跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/03/04 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁傑
研究生(外文):Yu-Chieh Lin
論文名稱:應用珈瑪啁啾濾波器組模擬聽障者之耳蝸聽覺機制
論文名稱(外文):Application of gammachirp filter banks to simulate the auditory cochlea mechanism of hearing impaired people
指導教授:柯文俊柯文俊引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:124
中文關鍵詞:耳蝸帶通濾波器組基底膜珈瑪調珈瑪啁啾
外文關鍵詞:cochleaband pass filter bankbasilar membranegammatonegammachirp
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於聽障人士來說,因為無法正確聽到完整的語音訊號,往往就會造成學習與溝通上的困難,故正常人士會對聽障人士產生誤解。若聽力正常人士能透過某種工具感受到聽障人士所聽到的聲音及語音,必能更加體會聽障人士對於聽力損失所造成生活與學習上的不便,更能針對其感受協助改善由於聽障所造成的問題。
耳蝸(cochlea)對聲音訊號的分析佔聽覺系統相當重要的部分,因為耳蝸內的基底膜(basilar membrane)對聲音訊號的振幅與頻率有不同的響應,其功能就像一個帶通濾波器組(band pass filter bank)。聲音的高頻成份對耳蝸底部(base)有較大的響應;相反地,聲音的低頻成份對頂部(apex)有較大的響應。本文的研究目標以耳蝸基底膜上的每一點有其特性頻率(characteristic frequency),對於聲波的大小頻率響應圖曲線呈現帶通濾波器組的特性。依數位濾波器組的原理,設計並聯濾波器組,其濾波器組分別以三分之一音程(one-third-octave)與臨界頻帶(critical band)作為濾波器頻帶劃分的方式,模擬耳蝸對於頻率的選擇性。另一方面利用符合心理與生理聲學耳蝸量測實驗所提出的珈瑪調(gammatone)與珈瑪啁啾(gammachirp)濾波器組,以模擬內耳蝸聽覺機制。最後再串聯外耳、中耳與珈瑪調或珈瑪啁啾濾波器組,以模擬由外耳、中耳及內耳整體組成之周邊聽覺系統。
依本文所設計的四種濾波器組,測試語音訊號,來驗證這些濾波器組是否符合耳蝸之頻率選擇上的特性。再依據不同程度的聽力損失,設計不同的聽力損失濾波器組,將語音訊號通過其濾波器組,進而模擬聽障人士所聽到之語音訊號。將此語音讓聽力正常人士身歷其境感受,透過這樣的體驗,對於聽障人士所接受到的語音訊號有所瞭解,進而協助他們,改善其因為聽力所造成的不便。
As far as hearing-impaired people is considered, they might encounter the difficulties in the process of learning and communication due to not able to perceive the complete signal of sounds in the correct way, which leads normal people have misunderstanding and wrong perception towards hearing-impaired people. If normal people without hearing problems can sense or really hear the voices or sounds which hearing-impaired people actually receive by means of certain instrument or tool, we can truly understand and realize such inconveniences of life and learning process for hearing-impaired people; moreover we can assist to improve their lives by solving the problems caused by hearing impairment.
The cochlea plays a very important and critical role of analysis of signal of sounds in entire hearing system. Since the basilar membrane inside cochlea reacts different responses on amplitudes and frequency of the signal of sounds, its function works as one band pass filter bank. The high frequency of sound causes bigger response to the base of cochlea; on the contrary, the low frequency of sound results in bigger response to the apex of cochlea. The research objective is to explore that each point of the basilar membrane inside cochlea has its property of the band pass filter bank while shows in the frequency responses to voice wave, since each point has its characteristic frequency. In accordance of the principle of digital band pass filter bank, we specifically design the parallel connection of band pass filter bank, and the band pass filter bank respectively utilize one-third-octave and critical band as the method to divide the band, which is to simulate the selectivity of the cochlea towards the frequency intensity. In another hand, the filter bank of gammatone and of gammachirp, published and designed by the cochlea measurement experiment consistent of physical and psychological auditory mechanism, will be used to simulate the auditory cochlea mechanism of the inner cochlea. Then, the outer ear, middle ear will be connected with the filter bank of gammatone and of gammachirp by the way of cascade connection to simulate the peripheral auditory system and mechanism of outer ear, middle ear and inner ear altogether.
In this research, four different types of filter banks will be designed to test the signal of sounds, which can verify and prove whether these filter banks can really function and be consistent of the properties of frequency selectivity of the cochlea. Accordingly we can design different hearing loss filter banks in accordance with the different level of hearing loss. When the signal of sounds passes through filter banks, we can simulate and imitate the signal of sounds which hearing impaired people actually receive. Through such a devise, the normal people can actually hear this type of sounds; they can really understand when they put themselves in people’s shoes. We hope that we can really understand and realize their difficulties and inconveniences which they have to face everyday by this experience; then we can further assist them and help them to improve their lives and make their lives better and easier.
摘要I
簡稱術語對照表II
目錄III
圖目錄VI
表目錄XVI
符號說明XVII
第一章 緒論1
1.1 研究背景與動機1
1.2 文獻回顧2
1.3 研究方向4
1.4 報告架構4
第二章 周邊聽覺系統7
2.1 外耳與中耳7
2.2 內耳8
第三章 心理聽覺13
3.1 聲音感知13
3.2 遮蔽效應、臨界頻帶與等效矩形頻寬16
3.3 聽力障礙21
3.4 聽力圖24
第四章 耳蝸聽覺模擬26
4.1 濾波器組26
4.2 外耳與中耳的模擬28
4.3 耳蝸聽覺濾波器組之種類29
4.4 可壓縮的珈瑪啁啾濾波器38
4.4.1 非對稱函數41
4.4.2 可壓縮珈瑪啁啾濾波器組的設計47
第五章 耳蝸聽覺濾波器組之模型的驗證與實際應用52
5.1 語音資料庫52
5.2 耳蝸聽覺濾波器組之模型的驗證54
5.2.1 三分之一音程與臨界頻帶FIR濾波器組之模型驗證54
5.2.2 珈瑪調與珈瑪啁啾FIR濾波器組之模型驗證67
5.3 應用耳蝸聽覺濾波器組模擬聽障人士的周邊聽覺系統79
5.3.1 應用三分之一音程與臨界頻帶FIR濾波器組模擬聽障人士的周邊聽覺系統79
5.3.2 應用珈瑪調與珈瑪啁啾FIR濾波器組模擬聽障人士的周邊聽覺系統91
第六章 討論與未來展望120
6.1 結論120
6.2 未來展望121
參考文獻123
附錄A
附錄B
[1]蕭雅文,聽力學導論,五南圖書出版公司,1997。
[2]韓德民,英漢漢英耳鼻喉科醫學辭典,旺文社股份有限公司, 2001。
[3]Gold T, Pumphrey RJ. Hearing. I. The cochlea as a frequency analyzer. Proc R Soc Lond B Biol Sci. 1948; 135:462–491.
[4]Bèkèsy, G. von , “ Experiments in Hearing ”, McGraw-Hill, New York,1960.
[5]Johnstone, B. M., Patuzzi, R., Yates, G. K., “Basilar membrane measurements and the travelling wave ”, Hearing Res. 22,147—153, 1986.
[6]E. de Boer and H. R. de Jongh., “On cochlear encoding: Potentialities and limitations of the reverse correlation technique”, J. Acoust. Soc. Am., 63:115–135, 1978.
[7]Seneff. , “A computational model for the peripheral auditory system”, application to speech recognition research .Proc.IEEE ICASSP., 37:81-84, 1986.
[8]Carney, L. H., and Yin, T. C. T. ,‘‘ Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population
Model ’’, J. Neurophysiol. 60, 1653–1677, 1988.
[9]R.D. Patterson, K. Robinson, J. W.Holdsworth, D. McKeown, C. Zhang,And M. Allerhand,“ Complex sounds and auditory images in Auditory Physiology and Perception ”, Pergamon, Oxford, pp.429-446., 1992.
[10]T. Irino and R. D. Patterson, “A time-domain, level-dependent auditory filter: the gammachirp ”, J. Acoust. Soc. Am., vol. 101, no. 1, pp. 412-419, January 1997.
[11]J.G.Roederer,“ The physics and psychophysics of music ”, Springer-Verlag,1995
[12]R. G. Kessel and R. H. Kardon, “Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy ”, W. H. Freeman, New York, 1979.
[13]H. Fletcher. , “The mechanism of hearing as revealed through experiment on the maskinge_ect of thermal noise”, Proceedings of the National Academy of Sciences, 24:265-274, 1938.
[14]C.A. Lanciani, “ Audio Perception and the MPEG Audio Standard – A Qualifying Examination Report ”, Georgia Institute of Technology School of Electrical and Computer Engineering, August 11, 1995.
[15]王小川,語音訊號處理,全華科技圖書,2005。
[16]Fillon, T., Prado. , “J.Evaluation of an ERB frequency scale noise reduction for hearing aids ”, A comparative study, Speech Commun.Vol 39,23-32, 2003(ERB).
[17]黃國祥,MPEG-1 Layer III 音訊編碼器於低位元率之改良Low Data Rate MPEG-1 Layer III Audio Coder Enhancement,國立成功大學電機工程研究所碩士論文,2002。
[18]Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab, “Signals & Systems ”, 2nd Ed., Prentice-Hall,1997.
[19]Sanjit K. Mitra, “Digital Signal Processing – A Computer-Based Approach”, 2nd Ed., McGraw-Hill, 2002.
[20]James O.Pickles, “An Introduction to the Physiology of Hearing”, 2nd Ed., Academic Press, 1988.
[21]Patterson, R.D., Nimmo-Smith, I., Weber, D.L., and Milroy, R. (1982). , “The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram and speech threshold”, J.Acoust.Soc.Amer.,vol.72,1788-1803.
[22]Irino, T., and Patterson, R. D. ,“A compressive gammachirp auditory filter for both physiological and psychophysical data ”, J.Acoust.Soc.Am.109, 2001
[23]T. Irino and M. Unoki., “An analysis/synthesis auditory filter bank based on an IIR implementation of the gammachirp”, J. Acoust. Soc. Jap., vol. 20, no. 5, pp. 397, November 1999.
[24]T. Irino and M.Unoki. A time-varying,analysis/synthesis auditory filter bank
using the gammachirp. In IEEE ICASSP ’98, volume 6, pages 3653–3656,Seattle, USA, 1998.
[25]T. Irino R. D. Patterson and M. Unoki. ,“ Extending the domain of center Frequency for the compressive gammachirp auditory filter”, J. Acoust. Soc.Am., 114:3:1529–1542, 2003.
[26]Ingrid Daubechies, “Ten Lectures on Wavelets”, Society for Industrial and Applied Mathematics, U.S.A., 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王士儀,〈試析布萊希特與中國傳統戲曲劇場 (An Analytic Study on Brecht and the Traditional Chinese Theatre)〉,《華岡藝術學報》,第4期 (1997年6月),頁71-89。
2. 王安祈,〈改扮分飾—演員、角色、劇中人三者關係〉,《表演藝術》,第53期 (1997年4月),頁76-78。
3. 王友輝,〈謬司女神漫步在劇場—看「台灣文學劇場」系列談文學作品的戲劇改編〉,《表演藝術》,第97期 (2001年1月),頁72-76。
4. 王淳美,〈《暗戀桃花源》的劇場藝術〉,《中國文化月刊》,第240期 (2000年3月),頁55-75。
5. 王婉容,〈莎士比亞與臺灣當代劇場的對話 (The Dialogue between Shakespeare and Contemporary Taiwanese Theatre)〉,《中外文學》,28:2 (1999年7月),頁140-148。
6. 朱靜美,〈布萊希特的史詩劇場與中國平劇在表演「疏離」美學方面之比較〉,《中外文學》,29:3 (2000年8月),頁140-157。
7. 朱耀偉,〈並置、含混、後殖民:從《暗戀 (․) 桃花源》想起〉,《中外文學》,21:12 (1993年5月),頁93-103。
8. 沈曉茵,〈從寫實到魔幻—賴聲川的身分演繹〉,《中外文學》,27:9 (1999年2月),頁152-164。
9. 阮美慧,〈解嚴後台灣小劇場「運動」考察:1986~1990〉,《雲漢學刊》,第6期 (1999年6月),頁157-184。
10. 邱坤良,〈談劇場的本土評論〉,《表演藝術》,第48期 (1996年11月),頁94-95。
11. 邱錦榮,〈皮藍代羅[Luigi Pirandello]:劇場與精神分析的交界 (Pirandello: Interfacing Theater and Psychoanalysis)〉,《中外文學》28:9 (2000年2月),頁6-30。
12. 林春美,〈「高加索灰闌記」中的敘事技巧:變常效果〉,《中外文學》,10:9 (1982年2月),頁32-40。
13. 林國源,〈中國劇場傳統與劇場記號學的基本論點〉,《藝術評論》第4期 (1992年10月),頁129-151。
14. 林世君,〈重返幻象:由劇中劇解讀《蝴蝶君》劇中東西方相互之刻版印象〉,《中外文學》28:1 (1999年6月),頁133-157。
15. 周慧玲,〈寫實表演與疏離劇場的性別辯證〉,《聯合文學》,16:11 (2000年9月),頁80-88。