跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡涵雅
研究生(外文):Han-Ya Tsai
論文名稱:花生簇葉病菌質體groupIIintron之選殖與分析
論文名稱(外文):Cloning and Analysis of Group II Intron in Peanut Witches'' Broom Phytoplasma
指導教授:林長平林長平引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:150
中文關鍵詞:group II intronmatR花生簇葉病菌質體
外文關鍵詞:group II intronmatRpeanut witches'' broom phytoplasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用逢機定序策略與基因選殖技術,由花生簇葉病菌質體基因庫中篩選雜配訊號較強之轉形株,共獲得七個含有matR基因之不同group II intron選殖株,分別為限制酵素EcoRI構築之EI42, EI47及EI49, EcoRV構築之EV9, EV10, EV33及HindIII構築之HIII57選殖株。經由定序與分析,此七個group II intron間之核酸與胺基酸序列皆具有保守性。除了EI42缺乏group II intron 5’端之序列外,其他六個選殖株皆具有group II intron保守之5’及3’ boundary sequences。又除了EV33選殖株,其他五個選殖株皆具有專一性辨識之IBS2 (intron binding site 2), IBS1, EBS2 (exon binding site 2) 及EBS1序列,推估花生簇葉病菌質體之group II intron主要係以retrohoming之機制插入基因體內。而其內之matR基因轉譯出IEP (intron-encoded protein) 之胺基酸序列亦具有matR基因之保守性RVT (reverse transcriptase), X (maturase), D (DNA binding) 及En (endonuclease) 等區塊 (domain),但此等選殖株之matR基因在進行轉譯 (translation) 時,相對於洋蔥黃萎病菌質體之matR基因序列均可發現有提早出現之終止密碼 (stop codon),而且除了EV33選殖株外,其餘選殖株在其序列皆會出現translational frameshift之特性,再者EV9及EV10選殖株之matR基因具有大片段之缺失,顯示吾人所獲得之各matR基因均具讀取架 (reading frame) 不連續之現象,又因各選殖株相互間之核酸序列具明顯差異性,故此七個花生簇葉病菌質體之group II intron應屬於基因體上之不同套組。而選殖株EV9及HIII57之matR基因胺基酸序列與其他套組具明顯差異,經序列比對可將此七個group II intron區分為兩群,顯示花生簇葉病菌質體group II intron具序列異質性 (sequence heterogeneity)。當以matR基因核酸探針R1-1進行北方氏雜配時,可獲得四條大小不一之雜配訊號,其中一條位於約2.4-2.5 kb之片段其訊號較強,此片段大小與選殖株group II intron之預期長度相近,顯示此片段可能為與group II intron上游基因一同轉錄後並經由RNA splicing切下之group II intron RNA。而5 kb之雜配訊號,則可能是group II intron與上游基因一同轉錄產生之一整條pre-RNA;此外,位於約1.5 kb大小之二條雜配訊號,則可能為具有matR基因大片段缺失之group II intron RNA。當針對罹病植株之全RNA進行反轉錄聚合酵素連鎖反應 (reverse transcription PCR, RT-PCR),可成功增幅出EV33選殖株group II intron RNA約2.4 kb之序列,顯示EV33選殖株之group II intron具有RNA表現,但其matR基因序列於D domain開始處即出現轉譯終止密碼,故推論EV33轉譯出之IEP蛋白在缺乏En domain功能之情況下輔助group II intron RNA於基因體中進行移動複製。
A random ("shotgun") sequencing strategy was conducted to investigate the genome libraries of peanut witches'' broom (PnWB) phytoplasma in this study. After screening the PnWB-phytoplasma libraries by using R1-1 probe amplified from the conserved region of partial matR gene in PnWB phytoplasma, a total of seven clones of matR gene containing group II intron sequences of peanut witches'' broom (PnWB) phytoplasma were obtained and analyzed. Except clone EI42 that lacked 5’ sequence of group II intron, the group II intron sequences of other six clones contained both 5’ and 3’ boundary sequences. Except clone EV33, the conserved sequences of IBS2 (intron binding site 2), IBS1, EBS2 (exon binding site 2) and EBS1 were identified in these six clones. This may be inferred that these six group II introns may transpose in the genome of PnWB phytoplasma mainly through retrohoming mechanism. After sequence alignment, it was revealed the matR genes in these seven group II introns may comprise the conserved RVT (reverse transcriptase), X (maturase) and En (endonuclease) domains. Premature translation stop codon, translational frameshift, and sequence deletion of matR genes were identified in various clones. Based on the sequence analyses of these seven clones, they were implied to be the various versions of group II intron located in different parts of PnWB genome. Besides, the amino acid sequences of matR gene in EV9 and HIII57 were distinguishable to those of the others, and these group II introns were therefore classified to two classes in PnWB phytoplasm based on the sequence heterogeneity. In Northern hybridization analyses by using R1-1 probe, several RNA transcripts of matR gene were revealed. The hybridization signal of 2.4-2.5 kb in size was the expected length of group II intron and was inferred to be the group II intron RNA excised from the pre-RNA. The longer 5.0 kb Northern hybridization signal fragment was inferred to the unspliced pre-RNA and the two shorter fragments about 1.5 kb in size were inferred to be the deficient group II intron RNAs. A 2400 bp-PCR fragment containing almost the complete sequence of group II intron was amplified in reverse transcription-PCR (RT-PCR) with the total RNA prepared from PnWB-affected periwinkle as template and the sequence was revealed to be identical to that of EV33 clone. This implied that the group II intron in clone EV33 may carry out gene expression. Though there is one advance stop codon found in the D domain in matR gene of EV33, it was revealed that the IEP may still be a functional protein lacking En domain to assist group II intron RNA movement. The results indicate that group II introns have high rates of intron gain and loss and thus create the diversity of group II introns in PnWB-phytoplasma genome.
目 錄
壹、前言.........................................................................................................................1
貳、前人研究................................................................................................................3
一、植物菌質體之發現與其植物病理學 (plant pathology)...…...............................3
二、植物菌質體之生理及生物特性與其分子生物學上的研究.......................…….6
三、細菌基因體中group II intron及其matR基因之特性及研究.........................7
(一) Group II intron之特性………………………………………………………7
(二) matR基因及其蛋白質產物之特性…………………………………………..9
(三) Group II intron於基因體中移動複製之機制………………………………10
參、材料與方法..........................................................................................................14
一、試驗植物來源及繁殖......................................................................................14
二、健康及受花生簇葉病菌質體感染植物全DNA (total DNA) 之純化.............14
三、篩選花生簇葉病菌質體基因體中高重複性之序列…………………………15
(一) 健康及花生簇葉病菌質體核酸探針之製備................................................15
(二) 點雜配反應 (dot hybridization)....................................................................16
1. 微量抽取質體DNA (plasmid DNA mini preparation)..............................16
2. 點雜配反應及呈色作用........................................................................... 17
(三) 篩選花生簇葉病菌質體基因體中訊號較強之選殖株................................19
1. 嵌入片段大小之分析.. .............................................................................19
2. 準選殖株所帶重組質體嵌入DNA之核酸定序與其序列分析................19
四、花生簇葉病菌質體matR基因篩選用核酸探針 (probe) 之製備及花生簇葉病菌質體基因庫之篩選 (screening)…………………………………………..20
(一)花生簇葉病菌質體matR基因篩選用核酸探針之製備...............................20
1. 聚合酵素連鎖反應 (polymerase chain reaction, PCR)……………………20
2. 聚合酵素連鎖反應產物之選殖 (cloning)...…………………………….21
(1) 聚合酵素連鎖反應產物之純化……………………………………...21
(2) PCR產物之選殖…………….………………….……………………..21
3. 轉形株 (transformant) 之特性分析………….........……..……….……...22
(1) 微量抽取質體DNA….....……..………….....……..………….....……..23
(2) 嵌入片段大小之分析….....……..………….....……..……….....………23
(3) 嵌入片段之定序與其序列分析………………………………………...23
(二)花生簇葉病菌質體基因庫之構築與篩選………..................23
1. 核酸探針之製備...........................................................................………..23
2. 南方氏轉漬 (Southern blot) 及雜配反應 (hybridization)...……............24
(1) 健康與罹病植物全DNA之核酸內限制酵素酵解.……………...…..24
(2) 南方氏轉漬…………………………………………………………...25
(3) 雜配及呈色反應 ..…………………………………………………...25
3. 花生簇葉病菌質體基因庫之構築.……….……….………………...25
(1) 載體之製備……………………………………………………………...26
(2) 嵌入片段之製備………………………………………………………27
(3) DNA黏結反應………………………………………………………..27
(4) 轉形作用..…..………………………………………………………...27
4. 花生簇葉病菌質體基因庫之篩選 …………………..….............………...28
(1) 微量抽取質體…………………………………………………………28
(2) 點雜配篩選…………………………………………….………………28
5. 選殖株之特性分析……………………………………………………….28
(1) 選殖株嵌入片段大小之分析..………………………………………...28
(2) 選殖株嵌入片段之定序與分析………………………………………...28
五、以花生簇葉病菌質體matR基因核酸探針進行北方氏雜配反應 (Northern hybridization) ………………………………………………………..…………28
(一)健康與罹病植物全RNA之純化…………………………………………28
(二)北方氏雜配呈色反應 (Northern hybridization)……………………………..29
六、反轉錄聚合酵素連鎖反應 (reverse transcription PCR, RT-PCR) ………….30
(一) PCR引子對之設計………………………………………………………. 30
(二) 以反轉錄酵素進行group II intron cDNA之增幅…………………………30
(三) PCR反應…….…………………………………………………………….31
(四) PCR產物之純化…….……………………………………………………..31
(五) PCR產物之選殖….………………………………………………….…….32
(六)準轉形株之特性分析………………………………………………………...32
肆、結果.....................................................................................................................33
一、以日日春為宿主繁殖花生簇葉病菌質體及植物全DNA (total DNA) 之純化.....................................................................................................33
二、花生簇葉病菌質體基因庫之篩選…………………………………………33
三、篩選花生簇葉病菌質體基因體中高重複性之序列……………......…….....33
四、花生簇葉病菌質體matR基因套組數 (copy number) 之分析......................34
五、花生簇葉病菌質體matR基因選殖株之篩選與分析................................34
六、選殖株特性分析…………………………….…………………………………35
(一) 選殖株EI42之特性分析………………….……………………………..…35
(二) 選殖株EI47之特性分析………….……………………………………..…36
(三) 選殖株EI49之特性分析………….……………………………………..…37
(四) 選殖株EV9之特性分析………….………………………………………..37
(五) 選殖株EV10之特性分析………….………………………………………..38
(六) 選殖株EV33之特性分析………….………………………………………..39
(七) 選殖株HIII57之特性分析………….………………………………………40
七、花生簇葉病菌質體matR基因之RNA表現分析……………….……………40
伍、討論.......................................................................................................................42
陸、參考文獻..............................................................................................................51
柒、中文摘要..............................................................................................................66
捌、英文摘要..............................................................................................................68
玖、圖表………...........................................................................................................70
拾、附錄…….................................................................................................................147
1.朱佩文. 1998. 花生簇葉病病原菌質體dnaK和dnaJ基因之選殖及分析. 國立台灣大學植物病蟲害學研究所碩士論文。
2.朱俞蓉. 1998. 花生簇葉病病原菌質體recA基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。
3.周廷光. 1993. 蔬菜主要病害彩色圖鑑. 第二版. 淑馨出版社. 台北。
4.紀凱齡. 2003. 花生簇葉病菌質體polC基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。
5.陳紹寬. 1997. 花生簇葉病菌質體RNA聚合酵素Sigma Factor基因之選殖及分析. 國立台灣大學植物病蟲害學研究所碩士論文。
6.莊景光. 2000. 花生簇葉病病原菌質體gyrB和gyrA基因之選殖. 國立台灣大學植物病理學研究所碩士論文。
7.魏慧珍. 2000. 以逢機定序方式選殖花生簇葉病菌之質體及插入序列. 國立台灣大學植物病理與微生物學系研究所碩士論文。
8.Adamidi, C., Fedorova, O., and Pyle, A. M. 2003. A group II intron inserted into a bacterial heat-shock operon shows autocatalytic activity and unusual thermostability. Biochemistry 42: 3409–3418.
9.Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687–703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
10.Bai, X., Zhang, J., Ewing, A., Miller, S. A., Radek, A. J., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J. W., and Hogenhout, S. A. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188: 3682–3696.
11.Bai, X., Zhang, J., Holford, I. R., and Hogenhout, S. A. 2004. Comparative genomics identifies genes shared by distantly related insect-transmitted plant pathogenic mollicutes. FEMS Microbiol. Lett. 235: 249–258.
12.Belfort, M., Derbyshire, V., Parker, M. M., Cousineau, B., and Lambowitz, A. M. 2002. Mobile introns: pathways and proteins. Pages 761–783 in: Mobile DNA II. N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz, eds. ASM Press, Washington DC.
13.Bertaccini, A., Davis, R. E., Lee, I. M., Conti, M., Dally, E. L., and Douglas, S. M. 1990. Detection of chrysanthemum yellows mycoplasmalike organism by dot hybridization and Southern blot analysis. Plant Dis. 74: 40–43.
14.Blattner, F. R., Plunkett, G. III., Bloch, C. A., Perna, N. T., Burland,V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., and Shao, Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.
15.Blomquist, C. L., Barbara, D. J., Davies, D. L., Clark, M. F., and Kirkpatrick, B. C. 2001. An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147: 571–580.
16.Bonen L. and Vogel, J. 2001. The ins and outs of group II introns. Trends Genet. 17: 322–331.
17.Braun, E. J. and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66: 598–607.
18.Braun, E. J. and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedlings. Phytopathology 68: 1733–1737.
19.Chambaud, I., Heilig, R., Ferris, S., Barbe, V., Samson, D., Galisson, F., Moszer, I., Dyvig, K., Wroblewski, H., Viari, A., Rocha, E. P. C., and Blanchard, A. 2001. The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res. 29: 2145–2153.
20.Chen, Y., McClane, B. A., Fisher, D. J., Rood, J. I., and Gupta, P. 2005. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl. Environ. Microbiol. 71: 7542–7547.
21.Cimerman, A., Arnaud, G., and Foissac, X. 2006. Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl. Environ. Microbiol. 72: 3274–3283.
22.Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471–6478.
23.Copertino, D. W., Shigeoka, S., and Hallick, R. B. 1992. Chloroplast group III twintron excision utilizing multiple 5’- and 3’-splice sites. EMBO J. 11: 5041–5050.
24.Coros, C. J., Landthaler, Markus., Piazza, C. L., Beauregard, Arthur., Esposito, D., Perutka, J., Lambowitz, A. M. and Belfort, M. 2005. Retrotransposition strategies of the Lactococcus lactis Ll.LtrB group II intron are dictated by host identity and cellular environment. Mol. Microbiol. 56: 509–524.
25.Costa, M., Michel, F., and Westhof, E. 2000. A three-dimensional perspective on exon binding by a group II self-splicing intron. EMBO J. 19: 5007–5018.
26.Cousineau, B., Lawrence, S., Smith, D., and Belfort, M. 2000. Retrotransposition of a bacterial group II intron. Nature 404: 1018–1021.
27.Cousineau, B., Smith, D., Lawrence-Cavanagh, S., Mueller, J. E., Yang, J., Mills, D., Manias, D., Dunny, G., Lambowitz, A. M., and Belfort, M. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94: 451–462.
28.Dai, L., Toor, N., Olson, R., Keeping, A., and Zimmerly, S. 2003. Database for mobile group II introns. Nucleic Acids Res. 31: 424–426.
29.Dai, L., and Zimmerly, S. 2002. Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res. 30: 1091–1102.
30.Dai, L., and Zimmerly, S. 2003. ORF-less and reverse-transcriptase-encoding group II introns in archaebacteria, with a pattern of homing into related group II intron ORFs. RNA 9: 14–19.
31.Denes, A. S. and Sinha, R. C. 1992. Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can. J. Plant Pathol. 14: 189–196.
32.Doetsch, N. A., Thompson, M. D., and Hallick, R. B. 1998. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg? Mol. Biol. Evol. 15: 76–86.
33.Doetsch, N. A., Favreau, M. R., Kuscuoglu, N., Thompson, M. D., and Hallick, R. B. 2001. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr. Genet. 39: 49–60.
34.Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Ann. Phytopath. Soc. Jpn. 33: 259–266.
35.Eskes, R., Liu, L., Ma, H., Chao, M. Y., Dickson, L., Lambowitz, A. M., and Perlman, P. S. 2000. Multiple homing pathways used by yeast mitochondrial group II introns. Mol. Cell. Biol. 20: 8432–8446.
36.Ferat, J. L., Le Gouar, M., and Michel, F. 1994. Multiple group II self-splicing introns in mobile DNA from Escherichia coli. C. R. Acad. Sci. III. 317: 141–148.
37.Ferat, J. L., Le Gouar, M., and Michel, F. 2003. A group II intron has invaded the genus Azotobacter and is inserted within the termination codon of the essential groEL gene. Mol. Microbiol. 49: 1407–1423.
38.Ferat, J. L., and Michel, F. 1993. Group II self-splicing introns in bacteria. Nature 364: 358–361.
39.Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J-F., Bougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G., Fitzhugh, W., Fields, C., Jocayne, J. D., Scott, J., Shirley, R., Liu, L-I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton., M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm, C. L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O., and Venter, J. C. 1995. Whole - genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.
40.Fraser, C. M., Gocayne, J. D., White, O., Adama, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G. G., Kelley, J. M., Fritchman, J. L., Weidman, J. F., Small, K. V., Sandusky, M., Fuhrmann, J. L., Nguyen, D. T., Utterback, T., Saudek, D. M., Phillips, C. A., Merrick, J. M., Tomb, J., Dougherty, B. A., Bott, K. F., Hu, P. C., Lucier, T. S., Peterson, S. N., Smith, H. O., and Venter, J. C. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.
41.Frazier, C. L., San Filippo, J., Lambowitz, A. M., and Mills, D. A. 2003. Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl. Environ. Microbiol. 69: 1121–1128.
42.Gilbert, W. 1978. Why genes in pieces? Nature 271: 501
43.Glass, J. I., Lefkowitz, E. J., Glas, J. S., Heiner, C. R., Chen, E. Y., and Cassell, G. H. 2000. The complete sequence of the mucosal pathogen Ureaplasam urealyticum. Nature 407: 757–762.
44.Guo, H., Karberg, M., Long, M., Jones III, J. P., Sullenger, B., and Lambowitz, A. M. 2000. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289: 452–457.
45.Guo, H., Zimmerly, S., Perlman, P. S., and Lambowitz, A. M. 1997. Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J. 16: 6835–6848.
46.Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C., and Herrmann, R. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24: 4420–4449.
47.Huang, C. C., Narita, M., Yamagata, T., Itoh, Y., and Endo, G. 1999. Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from minamata bay, Japan. Gene 234: 361–369.
48.Ichiyanagi, K., Beauregard, A., Lawrence, S., Smith, D., Cousineau, B., and Belfort, M. 2002. Retrotransposition of the Ll.LtrB group II intron proceeds predominantly via reverse splicing into DNA targets. Mol. Microbiol. 46: 1259–1272.
49.Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504–506.
50.IRPCM Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1243–1255.
51.Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopath. Soc. Jpn. 33: 267–275.
52.Jacquier, A., and Michel, F. 1987. Multiple exon-binding sites in class II self-splicing introns. Cell 50: 17–29.
53.Jacquier, A., and Michel, F. 1990. Base-pairing interactions involving the 5’ and 3’-terminal nucleotides of group II self-splicing introns. J. Mol. Biol. 213: 437–447.
54.Jarrell, K. A., Peebles, C. L., Dietrich, R. C., Romiti, S. L., and Perlman, P. S. 1988. Group II intron self-splicing. Alternative reaction conditions yield novel products. J. Biol. Chem. 263: 3432–3439.
55.Jimenez-Zurdo, J. I., García-Rodríguez, F. M., Barrientos-Durán, A., and Toro, N. 2003. DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain. J. Mol. Biol. 326: 413–423.
56.Kakizawa, S., Oshima, K., Kuboyama, T., Nishigawa, H., Jung, H., Sawayanagi, T., Tsuchizaki, T., Miyata, S., Ugaki, M., and Namba, S. 2001. Cloning and expression analysis of phytoplasma protein translocation genes. Mol. Plant- microbe Interact. 14: 1043–1050.
57.Karberg, M., Guo, H., Zhong, J., Coon, R., Perutka, J., and Lambowitz, A. M. 2001. Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat. Biotechnol. 19: 1162–1167.
58.Ko, H. C., and Lin, C. P. 1994. Development and application of cloned DNA probe for a mycoplasma-like organism associate with sweet potato withes’-broom. Phytopathology 84: 468–473.
59.Kunst, F., and other 45. 1997. The complete genome sequence of the Gram-postive bacterium Bacillus subtillis. Nature 390: 249–256.
60.Lambowitz, A. M., and Zimmerly, S. 2004. Mobile group II introns. Annu. Rev. Genet. 38: 1–35.
61.Lehmann, K., and Schmidt, U. 2003. Group II introns: structural and catalytic versatility of large natural ribozymes. Crit. Rev. Biochem. Mol. Biol. 38: 249–303.
62.Lepka, P., Stitt, M., Moll, E., and Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59–68.
63.Lim, P. O. and Sears, B. B. 1989. 16S rRNA sequence indicates that plant- pathogenic mycoplasmalike organisms are evolutionarily distinct from animal mycoplasmas. J. Bacteriol. 171: 5901–5906.
64.Lim, P. O. and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128–2130.
65.Lim, P. O., Sears, B. B., and Klomparens, K. L. 1992. Membrane properties of a plant- pathogenic mycoplasmalike organism. J. Bacteriol. 174: 682–686.
66.Luan, D. D., Korman, M. H., Jakubczak, J. L., and Eickbush, T. H. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 72: 595–605.
67.Malik, H. S., Burke, W. D., and Eickbush, T. H. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16: 793–805.
68.Maniloff, J. 1988. Mycoplasma viruses. Crit. Rev. Microbiol. 15: 339–389.
69.Martínez-Abarca, F., García-Rodríguez, F. M., and Toro, N. 2000. Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol. Microbiol. 35: 1405–1412.
70.Martínez-Abarca, F., and Toro, N. 2000. Group II introns in the bacterial world. Mol. Microbiol. 38: 917–926.
71.Martínez-Abarca, F., and Toro, N. 2000. RecA-independent ectopic transposition in vivo of a bacterial group II intron. Nucleic Acids Res. 28: 4397–4402.
72.Matsuura, M., Noah, J. W., and Lambowitz, A. M. 2001. Mechanism of maturase-promoted group II intron splicing. EMBO J. 20: 7259–7270.
73.Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S., Dunny, G. M., Belfort, M., and Lambowitz, A. M. 1997. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11: 2910–2924.
74.McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiyowski, L. N., Cousin, M. T., Dale, J. L., de Leeuw, G. T. N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C. Sugiura, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemuller, E. 1989. Plant diseases associated with mycoplasma-like organisms, and Mycoplasmas of plants and Arthropods. Pages 545–640 in: R. F. Whitcomb and J. G. Tully, eds. The Mycoplasmas, Vol. V. Academic Press, San Diego, CA.
75.Meng, Q., Wang, Y., and Liu, X. Q. 2005. An intron-encoded protein assists RNA splicing of multiple similar introns of different bacterial genes. J. Bio. Chem. 280: 35085–35088.
76.Michel, F., and Ferat, J. L. 1995. Structure and activities of group II introns. Annu. Rev. Biochem. 64: 435–461.
77.Michel, F., Umesono, K., and Ozeki, H. 1989. Comparative and functional anatomy of group II catalytic introns-a review. Gene 82: 5–30.
78.Mills, D. A., Manias, D. A., McKay, L. L., and Dunny, G. M. 1997. Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J. Bacteriol. 179: 6107–6111.
79.Mohr, G., and Lambowitz, A. M. 2003. Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res. 31: 647–652.
80.Mohr, G., Perlman, P. S., and Lambowitz, A. M. 1993. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 21: 4991–4997.
81.Mohr, G., Smith, D., Belfort, M., and Lambowitz, A. M. 2000. Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14: 559–573.
82.Muñoz-Adelantado, E., San Filippo, J., Martínez-Abarca, F., García-Rodríguez, F. M, Lambowitz, A. M, and Toro, N. 2003. Mobility of the Sinorhizobium meliloti group II intron RmInt1 occurs by reverse splicing into DNA, but requires an unknown reverse transcriptase priming mechanism. J. Mol. Biol. 327: 931–943.
83.Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133–147.
84.Nishigawa, H., Miyata, S., Oshima, K., Sawayanagi, T., Komoto, A., Kuboyama, T., Matsuda, I., Tsuchizaki, T., and Namba, S. 2001. In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology 147: 507–513.
85.Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27–29.
86.Ostheimer, G. J., Williams-Carrier, R., Belcher, S., Osborne, E., Gierke, J., and Barkan, A. 2003. Group II intron splicing factors derived by diversification of an ancient RNA binding domain. EMBO J. 22: 3919–3929.
87.Perutka, J., Wang, W., Goerlitz, D., and Lambowitz, A. M. 2004. Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J. Mol. Biol. 336: 421–439.
88.Peterson, S. N., Hu, P. C., Boot, K. F., and Hutchison, III. C. A. 1993. A survey of the Mycoplasma genitalium genome by using random sequencing. J. Bacteriol. 175: 7918–7930.
89.Qin, P. Z., and Pyle, A. M. 1998. The architectural organization and mechanistic function of group II intron structural elements. Curr. Opin. Struct. Biol. 8: 301–308.
90.Razin, S. 1985. Molecular biology and genetics of mycoplasmas (Mollicutes). Microbiol. Rev. 49: 419–455.
91.Rest, J., and Mindell, D. 2003. Retroids in archaea: phylogeny and lateral origins. Mol. Biol. Evol. 20: 1134–1142.
92.Rober, A. R., and Zimmerly, S. 2005. Group II intron retroelements: function and diversity. Cytogenet. Genome Res. 110: 589–597.
93.Ruepp, A., Graml, W., Santos-Martinez, M. L., Koretke, K. K., Volker, C., Mewes, H. W., Frishman, D., Stocker, S., Lupas, A. N., and Baumeister, W. 2000. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407: 508–513.
94.San Filippo, J., and Lambowitz, A. M. 2002. Characterization of the C-terminal DNA-binding/ DNA endonuclease region of a group II intron-encoded protein. J. Mol. Biol. 324: 933–951.
95.Sasaki, Y., Ishikawa, J., Yamashita, A., Oshima, K., Kenri, T., Furuya, K., Yoshino, C., Horino, A., Shiba, T., Sasaki, T., and Hattori, M. 2002. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res. 30: 5293–5300.
96.Schneider, B., Gibb, K. S., and Seemuller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasma. Microbiology 143: 3381–3389.
97.Sears, B. B., Klomparens, K. L., Wood, J. I., and Schewe, G. 1997. Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaftip cultures. Physiol. Mol. Plant Pathol. 50: 275–287.
98.Sears, S. E., Lim, P. O., Holland, N., Kirkpatric, B. C., and Klomparens, K. L. 1989. Isolation and characterization of DNA from a mycoplasmalike organism. Mol. Plant-Microbe Interact. 2: 175–180.
99.Sellem, C. H., Lecellier, G., and Belcour, L. 1993. Transposition of a group II intron. Nature 366: 176–178.
100.Shearman, C., Godon, J. J., and Gasson, M. 1996. Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Mol. Microbiol. 21: 45–53.
101.Singh, N. N., and Lambowitz, A. M. 2001. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. J. Mol. Biol. 309: 361–386.
102.Sinha, R. C. 1979. Lipid composition of mycoplasma- like organisms purified from clover phyllody and aster yellows- affected plants. Phytopath. Z. 96: 132–139.
103.Sinha, R. C., and Madhosingh, C. 1980. Proteins of mycoplasma- like organisms purified from clover phyllody and aster yellows- affected plants. Phytopath. Z. 99: 294–300.
104.Takeo, M., Prabu, S. K., Kitamura, C., Hirai, M., Takahashi, H., Kato, D. and Negoro, S. 2006. Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J. Biosci. Bioeng. 102: 352–361.
105.Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842.
106.Toor, N., Hausner, G., and Zimmerly, S. 2001. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7: 1142–1152.
107.Toro, N. 2003. Bacteria and Archaea Group II introns: additional mobile genetic elements in the environment. Environ. Microbiol. 5: 143–151.
108.Toro, N., Molina-Sánchez, M. D., and Fernández-López, M. 2002. Identification and characterization of bacterial class E group II introns. Gene 299: 245–250.
109.Tully, J. G. 1993. International committee on systemic bacteriology, subcommittee on the taxonomy of mollicutes, Minutes of the interim meetings, 1st-2nd Aug 1992, Ames, Iowa. Int. J. Syst. Bacteriol. 43: 394–397.
110.Vellore, J., Moretz, S. E. and Lampson, B. C. 2004. A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl. Environ. Microbiol. 70: 7140–7147.
111.Wank, H., San Filippo, J., Singh, R. N., Matsuura, M., and Lambowitz, A. M. 1999. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol. Cell. 4: 239–250.
112.Xiong, Y., and Eickbush, T. H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 10: 3353–3362.
113.Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 82: 2306–2309.
114.Yang, I. L. 1988. Witches’ broom diseases of sweet potato and peanut in Taiwan. Ph. D. Thesis. Hokkaido Univ., Japan.
115.Yu, Y. L., Yeh, K. W., and Lin, C. P. 1998. An antigenic protein gene of a phytoplasma associated with sweet potato witches’ broom. Microbiology 144: 1257–1262.
116.Zhang, L., Jenkins, K. P., Stutz, E., and Hallick, R. B. 1995. The Euglena gracilis intron-encoded mat2 locus is interrupted by three additional group II introns. RNA 1: 1079–1088.
117.Zhong, J., Karberg, M., and Lambowitz, A. M. 2003. Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition- activated selectable marker. Nucleic Acids Res. 31: 1656–1664.
118.Zhong, J., and Lambowitz, A. 2003. Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J. 22: 4555–4565.
119.Zimmerly, S., Guo, H., Eskes, R., Yang, J., Perlman, P. S., and Lambowitz, A. M. 1995a. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83: 529–538.
120.Zimmerly, S., Guo, H., Perlman, P. S., and Lambowitz, A. M. 1995b. Group II intron mobility occurs by target DNAprimed reverse transcription. Cell 82: 545–554.
121.Zimmerly, S., Hausner, G., and Wu, X. 2001. Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res. 29: 1238–1250.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top