1.朱佩文. 1998. 花生簇葉病病原菌質體dnaK和dnaJ基因之選殖及分析. 國立台灣大學植物病蟲害學研究所碩士論文。2.朱俞蓉. 1998. 花生簇葉病病原菌質體recA基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。3.周廷光. 1993. 蔬菜主要病害彩色圖鑑. 第二版. 淑馨出版社. 台北。
4.紀凱齡. 2003. 花生簇葉病菌質體polC基因之選殖與分析. 國立台灣大學植物病蟲害學研究所碩士論文。5.陳紹寬. 1997. 花生簇葉病菌質體RNA聚合酵素Sigma Factor基因之選殖及分析. 國立台灣大學植物病蟲害學研究所碩士論文。6.莊景光. 2000. 花生簇葉病病原菌質體gyrB和gyrA基因之選殖. 國立台灣大學植物病理學研究所碩士論文。7.魏慧珍. 2000. 以逢機定序方式選殖花生簇葉病菌之質體及插入序列. 國立台灣大學植物病理與微生物學系研究所碩士論文。
8.Adamidi, C., Fedorova, O., and Pyle, A. M. 2003. A group II intron inserted into a bacterial heat-shock operon shows autocatalytic activity and unusual thermostability. Biochemistry 42: 3409–3418.
9.Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687–703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
10.Bai, X., Zhang, J., Ewing, A., Miller, S. A., Radek, A. J., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J. W., and Hogenhout, S. A. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188: 3682–3696.
11.Bai, X., Zhang, J., Holford, I. R., and Hogenhout, S. A. 2004. Comparative genomics identifies genes shared by distantly related insect-transmitted plant pathogenic mollicutes. FEMS Microbiol. Lett. 235: 249–258.
12.Belfort, M., Derbyshire, V., Parker, M. M., Cousineau, B., and Lambowitz, A. M. 2002. Mobile introns: pathways and proteins. Pages 761–783 in: Mobile DNA II. N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz, eds. ASM Press, Washington DC.
13.Bertaccini, A., Davis, R. E., Lee, I. M., Conti, M., Dally, E. L., and Douglas, S. M. 1990. Detection of chrysanthemum yellows mycoplasmalike organism by dot hybridization and Southern blot analysis. Plant Dis. 74: 40–43.
14.Blattner, F. R., Plunkett, G. III., Bloch, C. A., Perna, N. T., Burland,V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., and Shao, Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.
15.Blomquist, C. L., Barbara, D. J., Davies, D. L., Clark, M. F., and Kirkpatrick, B. C. 2001. An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147: 571–580.
16.Bonen L. and Vogel, J. 2001. The ins and outs of group II introns. Trends Genet. 17: 322–331.
17.Braun, E. J. and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66: 598–607.
18.Braun, E. J. and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedlings. Phytopathology 68: 1733–1737.
19.Chambaud, I., Heilig, R., Ferris, S., Barbe, V., Samson, D., Galisson, F., Moszer, I., Dyvig, K., Wroblewski, H., Viari, A., Rocha, E. P. C., and Blanchard, A. 2001. The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res. 29: 2145–2153.
20.Chen, Y., McClane, B. A., Fisher, D. J., Rood, J. I., and Gupta, P. 2005. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. Appl. Environ. Microbiol. 71: 7542–7547.
21.Cimerman, A., Arnaud, G., and Foissac, X. 2006. Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl. Environ. Microbiol. 72: 3274–3283.
22.Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471–6478.
23.Copertino, D. W., Shigeoka, S., and Hallick, R. B. 1992. Chloroplast group III twintron excision utilizing multiple 5’- and 3’-splice sites. EMBO J. 11: 5041–5050.
24.Coros, C. J., Landthaler, Markus., Piazza, C. L., Beauregard, Arthur., Esposito, D., Perutka, J., Lambowitz, A. M. and Belfort, M. 2005. Retrotransposition strategies of the Lactococcus lactis Ll.LtrB group II intron are dictated by host identity and cellular environment. Mol. Microbiol. 56: 509–524.
25.Costa, M., Michel, F., and Westhof, E. 2000. A three-dimensional perspective on exon binding by a group II self-splicing intron. EMBO J. 19: 5007–5018.
26.Cousineau, B., Lawrence, S., Smith, D., and Belfort, M. 2000. Retrotransposition of a bacterial group II intron. Nature 404: 1018–1021.
27.Cousineau, B., Smith, D., Lawrence-Cavanagh, S., Mueller, J. E., Yang, J., Mills, D., Manias, D., Dunny, G., Lambowitz, A. M., and Belfort, M. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94: 451–462.
28.Dai, L., Toor, N., Olson, R., Keeping, A., and Zimmerly, S. 2003. Database for mobile group II introns. Nucleic Acids Res. 31: 424–426.
29.Dai, L., and Zimmerly, S. 2002. Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res. 30: 1091–1102.
30.Dai, L., and Zimmerly, S. 2003. ORF-less and reverse-transcriptase-encoding group II introns in archaebacteria, with a pattern of homing into related group II intron ORFs. RNA 9: 14–19.
31.Denes, A. S. and Sinha, R. C. 1992. Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can. J. Plant Pathol. 14: 189–196.
32.Doetsch, N. A., Thompson, M. D., and Hallick, R. B. 1998. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg? Mol. Biol. Evol. 15: 76–86.
33.Doetsch, N. A., Favreau, M. R., Kuscuoglu, N., Thompson, M. D., and Hallick, R. B. 2001. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr. Genet. 39: 49–60.
34.Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Ann. Phytopath. Soc. Jpn. 33: 259–266.
35.Eskes, R., Liu, L., Ma, H., Chao, M. Y., Dickson, L., Lambowitz, A. M., and Perlman, P. S. 2000. Multiple homing pathways used by yeast mitochondrial group II introns. Mol. Cell. Biol. 20: 8432–8446.
36.Ferat, J. L., Le Gouar, M., and Michel, F. 1994. Multiple group II self-splicing introns in mobile DNA from Escherichia coli. C. R. Acad. Sci. III. 317: 141–148.
37.Ferat, J. L., Le Gouar, M., and Michel, F. 2003. A group II intron has invaded the genus Azotobacter and is inserted within the termination codon of the essential groEL gene. Mol. Microbiol. 49: 1407–1423.
38.Ferat, J. L., and Michel, F. 1993. Group II self-splicing introns in bacteria. Nature 364: 358–361.
39.Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J-F., Bougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G., Fitzhugh, W., Fields, C., Jocayne, J. D., Scott, J., Shirley, R., Liu, L-I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton., M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm, C. L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O., and Venter, J. C. 1995. Whole - genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.
40.Fraser, C. M., Gocayne, J. D., White, O., Adama, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G. G., Kelley, J. M., Fritchman, J. L., Weidman, J. F., Small, K. V., Sandusky, M., Fuhrmann, J. L., Nguyen, D. T., Utterback, T., Saudek, D. M., Phillips, C. A., Merrick, J. M., Tomb, J., Dougherty, B. A., Bott, K. F., Hu, P. C., Lucier, T. S., Peterson, S. N., Smith, H. O., and Venter, J. C. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.
41.Frazier, C. L., San Filippo, J., Lambowitz, A. M., and Mills, D. A. 2003. Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl. Environ. Microbiol. 69: 1121–1128.
42.Gilbert, W. 1978. Why genes in pieces? Nature 271: 501
43.Glass, J. I., Lefkowitz, E. J., Glas, J. S., Heiner, C. R., Chen, E. Y., and Cassell, G. H. 2000. The complete sequence of the mucosal pathogen Ureaplasam urealyticum. Nature 407: 757–762.
44.Guo, H., Karberg, M., Long, M., Jones III, J. P., Sullenger, B., and Lambowitz, A. M. 2000. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289: 452–457.
45.Guo, H., Zimmerly, S., Perlman, P. S., and Lambowitz, A. M. 1997. Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J. 16: 6835–6848.
46.Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C., and Herrmann, R. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24: 4420–4449.
47.Huang, C. C., Narita, M., Yamagata, T., Itoh, Y., and Endo, G. 1999. Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from minamata bay, Japan. Gene 234: 361–369.
48.Ichiyanagi, K., Beauregard, A., Lawrence, S., Smith, D., Cousineau, B., and Belfort, M. 2002. Retrotransposition of the Ll.LtrB group II intron proceeds predominantly via reverse splicing into DNA targets. Mol. Microbiol. 46: 1259–1272.
49.Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504–506.
50.IRPCM Phytoplasma/Spiroplasma Working Team – Phytoplasma taxonomy group. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1243–1255.
51.Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopath. Soc. Jpn. 33: 267–275.
52.Jacquier, A., and Michel, F. 1987. Multiple exon-binding sites in class II self-splicing introns. Cell 50: 17–29.
53.Jacquier, A., and Michel, F. 1990. Base-pairing interactions involving the 5’ and 3’-terminal nucleotides of group II self-splicing introns. J. Mol. Biol. 213: 437–447.
54.Jarrell, K. A., Peebles, C. L., Dietrich, R. C., Romiti, S. L., and Perlman, P. S. 1988. Group II intron self-splicing. Alternative reaction conditions yield novel products. J. Biol. Chem. 263: 3432–3439.
55.Jimenez-Zurdo, J. I., García-Rodríguez, F. M., Barrientos-Durán, A., and Toro, N. 2003. DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain. J. Mol. Biol. 326: 413–423.
56.Kakizawa, S., Oshima, K., Kuboyama, T., Nishigawa, H., Jung, H., Sawayanagi, T., Tsuchizaki, T., Miyata, S., Ugaki, M., and Namba, S. 2001. Cloning and expression analysis of phytoplasma protein translocation genes. Mol. Plant- microbe Interact. 14: 1043–1050.
57.Karberg, M., Guo, H., Zhong, J., Coon, R., Perutka, J., and Lambowitz, A. M. 2001. Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat. Biotechnol. 19: 1162–1167.
58.Ko, H. C., and Lin, C. P. 1994. Development and application of cloned DNA probe for a mycoplasma-like organism associate with sweet potato withes’-broom. Phytopathology 84: 468–473.
59.Kunst, F., and other 45. 1997. The complete genome sequence of the Gram-postive bacterium Bacillus subtillis. Nature 390: 249–256.
60.Lambowitz, A. M., and Zimmerly, S. 2004. Mobile group II introns. Annu. Rev. Genet. 38: 1–35.
61.Lehmann, K., and Schmidt, U. 2003. Group II introns: structural and catalytic versatility of large natural ribozymes. Crit. Rev. Biochem. Mol. Biol. 38: 249–303.
62.Lepka, P., Stitt, M., Moll, E., and Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59–68.
63.Lim, P. O. and Sears, B. B. 1989. 16S rRNA sequence indicates that plant- pathogenic mycoplasmalike organisms are evolutionarily distinct from animal mycoplasmas. J. Bacteriol. 171: 5901–5906.
64.Lim, P. O. and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128–2130.
65.Lim, P. O., Sears, B. B., and Klomparens, K. L. 1992. Membrane properties of a plant- pathogenic mycoplasmalike organism. J. Bacteriol. 174: 682–686.
66.Luan, D. D., Korman, M. H., Jakubczak, J. L., and Eickbush, T. H. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 72: 595–605.
67.Malik, H. S., Burke, W. D., and Eickbush, T. H. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16: 793–805.
68.Maniloff, J. 1988. Mycoplasma viruses. Crit. Rev. Microbiol. 15: 339–389.
69.Martínez-Abarca, F., García-Rodríguez, F. M., and Toro, N. 2000. Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol. Microbiol. 35: 1405–1412.
70.Martínez-Abarca, F., and Toro, N. 2000. Group II introns in the bacterial world. Mol. Microbiol. 38: 917–926.
71.Martínez-Abarca, F., and Toro, N. 2000. RecA-independent ectopic transposition in vivo of a bacterial group II intron. Nucleic Acids Res. 28: 4397–4402.
72.Matsuura, M., Noah, J. W., and Lambowitz, A. M. 2001. Mechanism of maturase-promoted group II intron splicing. EMBO J. 20: 7259–7270.
73.Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S., Dunny, G. M., Belfort, M., and Lambowitz, A. M. 1997. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11: 2910–2924.
74.McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiyowski, L. N., Cousin, M. T., Dale, J. L., de Leeuw, G. T. N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C. Sugiura, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemuller, E. 1989. Plant diseases associated with mycoplasma-like organisms, and Mycoplasmas of plants and Arthropods. Pages 545–640 in: R. F. Whitcomb and J. G. Tully, eds. The Mycoplasmas, Vol. V. Academic Press, San Diego, CA.
75.Meng, Q., Wang, Y., and Liu, X. Q. 2005. An intron-encoded protein assists RNA splicing of multiple similar introns of different bacterial genes. J. Bio. Chem. 280: 35085–35088.
76.Michel, F., and Ferat, J. L. 1995. Structure and activities of group II introns. Annu. Rev. Biochem. 64: 435–461.
77.Michel, F., Umesono, K., and Ozeki, H. 1989. Comparative and functional anatomy of group II catalytic introns-a review. Gene 82: 5–30.
78.Mills, D. A., Manias, D. A., McKay, L. L., and Dunny, G. M. 1997. Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J. Bacteriol. 179: 6107–6111.
79.Mohr, G., and Lambowitz, A. M. 2003. Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res. 31: 647–652.
80.Mohr, G., Perlman, P. S., and Lambowitz, A. M. 1993. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 21: 4991–4997.
81.Mohr, G., Smith, D., Belfort, M., and Lambowitz, A. M. 2000. Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14: 559–573.
82.Muñoz-Adelantado, E., San Filippo, J., Martínez-Abarca, F., García-Rodríguez, F. M, Lambowitz, A. M, and Toro, N. 2003. Mobility of the Sinorhizobium meliloti group II intron RmInt1 occurs by reverse splicing into DNA, but requires an unknown reverse transcriptase priming mechanism. J. Mol. Biol. 327: 931–943.
83.Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133–147.
84.Nishigawa, H., Miyata, S., Oshima, K., Sawayanagi, T., Komoto, A., Kuboyama, T., Matsuda, I., Tsuchizaki, T., and Namba, S. 2001. In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology 147: 507–513.
85.Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27–29.
86.Ostheimer, G. J., Williams-Carrier, R., Belcher, S., Osborne, E., Gierke, J., and Barkan, A. 2003. Group II intron splicing factors derived by diversification of an ancient RNA binding domain. EMBO J. 22: 3919–3929.
87.Perutka, J., Wang, W., Goerlitz, D., and Lambowitz, A. M. 2004. Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J. Mol. Biol. 336: 421–439.
88.Peterson, S. N., Hu, P. C., Boot, K. F., and Hutchison, III. C. A. 1993. A survey of the Mycoplasma genitalium genome by using random sequencing. J. Bacteriol. 175: 7918–7930.
89.Qin, P. Z., and Pyle, A. M. 1998. The architectural organization and mechanistic function of group II intron structural elements. Curr. Opin. Struct. Biol. 8: 301–308.
90.Razin, S. 1985. Molecular biology and genetics of mycoplasmas (Mollicutes). Microbiol. Rev. 49: 419–455.
91.Rest, J., and Mindell, D. 2003. Retroids in archaea: phylogeny and lateral origins. Mol. Biol. Evol. 20: 1134–1142.
92.Rober, A. R., and Zimmerly, S. 2005. Group II intron retroelements: function and diversity. Cytogenet. Genome Res. 110: 589–597.
93.Ruepp, A., Graml, W., Santos-Martinez, M. L., Koretke, K. K., Volker, C., Mewes, H. W., Frishman, D., Stocker, S., Lupas, A. N., and Baumeister, W. 2000. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407: 508–513.
94.San Filippo, J., and Lambowitz, A. M. 2002. Characterization of the C-terminal DNA-binding/ DNA endonuclease region of a group II intron-encoded protein. J. Mol. Biol. 324: 933–951.
95.Sasaki, Y., Ishikawa, J., Yamashita, A., Oshima, K., Kenri, T., Furuya, K., Yoshino, C., Horino, A., Shiba, T., Sasaki, T., and Hattori, M. 2002. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res. 30: 5293–5300.
96.Schneider, B., Gibb, K. S., and Seemuller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasma. Microbiology 143: 3381–3389.
97.Sears, B. B., Klomparens, K. L., Wood, J. I., and Schewe, G. 1997. Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaftip cultures. Physiol. Mol. Plant Pathol. 50: 275–287.
98.Sears, S. E., Lim, P. O., Holland, N., Kirkpatric, B. C., and Klomparens, K. L. 1989. Isolation and characterization of DNA from a mycoplasmalike organism. Mol. Plant-Microbe Interact. 2: 175–180.
99.Sellem, C. H., Lecellier, G., and Belcour, L. 1993. Transposition of a group II intron. Nature 366: 176–178.
100.Shearman, C., Godon, J. J., and Gasson, M. 1996. Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Mol. Microbiol. 21: 45–53.
101.Singh, N. N., and Lambowitz, A. M. 2001. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. J. Mol. Biol. 309: 361–386.
102.Sinha, R. C. 1979. Lipid composition of mycoplasma- like organisms purified from clover phyllody and aster yellows- affected plants. Phytopath. Z. 96: 132–139.
103.Sinha, R. C., and Madhosingh, C. 1980. Proteins of mycoplasma- like organisms purified from clover phyllody and aster yellows- affected plants. Phytopath. Z. 99: 294–300.
104.Takeo, M., Prabu, S. K., Kitamura, C., Hirai, M., Takahashi, H., Kato, D. and Negoro, S. 2006. Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J. Biosci. Bioeng. 102: 352–361.
105.Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842.
106.Toor, N., Hausner, G., and Zimmerly, S. 2001. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7: 1142–1152.
107.Toro, N. 2003. Bacteria and Archaea Group II introns: additional mobile genetic elements in the environment. Environ. Microbiol. 5: 143–151.
108.Toro, N., Molina-Sánchez, M. D., and Fernández-López, M. 2002. Identification and characterization of bacterial class E group II introns. Gene 299: 245–250.
109.Tully, J. G. 1993. International committee on systemic bacteriology, subcommittee on the taxonomy of mollicutes, Minutes of the interim meetings, 1st-2nd Aug 1992, Ames, Iowa. Int. J. Syst. Bacteriol. 43: 394–397.
110.Vellore, J., Moretz, S. E. and Lampson, B. C. 2004. A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl. Environ. Microbiol. 70: 7140–7147.
111.Wank, H., San Filippo, J., Singh, R. N., Matsuura, M., and Lambowitz, A. M. 1999. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol. Cell. 4: 239–250.
112.Xiong, Y., and Eickbush, T. H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 10: 3353–3362.
113.Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 82: 2306–2309.
114.Yang, I. L. 1988. Witches’ broom diseases of sweet potato and peanut in Taiwan. Ph. D. Thesis. Hokkaido Univ., Japan.
115.Yu, Y. L., Yeh, K. W., and Lin, C. P. 1998. An antigenic protein gene of a phytoplasma associated with sweet potato witches’ broom. Microbiology 144: 1257–1262.
116.Zhang, L., Jenkins, K. P., Stutz, E., and Hallick, R. B. 1995. The Euglena gracilis intron-encoded mat2 locus is interrupted by three additional group II introns. RNA 1: 1079–1088.
117.Zhong, J., Karberg, M., and Lambowitz, A. M. 2003. Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition- activated selectable marker. Nucleic Acids Res. 31: 1656–1664.
118.Zhong, J., and Lambowitz, A. 2003. Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J. 22: 4555–4565.
119.Zimmerly, S., Guo, H., Eskes, R., Yang, J., Perlman, P. S., and Lambowitz, A. M. 1995a. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83: 529–538.
120.Zimmerly, S., Guo, H., Perlman, P. S., and Lambowitz, A. M. 1995b. Group II intron mobility occurs by target DNAprimed reverse transcription. Cell 82: 545–554.
121.Zimmerly, S., Hausner, G., and Wu, X. 2001. Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res. 29: 1238–1250.