跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪曉君
研究生(外文):Hsiao-Chun Hung
論文名稱:草蝦高溫感染下白點症病毒基因之轉錄與轉譯機制影響之分析
論文名稱(外文):Effect of hyperthermia on the transcription and translation of white spot syndrome virus (WSSV) gene in Penaeus monodon
指導教授:郭光雄羅竹芳羅竹芳引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:55
中文關鍵詞:白點症病毒高溫磷酸化的信號傳導子和轉錄激酶醛脫氫酶蛋白質降解酶
外文關鍵詞:white spot syndrome virushyperthermiaSTATsNAD-dependent aldehyde dehydrogenasesproteasome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究指出水溫升高會降低蝦類受白點症病毒感染之死亡率,但未深入探討其影響機制。本研究以草蝦 (Penaeus monodon) 為生物性樣材,分析白點症病毒於25或32℃水溫感染草蝦時,病毒複製、基因轉錄與轉譯之差異。根據病毒DNA檢測之結果顯示,溫度為25℃時,蝦體於12 hpi.(hour post-infection)呈現重度感染狀態,病毒出現大量複製,而於32℃時,直至48 hpi.仍為輕度感染,病毒少量複製狀態,因此推論病毒於32℃下不能有效進行複製增殖。另針對數個病毒基因之轉錄表現時序分析,在25與32℃下,白點症病毒潛伏性相關基因wssv194於2 ~ 48 hpi.時為持續穩定表現;在25℃下,極早期基因ie1、ie2以及早期表現基因-- DNA聚合酶 (DNA polymerase),在2 ~ 48 hpi.時基因表現隨感染後時序的增加而上升,12 ~ 48 hpi.時上升最為明顯,但32℃時,上述基因在2 hpi.時即有高表現量,且至48 hpi.皆呈現持續穩定表現,顯示在32℃時基因轉錄作用提昇。若以西方轉印法偵測病毒蛋白質表現,則顯示感染溫度於25℃下,24 ~ 48 hpi.時可偵測到IE1與VP28蛋白質存在,而32℃下則至48 hpi.皆未能偵測到這些病毒蛋白質之表現,依據過去之研究結果,推論此現象與磷酸化的信號傳導子和轉錄激酶 (signal transducer and activators of transcription, STATs) 有關,因此ie1於32℃時,基因表現時序性提前升高,可能因為未感染病毒之蝦體於32℃養殖下,具較多活化態STATs造成。綜合以上實驗,本研究亦發現在32℃下草蝦感染病毒後,醛脫氫酶 (NAD-dependent aldehyde dehydrogenases) 與蛋白質降解酶 (Proteasome alpha 4 subunit)蛋白質量明顯上升,是否因蛋白質降解酶相關蛋白表現量上升,而促進蛋白質降解之分子機制尚未釐清,仍需待進一步實驗證明。
Hyperthermia promotes survival of the WSSV-infected shrimps and the underlying mechanisms remain unknown. In the present study, we investigated the effects of hyperthermia (25 vs. 32℃) on WSSV gene expression and genome replication in Penaeus monodon shrimp. By using IQ2000 kits, we found that high level of WSSV genome could be detected as early as 12 hours post infection (hpi.) at 25℃, whereas low amount of WSSV genome became detectable until 48 hpi. at 32℃. Temporal analyses of the transcription of several WSSV genes showed that although high infection temperature did not affect the transcription pattern of a latency-associated gene (wssv194), the patterns of two immediate early genes (ie1 and ie2) and the early gene dna polymerase (dna pol) changed dramatically. At 25℃, the expression level of ie1, ie2 and dna pol was low at 2 – 8 hpi., and gradually increased at 12 – 48 hpi. At 32℃, the expression of these three genes surged rapidly to reach a high level by 2 hpi. and then maintained at a constant level until the end of the analysis. The expression of two viral proteins, IE1 and VP28, was investigated using Western blot analysis, and it showed that at 25℃ both proteins were detected at 24 and 48 hpi., but at 32℃, neither proteins were identified. Based on these studies, we concluded that at high infection temperature (32℃), WSSV’s transcription activity was aberrantly high, its replication was blocked and the amount of viral proteins was quite low. STATs up-regulates ie1 gene expression. In the present study, Western blot analysis showed that in normal shrimp, hyperthermia activated STATs, and this might explain in part how ie1 transcription was induced by hyperthermia. Lastly, the protein profile changes in WSSV-infected shrimp induced by hyperthermia were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Two shrimp proteins, NAD-dependent aldehyde dehydrogenases and proteasome alpha 4 subunit, were upregulated significantly. The increased expression of a proteasome-related protein suggested that in WSSV-infected shrimp, hyperthermia might enhance the protein degradation pathway to down-regulate viral protein expression.
前言………………………………………………………………1
材料與方法…………………………………………………… 13
1.白點症病毒株與其病毒液之製備………………………… 13
2.人工注射感染試驗與草蝦組織檢體之收取……………… 13
3.檢體之DNA萃取與檢體感染前後之白點症病毒檢測方法…14
4.檢體之RNA萃取………………………………………………15
5.反轉錄酶—聚合酶鏈反應………………………………… 16
6.檢體全蛋白之萃取與蛋白質定量………………………… 17
7.西方轉印法………………………………………………… 17
8.細胞核與細胞質蛋白質分離萃取………………………… 19
9.蛋白質二維電泳分析……………………………………… 19
10.蛋白質膠體內水解與蛋白質身分鑑定……………………21
結果…………………………………………………………… 22
1.溫度對白點症病毒基因體複製的影響…………………… 22
2.溫度對白點症病毒基因轉錄表現的影響………………… 23
3.溫度對磷酸化的信號傳導子和轉錄激酶 (Signal Transducer and Activators of Transcription, STATs) 之影響…… 25
4.病毒蛋白質時序性表現差異分析………………………… 26
5.草蝦鰓組織不同溫度感染病毒後全蛋白二維電泳分析表現之差異……………………………………………………………… 26
討論…………………………………………………………… 28
參考文獻……………………………………………………… 39
圖表及附錄…………………………………………………… 47
Agaisse, H. and N. Perrimon (2004). The roles of JAK/STAT signaling in Drosophila immune responses. Immunol Rev 198: 72-82.
Alan, J. C., Ed. (2000). DNA Virus Replication. Oxford, Oxford University Press.
Arts, J. A., F. H. Cornelissen, et al. (2006). Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol.
Barillas-Mury, C., Y. S. Han, et al. (1999). Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. Embo J 18(4): 959-67.
Bhattacharya, A., S. Satish, et al. (2000). The genome of Entamoeba histolytica. Int J Parasitol 30(4): 401-10.
Chang, P. S., C. F. Lo, et al. (1996). Identification of white spot syndrome associated baculovirus (WSSV) target organs in shrimp, Penaeus monodon, by in situ hybridization. Dis Aquat Org 27: 131-139.
Chen, L. L., H. C. Wang, et al. (2002). Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus. Virology 301(1): 136-47.
Cheshenko, N., B. Del Rosario, et al. (2003). Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol 163(2): 283-93.
Chou, H. Y., C. Y. Huang, et al. (1995). Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Org 23: 165-173.
Cotter, M. A., 2nd and E. S. Robertson (1999). The latency-associated nuclear antigen tethers the Kaposi''s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264(2): 254-64.
Cotter, M. A., 2nd, C. Subramanian, et al. (2001). The Kaposi''s sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology 291(2): 241-59.
Dantuma, N. P. and M. G. Masucci (2003). "The ubiquitin/proteasome system in Epstein-Barr virus latency and associated malignancies." Semin Cancer Biol 13(1): 69-76.
Du, H. H., W. F. Li, et al. (2006). Effect of hyperthermia on the replication of white spot syndrome virus (WSSV) in Procambarus clarkii. Dis Aquat Organ 71(2): 175-8.
Fields, B., Ed. (1990). Virology. New York, Raven Press.
Flegel, T. W. (1997). Special topic review: major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J Microbiol and Biotechnol 13: 433 ~ 442.
Flint, S. J., Enquist, L. W., Racaniello, V.R., Skalka, A. M., Ed. (2000). Principles of virology. Washington, DC, ASM Press.
Flint, S. J., Enquist, L.W., Racaniello, V. R., Skalka, A. M., Ed. (2004). Patterns of infection. Washington, D. C., ASM Press.
Fruh, K., E. Bartee, et al. (2002). Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Res 88(1-2): 55-69.
Garcia-Blanco, M. A. and B. R. Cullen (1991). Molecular basis of latency in pathogenic human viruses. Science 254(5033): 815-20.
Gelebart, P., M. Opas, et al. (2005). Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37(2): 260-6.
Granja, C. B., L. F. Aranguren, et al. (2003). Does hyperthermia increase apoptosis in white spot syndrome virus (WSSV)-infected Litopenaeus vannamei? Dis Aquat Organ 54(1): 73-8.
Granja, C. B., O. M. Vidal, et al. (2006). Hyperthermia reduces viral load of white spot syndrome virus in Penaeus vannamei. Dis Aquat Organ 68(2): 175-80.
Guan, Y., Z. Yu, et al. (2003). The effects of temperature on white spot syndrome infections in Marsupenaeus japonicus. J Invertebr Pathol 83(3): 257-60.
Hershko, A. and A. Ciechanover (1998). The ubiquitin system. Annu Rev Biochem 67: 425-79.
Hsu, H. C., C. F. Lo, et al. (1999). Studies on effective PCR screening strategies for white spot syndrome virus (WSSV) detection in Penaeus monodon brooders. Dis Aquat Organ 39(1): 13-9.
Huang, J., J. Yu, et al. (1995). Studies on fine structure, nucleic acid, polypeptide and serology of hypodermal and hematopoietic necrosis baculovirus of penaeid shrimp. Mar Fish Res 16: 11 ~ 23.
Jiravanichpaisal, P., K. Soderhall, et al. (2004). Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol 17(3): 265-75.
Johnson, S., M. Michalak, et al. (2001). The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 11(3): 122-9.
Karaolis, D. K., J. A. Johnson, et al. (1998). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95(6): 3134-9.
Karunasagar, I., S. K. Otta, et al. (1998). Disease problems affecting cultured penaeid shrimp in India. Fish Pathol 33: 413 ~ 419.
Khadijah, S., S. Y. Neo, et al. (2003). Identification of white spot syndrome virus latency-related genes in specific-pathogen-free shrimps by use of a microarray. J Virol 77(18): 10162-7.
Leonchiks, A., V. Stavropoulou, et al. (2002). "Inhibition of ubiquitin-dependent proteolysis by a synthetic glycine-alanine repeat peptide that mimics an inhibitory viral sequence." FEBS Lett 522(1-3): 93-8.
Liao, I. C. (1989a). Penaeus monodon culture in Taiwan: Through two decades of growth. Int J Aquacult Fish Technol 1: 16-24.
Liao, I. C. (1989b). Taiwanese shrimp culture: A molting industry. The Fourth Shrimp World Marketing Conference, New Orleans, Louisiana, U.S.A.
Liao, I. C., T. L. Huang, et al. (1969). A preliminary report on artificial propagation of Penaeus monodon (Fabricius). Jt. Comm. Rural Reconstr. Fish. Ser. 8: 67-71.
Lightner, D. V. (1996). A handbook of shrimp pathology and diagnostic procedures for diseases of penaeid shrimp. World Aquaculture Society, Baton Rouge, Louisiana.
Liu, W. J., Y. S. Chang, et al. (2007). White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. J Virol 81(3): 1461-71.
Liu, W. J., Y. S. Chang, et al. (2005). Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 334(2): 327-41.
Lo CF, C. Y., Chang CT, Kou GH (1998). PCR monitoring cultured shrimp for white spot syndrome virus (WSSV) in growout ponds in Advances in Shrimp Biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok: 281-286.
Lo, C. F., C. H. Ho, et al. (1997). Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs Dis Aquat Org 30: 53 ~ 72.
Lo, C. F., H. C. Hsu, et al. (1999). Specific genomic DNA fragment analysis of different geographical clinical samples of shrimp white spot syndrome virus. Dis Aquat Org 35: 175-185.
Lo, C. F. and G. H. Kou (1998). Virus-associated white spot syndrome of shrimp in Taiwan: a review. Fish Pathol 33: 365 ~ 371.
Lo, C. F., Leu, J. H., Ho, C. H., Chen, C. H., Peng, S. E., Chen, Y. T., Chou, C. M., Yeh, P. Y., Huang, C. J., Chou, H. Y., Wang, C. H. and Kou, G. H. (1996). Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Diseases of Aquatic Organisms 25: 365 ~ 371.
Lorenzo, M. E., J. U. Jung, et al. (2002). Kaposi''s sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J Virol 76(11): 5522-31.
Lotz, J. M., C. L. Browdy, et al. (1995). USMSFP suggested procedures and guidelines for assuring the specific pathogen status of shrimp broodstock and seed. Swimming Through Troubled Water, Proceedings the Special Session on Shrimp Farming, Aquaculture ''95, Baton Rouge, Louisina, USA, World Aquaculture Society.
Lu, C. P., S. Zhu, et al. (1997). Electron microscopic observation on a non-occluded baculo-like virus in shrimps. Arch Virol 142(10): 2073-8.
Lu, L. and J. Kwang (2004). Identification of a novel shrimp protein phosphatase and its association with latency-related ORF427 of white spot syndrome virus. FEBS Lett 577(1-2): 141-6.
Luana, W., F. Li, et al. (2007). Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis. Comp Biochem Physiol B Biochem Mol Biol 147(3): 482-91.
Mohan, C. V., K. M. Shankar, et al. (1998). Histopathology of cultured shrimp showing gross signs of yellow head syndrome and white spot syndrome during 1994 Indian epizootics. Dis Aquat Org 34(1): 9-12.
Owens, L., G. Haqshenas, et al. (1998). Putative spawner-isolated mortality virus associated with mid-crop mortality syndrome in farmed Penaeus monodon from northern Australia. Dis Aquat Organ 34(3): 177-85.
Parsot, C. and J. J. Mekalanos (1991). Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. J Bacteriol 173(9): 2842-51.
Paulose-Murphy, M., N. K. Ha, et al. (2001). Transcription program of human herpesvirus 8 (kaposi''s sarcoma-associated herpesvirus). J Virol 75(10): 4843-53.
Peng, S. E., C. F. Lo, et al. (2001). Performance of WSSV-infected and WSSV-negative Penaeus monodon postlarvae in culture ponds. Dis Aquat Organ 46(3): 165-72.
Rainbow, L., G. M. Platt, et al. (1997). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi''s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71(8): 5915-21.
Roizman, B., Whitley, R. J., and Lopez, C. , Ed. (1993). The human herpesviruses. New York, Raven Press.
Rosenberry, B., editor (1996). World shrimp Farming 1996. Shrimp News International, San Diego.
Schroder, M. and R. J. Kaufman (2005). The mammalian unfolded protein response. Annu Rev Biochem 74: 739-89.
Schulz, T. F. (1998). Kaposi''s sarcoma-associated herpesvirus (human herpesvirus-8). J Gen Virol 79 ( Pt 7): 1573-91.
Soto, M. A. and J. M. Lotz (2001). Epidemiological parameters of White Spot Syndrome Virus infections in Litopenaeus vannamei and L. setiferus. J Invertebr Pathol 78(1): 9-15.
Spivack, J. G., M. U. Fareed, et al. (1995). Replication, establishment of latent infection, expression of the latency-associated transcripts and explant reactivation of herpes simplex virus type 1 gamma 34.5 mutants in a mouse eye model. J Gen Virol 76 ( Pt 2): 321-32.
Steiner, I., J. G. Spivack, et al. (1988). Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. J Virol 62(9): 3493-6.
Stevens, J., Ed. (1999). Encyclopedia of virology. Latency. London, United Kingdom, Academic Press, Inc.
Strang, B. L. and N. D. Stow (2007). Blocks to herpes simplex virus type 1 replication in a cell line, tsBN2, encoding a temperature-sensitive RCC1 protein. J Gen Virol 88(Pt 2): 376-83.
Tsai, M. F., G. H. Kou, et al. (1999). Long-term presence of white spot syndrome virus (WSSV) in a cultivated shrimp population without disease outbreaks. Dis Aquat Org 38(2): 107-14.
Tsai, M. F., H. T. Yu, et al. (2000). Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 277(1): 100-10.
Umene, K. and T. Nishimoto (1996). Replication of herpes simplex virus type 1 DNA is inhibited in a temperature-sensitive mutant of BHK-21 cells lacking RCC1 (regulator of chromosome condensation) and virus DNA remains linear. J Gen Virol 77 ( Pt 9): 2261-70.
van Hulten, M. C., J. Witteveldt, et al. (2001). The white spot syndrome virus DNA genome sequence. Virology 286(1): 7-22.
Vidal, O.M., Granja, C.B., Aranguren, F., Brock, J.A., Salazar, M. (2001). A profound effect of hyperthermia on survival of Litopenaeus vannamei juveniles infected with white spot syndrome virus. J. World Aquacult. Soc. 32, 364–372.
Wang, C. H., C. F. Lo, et al. (1995). Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Dis Aquat Org 23: 239-242.
Wang, H. C., H. C. Wang, et al. (2007a). Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol 31(7): 672-86.
Wang, H. C., H. C. Wang, et al. (2007b). Identification of icp11, the most highly expressed gene of shrimp white spot syndrome virus (WSSV). Dis Aquat Organ 74(3): 179-89.
Weigel, R., D. K. Fischer, et al. (1985). Constitutive expression of Epstein-Barr virus-encoded RNAs and nuclear antigen during latency and after induction of Epstein-Barr virus replication. J Virol 53(1): 254-9.
Wongteerasupaya, C., J. E. Vickers, et al. (1995). A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in black tiger prawn Penaeus monodon. Dis Aquat Org 21: 69-77.
Yang, F., J. He, et al. (2001). Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75(23): 11811-20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top