跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/10 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭曉鍾
研究生(外文):Hsiao-Chung Cheng
論文名稱:運用可適隨機搜尋法之實體人型機器人進化學習之研究
論文名稱(外文):Adaptive Random Search based Evolutionary Learning of a Humanoid Robot
指導教授:鄭勝文鄭勝文引用關係
指導教授(外文):Sheng-Wen Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:線上自動學習可適隨機搜尋法增強式學習人型機器人步伐模式
外文關鍵詞:On-line learningAdaptive Random SearchReinforcement LearningHumanoid robotsGait pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究提出一快速線上自動修正動作指令之系統,由機器人本身利用計算感測器與致動器間關係,藉由強化學習來修正節奏性動作。本研究雖無法直接產生動作指令,但可以利用感測器回傳訊號,將所有內外部不確定性納入考量,並依據使用者設定之目標,自動修正原有動作直到符合需求。因此使用者無須依照傳統方式進行精密之模擬計算並規劃動作指令,僅需輸入粗略動作指令並選取適當回饋值,即可找出合適之新動作指令。
現階段以雙足機器人步行動作為研究實例,由感測器回傳訊號計算回饋值,採用三階段可適隨機搜尋法在原始動作指令的特定範圍之內搜尋產生新的動作指令。目前已求得可穩定行走之動作指令,並以此為基礎,粗略規劃較大與較小步伐的動作指令,在不同步行速度下分別搜尋,分析不同步行速度可以穩定前行的最大步幅,可得機器人硬體可行之理論最快前進速度為1386.207mm/min。此外,嘗試讓機器人自行學會行走不同路面,現已可爬上高度與水平長度比例為1:20,傾角約2.86度的斜坡。
本研究發展之線上動作修正系統,架構簡單且軟硬體需求低,使用者僅需給予一組不需十分精確的動作指令並定義合適的回饋值,即可自動學習出適應現在外界環境之動作指令,可大幅減少傳統計算精確動作指令並針對不確定性進行修正之工作量與複雜度,易於內建至各類智慧型機器人中,並推廣到不同應用領域,極具實用價值與發展潛力。
In this thesis, an on-line learning system of humanoid robot has been developed for robot motion pattern modification. There are a lot of environment and robot uncertainties when humanoid robot moving, this learning system could find out the modification of motion pattern to overcome all uncertainties through the computation of sensor-motor relation.
The learning process is based on adaptive random search (ARS) with reinforcement learning. Sensor signals of motion are used to calculate the fitness function for reinforcement learning. There are one two-axis accelerometer and two one-axis gyros on the head of the robot and four pressure sensors on the feet.
At present, initial gait pattern always makes the robot falls down. After learning process, the stable gait pattern was found. Further, to find out the fastest pattern, the different gait patterns and speeds were composed. In this case, the robot maximum walk velocity is 1386.207mm/min, and could walk on a ramp with 2.85 degree of slope.
This system is uncomplicated, easy to adjust for different conditions and deal with all uncertainties at once. User only need to give a rough initial pattern and the suitable fitness function, don’t need the exact simulation. It could apply on many fields and embedding in robot.
中文摘要..................................................I
英文摘要................................................III
目錄.....................................................IV
圖目錄...................................................VI
表目錄...................................................IX
第一章 前言...............................................1
1.1 研究背景與動機.....................................1
1.2 研究目的...........................................5
1.3 論文回顧...........................................9
1.4 章節說明..........................................11

第二章 系統架構..........................................12
2.1 整體架構..........................................12
2.2 機器人機構系統....................................14
2.3 機器人控制系統....................................16
2.4 機器人感測系統....................................17
2.4.1 加速度計....................................20
2.4.2 陀螺儀......................................25
2.4.3 壓力感測器..................................29
2.4.4 感測訊號分析與整合..........................33
第三章 線上學習流程與理論................................37
3.1 線上學習流程......................................37
3.2 可適隨機搜尋法....................................39
3.3 增強式學習手段_可適隨機搜尋法.....................41

第四章 實驗驗證..........................................43
4.1 自動爬起機制......................................43
4.1.1 倒地靜態姿勢判斷............................47
4.1.2 自動爬起動作................................56
4.2 穩定步行動作......................................62
4.3 最快前行動作:步行速度與步幅關係分析...............67
4.4 特殊地形動作:斜坡上行.............................71
第五章 結論..............................................75
參考文獻.................................................76
附錄.....................................................80
[1] Russ Tedrake, Teresa Weirui Zhang and H. Sebastian Seung, “Stochastic Policy Gradient Reinforcement Learning on a Simple 3D Biped,” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2849-2854, 2004.
[2] Josh Bongard, Victor Zykov and Hod Lipson, “Automated Synthesis of Body Schema using Multiple Sensor Modalities, ” Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALIFEX), pp. 220-226, 2006.
[3]Josh Bongard, “Resilient Machines Through Continuous Self_Modeling,” Science, 314, pp. 1118-1121, 2006.
[4] Jun Morimoto and Kenji Doya, “Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning,” Proceedings of the Seventeenth International Conference on Machine Learning. pp. 623-630, 2001.
[5] Jun Morimoto, Jun Nakanishi, Gen Endo, Gordon Cheng, Christohper G. Atkeson and Garth Zeglin, “Poincare-Map-Based Reinforcement Learning For Biped Walking,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA''05), April, 2005.
[6] Jun Morimoto, Jun Nakanishi, Gen Endo, Gordon Cheng, Christohper G. Atkeson and Garth Zeglin, ” A Simple Reinforcement Learning Algorithm For Biped Walking,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 3030-3035, 2004.
[7] Tao Geng, Bernd Porr, and Florentin Wörgötter, “Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning,” The International Journal of Robotics Research, vol. 25, No. 3, pp. 243-259, 2006.
[8] R. Kumar, P. T. Kabamba and D. C. Hyland, “Analysis and Parameter Selection for an Adaptive Random Search Algorithm,” IEEE Conference on Decision and Control, vol. 5, pp. 5322-5327, 2004.
[9] J. Hay and K. K. Loo, “ Fast Motion Estimation using Evolutionary Strategy Search Algorithm,” International Conference on Digital Telecommunications, pp. 16- 26, 2006.
[10] M. Vukobratovich, B. Borovac, D. Surla and D. Stokic, “Biped Locomotion,Dynamics, Stability, Control and Application,” Springer Verlag, 1990.
[11] Tatsuzo Ishida, Yoshihoro Kuroki and Taro Takahashi, “ Analysis of Motions of a Small Biped Entertainment Robot,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 142- 147, 2004.
[12] G. Endo, J. Nakanish, J. Morimoto, and G. Cheng, “Experiment Studies of a Neural Oscillator for Biped Locomotion with QRIO,” IEEE International Conference on Robotics and Automation, 2005.
[13] Koji Terada, Yoshiyuki Ohmura and Yasuo Kuniyoshi, “ Analysis and Control of Whole Body Dynamic Humanoid Motion – Towards Experiments on a Roll-and-Rise Motion,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1382-1387, 2003.
[14] C. Zhu and A. Kawamura, “Walking Principle Analysis for Biped Robot with ZMP Concept, Friction Constraint, and Inverted Pendulum Model,” Proceedings of the 2003 IEEE/RSJ IROS, pp. 364-369, 2003.
[15] J. Tani, and S. Nolfi, “Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems,” Neural Networks, vol. 12, pp. 1131-1141, 1999.
[16]J. Tani, M. Ito, and Y. Sugita, “Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiment using RNNPB,” Neural Networks, vol. 17, pp. 1273-1289, 2004.
[17] G.S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, “Autonomous evolution of dynamic gaits with two quadruped robots,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 402–410, 2005.
[18] G.S. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fujita, “Evolving robust gaits with aibo,” IEEE International Conference on Robotics and Automation, pp. 3040–3045, 2000.
[19] D. Wetter green and C. Thorpe, “Gait generation for legged robots,” IEEE International Conference on Intelligent Robots and Systems., pp. 1413–1420, 1992.
[20] H. Lipson and J.B. Pollack, “Automatic design and manufacture of robotic lifeforms”, Nature, vol. 406, pp. 974–978, 2000.
[21] G.S. Hornby, S.Takamura, T.Yamamoto and M.Fujita, “Autonomous Evolution of Dynamic Gaits With Two Quadruped Robots,” IEEE Transactions on Robotics, vol. 21, No. 3, 2005.
[22]G.S. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fujita, “Evolving Robust Gaits with AIBO, ”Proceedings of the 2000 IEEE lntemational Conference on Robotics &Automation, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top