[1]T. R. Hsu, MEMS & Microsystems Design and Manufacture, McGraw-Hill, 2002.
[2]E. Gizeli, M. Liley, C. R. Lowe, and H. Vogel, “Antibody Binding to a Functionalized Supported Lipid Layer: A Direct Acoustic Immunosensor”, Anal. Chem. vol.69,pp.4808, 1997.
[3]G. Sauerbrey, “Verwendung von schwingquarzen zur Schichten und zur ”, Z. Phys. vol.155, pp.206, 1959。
[4]D. S. Ballantine, S. J. Matrin, R. M. White, H. Wohltjen, E. T. Zellers, Acoustic Wave Sensors:Theory, Design, and Physico-Chemical Applications, Academic Press, New York, 1997.
[5]W. H. King, “Piezoelectric sorption detector”,Anal. Chem. vol.36, pp.1735-1739, 1964.
[6]K. K. Kanazawa, J. G. Gordon , “Frequency of a quartz microbalance in contact with liquid”,Anal. Chem. vol.57, pp.1770-1771,1985.
[7]M. Hiroshi, T. Eiichi, K. Isao, “Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties”, Anal. Chem. Vol.60, pp.2142-2146,1988.
[8]S. J. Martin, V. E. Granstaff and G. C. Frye, “Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading”,Anal. Chem. Vol.63, pp.2272-2281, 1991.
[9]M. Yang and M. Thompson, “Multiple chemical information from the thickness shear mode acoustic wave sensor in the liquid phase”, Anal. Chem. vol.65, pp.1158-1168, 1993.
[10]C. E. Reed, K. K. Kanazawa, and J. H. Kaufman, “Physical description of a viscoelastically loaded AT-cut quartz resonator”, J. Appl. Phys. vol.68, pp.1993-2001,1990.
[11]D. DeKee, J. Stastna, and M. B. Powley, J. Non-Newton Fluid Mech. 26,149,1987.
[12]E. Nwankwo, C. J. Durning, “Mechanical response of thickness-shear mode quartz-crystal resonators to linear viscoelastic fluids”, Sens. Actuators vol.64,pp.119-124, 1998.
[13]R. B. Bird, R. C. Armstrong and O. Hassager, “Dynamics of Polymeric Liquids”,Vol. 1, Wiley, New York, 1987,Ch. 5,pp. 255-291
[14]P. E. Rouse, “A theory of linear viscoelastic properties of dilute solutions of coiling ploymers”,J. Chem. Phys. vol.21, pp.1272-1280, 1953.
[15]B. Zimm, “Dynamics of polymer molecules in dilute solution:viscoelasticity, flow birefringence and dielectric loss”, J. Chem. Phys. vol.24, pp.269-280, 1956.
[16]Richard W. Cernosek, “Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors”,IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol.45, pp.1399-1407, 1998.
[17]H. L. Bandey, “Modeling the Responses of Thickness-Shear Mode Resonators under Various Loading Conditions”, Anal. Chem. vol.71, pp.2205-2214, 1999.
[18]S. J. Martin, “Equivalent-Circuit Model for the Thickness-Shear Mode Resonator with a Viscoelastic Film Near Film Resonance”, Anal, Chem. vol.72, pp.141-149, 2000.
[19]A. Arnau, “An extended Butterworth Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media”,IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol.48,pp.1367-1382, 2001
[20]R. Lucklum, C. Behling, and P. Hauptmann, “Role of Mass Accumulation and Viscoelastic Film Properties for the Response of Acoustic-Wave-Based Chemical Sensors”, Anal. Chem. vol.71, pp.2488-2496, 1999.
[21]G. McHale, “Influence of viscoelasticity and interfacial slip on acoustic wave sensors”, J. Appl. Phys. vol.88,pp.7304-7312, 2000.
[22]F. Lu, H. P. Lee and S. P. Lim, “Detecting solid–liquid interface properties with mechanical slip modelling for quartz crystal microbalance operating in liquid”, J. Phys. D vol.37, pp.898-906, 2004.
[23]J. S. Ellis, “Interfacial slip on a transverse-shear mode acoustic wave device”, J. Appl. Phys. vol.94, pp.7856-7867, 2003.
[24]F. Ferrante, “Molecular slip at the solid-liquid interface of an acoustic-wave sensor”, J. Appl. Phys. vol.76, pp.3448-3462, 1994.
[25]R. W. Cernosek, “Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol.45, pp.1399-1407, 1998.
[26]楊坤松, “TSM振盪器應用於生化感測之研究”,國立台灣大學工程科學與海洋工程研究所碩士論文, 2005.[27]O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Los Altos, California, USA, 1988.
[28]R. F. Schmitt, J. W. Allen, J. F. Vetelino, J. Parks, C. Zhang, “Bulk acoustic wave modes in quartz for sensing measurand induced mechanical and electrical property changes”, Sens Actuators (B), vol.76, pp.95-102, 2001.
[29]V. E. Bottom, Introduction to quartz crystal unit design, Van Nostrand Reinhold Company, New York, 1982.
[30]B. A. Auld, Acoustic Fields and Waves in Solids, Wiley, New York, 1973。
[31]J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House, Boston, Sect. 10.5, 1988。
[32]R. Lucklum, C. Behling, R. W. Cernosek, S. J. Martin, “Detremination of complex shear modulus with thickness shear mode resonatros”, J. Phys. D: Appl. Phys. vol.30, pp.346-356, 1997.
[33]W. J. Hsueh, “Analysis of vibration isolation systems using a graph modl”, J. Sound. Vib. vol.216, pp.399-412, 1998.
[34]W. J. Hsueh, “Novel graph model and analysis method for piezoelectric thickness-drive transducers”, J. Acoust. Soc. Am. vol.108, pp.2159-2165, 2000.