Taiwan Fish Res 9: 137-147.
Tseng MC, WN Tzeng, SC Lee (2003) Historical decline in the Japanese eel Anguilla japonica in Northern Taiwan inferred from temporal genetic variations. Zool Stud 42(4): 556-563.
Tseng MC, WN Tzeng, SC Lee (2006) Population genetic structure of the Japanese eel Anguilla japonica in the northwest Pacific Ocean: evidence of non-panmictic populations. Mar Ecol Prog Ser 308: 221-230.
Tsukamoto K (1990) Recruitment mechanism of the eel, Anguilla japonica, to the Japanese coast. J Fish Biol 36: 659-671.
Tsukamoto K (1992) Discovery of the spawning area for Japanese eel. Nature 356: 789-791
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535-538.
Veevers JJ (1991) Phanerozoic Australia in the changing configuration of Proto-Pangea through Gondwanaland and Pangea to the present dispersed continents. Aust Syst Bot 4: 1-11.
Wang CH, Tzeng WN (1998) Interpretation of geographic variation in size of American eel Anguilla rostrata elvers on the Atlantic coast of North America using their life history and otolith ageing. Mar Ecol Prog Ser 168: 35-43.
Wang CH, Tzeng WN (2000) The timing of metamorphosis and growth rates of American and European eel leptocephali: A mechanism of larval segregation migration. Fish Res 46: 191-205.
Waples RS (1989a) Temporal variation in allele frequencies: testing the right hypothesis. Evolution 43: 1236-1251.
Waples RS (1989b) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121: 379-391.
Waples RS (1998) Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. Am Genet Assoc 89: 438-450.
Warren BA (1970) General circulation of the South Pacific. Scientific Exploration of the South Pacific, Warren S. Wooster, Ed., Natl Acad Sci, pp. 33-49.
Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44: 388-396.
Wirth T, Bernatchez L (2001) Genetic evidence against panmixia in the European eel. Nature 409: 1037-1040.
Wirth T, Bernatchez L (2003) Decline of north Atlantic eels: a fatal synergy? Proc R Soc Lond B 270: 681–688.
Xia X (2000) Data analysis in molecular biology and evolution. Kluwer Academic Publishers. Boston/Dordrecht/London.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王柏燿:〈經濟評估與投票抉擇:以2001 年立委選舉為例〉,《選舉研究》,2004,11(1),頁171-195。
2. 李錦河、杜宜軒、溫敏杰:〈統計方法在選舉預測上之研究〉,《民意研究季刊》,2000,212,頁14-30。
3. 周應龍、盛杏湲:〈選樣偏誤模型在選舉預測上的應用〉,《選舉研究》,2005,12(2),頁1-44。
4. 洪永泰:〈選舉預測:一個以整體資料為輔助工具的模型〉,《選舉研究》,1994,1(1),頁93-110。
5. 洪永泰:〈選舉結果與選前估票之分析〉,《國家政策論壇》,2002,2(1),頁1-11。
6. 范凌嘉:〈選舉預測誤差控制的嘗試:以特質調整模型(JIA Model)為例〉,《選舉研究》,2001,8(1),頁25-69。
7. 徐火炎:〈1998 年二屆台北市長選民投票行為之分析:選民的黨派抉擇與分裂投票〉,《東吳政治學報》,2001,13,頁77-127。
8. 徐火炎:〈台灣政黨版圖的重畫:民進黨、國民黨與親民黨的「民基」比較〉,《東吳政治學報》,2002,14,頁83-134。
9. 徐永明:〈時序模型對選舉的預測〉,《科學月刊》,2004,35(3),頁199-201。
10. 張紘炬、林顯毓:〈台北市長選舉投票傾向的Logit 模式分析〉,《民意研究季刊》,1995,192,頁1-11。
11. 梁世武:〈1994 年台北市長選舉之預測:「候選人形象指標」預測模式之驗證〉,《選舉研究》,1994,1(2),頁97-130。
12. 盛杏湲:〈選民的投票決定與選舉預測〉,《選舉研究》,1998,5(1),頁37-75。
13. 盛杏湲:〈統獨議題與台灣民眾的投票行為:1990 年代的分析〉,《選舉研究》,2002,9(1),頁41-80。
14. 盛治仁:〈總統選舉預測探討 – 以情感溫度計預測未表態選民的應用〉,《選舉研究》,2000,7(2),頁75-108。
15. 莊文忠:〈選舉預測與策略性投票:以89 年總統選舉為例〉,《理論與政策》,2000,14(2)頁14-30。