跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/02/25 05:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王芳緯
研究生(外文):Fang-Wei Wang
論文名稱:選殖和分析分離自台灣的豬霍亂沙門氏桿菌鞭毛素基因
論文名稱(外文):Cloning and analysis of flagellin genes from Salmonella enterica serovar Choleraesuis isolated from Taiwan
指導教授:何國傑何國傑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:66
中文關鍵詞:豬霍亂沙門氏桿菌鞭毛相位變異細胞毒殺能力
外文關鍵詞:S. CholeraesuisFlagellumphase variationcytotoxic effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
豬霍亂沙門氏桿菌﹙Salmonella enterica serovar Choleraesuis,簡寫成S. Choleraesuis﹚,屬於腸內細菌科﹙Enterobacteriaceae﹚兼氧性桿菌,為一種細胞內的病原菌,可在人體和豬隻產生疾病,但感染豬隻較為嚴重。它為帶有周身鞭毛的革蘭氏陰性菌,鞭毛為絲狀的細菌運動構造。鞭毛可以細分為三個部分 : basal body, hook 和filament,filament為鞭毛素蛋白 (flagellin) 所構成,細菌鞭毛也被認為具有致病的能力。二相 (diphasic)沙門氏桿菌擁有兩種鞭毛素基因: fliC和fljB , 可以交替表現出兩種不同抗原性的phase I (FliC) and phase II (FljB) 鞭毛素蛋白,此現象稱之為相位變異 (phase variation)。本實驗室之前已對S. Choleraesuis CH12440 之鞭毛素蛋白基因進行研究,並發現fliC基因多出36個核苷酸為其他菌株所缺失,本實驗則另外對S. Choleraesuis CH12440 FljB鞭毛素蛋白基因進行研究。此外,也利用PCR技術分析台中疾病管制局 (CDC) 收集自台灣各地豬隻和人體分離出來的199隻S. Choleraesuis菌株的鞭毛素基因。結果顯示,199隻菌株的fliC基因構造都與菌株CH12440的 fliC一樣,擁有完整功能且均有36個核苷酸插入序列,而198隻菌株的fljB基因和菌株CH12440的 fljB則都存在插入序列IS10 (insertion sequence 10)。最後也利用MTT (methythiazoletetrazolium)分析法研究表現的FljB蛋白對小鼠巨噬細胞株 (mouse macrophage cell lines) 存活率的影響,顯示和之前本實驗室研究的FliC蛋白一樣具有細胞毒殺能力。
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) belonged to the family Enterobacteriaceae and was a host-adapted, facultative, intracellular pathogen. It could cause the diseases in human and pigs, but more serious in pigs. It was a gram-negative bacterium with peritrichous flagella. Flagellum, a hair-like appendage, was the bacterial locomotive structure. A flagellum could be subdivided into three parts: basal body, hook and filament which composed of flagellin protein. Flagella had also been recognized as one of the potential virulence factors of microorganisms. Diphasic Salmonella enterica strains possessed two nonallelic structural genes, fliC and fljB, encoding phase I and II flagellin, respectively, with different antigenecity. A phenomenon called phase variation that a bacterium expressed alternately phase I and II flagellin. Our lab had cloned and characterized the phase I fliC gene from S. Choleraesuis 12440 previously. There was an insert of 36 nucleotides absent in other phase I flagellin genes. In this study, phase II flagellin gene fljB was cloned and characterized from S. Choleraesuis 12440. One hundred and ninety-nine strains of S. Choleraesuis collected from Taiwan by Taizhong center for disease control (CDC) were analyzed using PCR technique. The data indicated all the fliC genes of 199 strains had the same structure as that of strain 12440 with a 36-bp insert. One hundred and ninety-eight strains and strain CH12440 had a fljB gene with a IS10 (insertion sequence 10). The fljB without transposon insert was cloned and expressed. The toxicity of expressed FljB protein on mouse macrophage cell lines was studied by MTT (methythiazoletetrazolium) assay. FljB protein displayed, as FliC , a cytotoxic effect on the cells.
縮寫表……………………………………………………………….……………….. .І

中文摘要……………………………………………………………………………...П

英文摘要…………………………………………………………………………......Ш

壹、 前言………………………………………………………………………………1

貳、 材料與方法……………………………………………………………………..10

参、結果……………………………………………………………………………..26

肆、討論……………………………………………………………………………..31

伍、參考文獻………………………………………………………………………..34

圖表…………………………………………………………………………………..41
陳真珊 (2002) 豬霍亂型沙門氏桿菌之細胞毒素P56毒性區域之研究。 國立台灣大學植物學研究所碩士論文
黃信璁 (2005) 利用定點突變分析豬霍亂沙門氏桿菌細胞毒素flagellin的毒性可能區域。國立台灣大學植物學研究所碩士論文
張甘楠、蔡信雄 (1996) 豬霍亂型沙門氏桿菌產生之細胞毒素’P65’之定性:(I)P65對ICR小鼠毒性作用之組織病理學研究。中華獸醫誌 22, 331-339.
Aldridge, P.D., Wu, C., Gnerer, J., Karlinsey, J.E., Hughes, K.T. and Sachs, M.S. (2006) Regulatory protein that inhibits both synthesis and use of the target protein controls flagellar phase variation in Salmonella enterica. Proc Natl Acad Sci U S A, 103, 11340-11345.
Auvray, F., Thomas, J., Fraser, G.M. and Hughes, C. (2001) Flagellin polymerization control by a cytosolic export chaperone. J Mol Biol, 308, 221-229.
Bennett, J.C. and Hughes, C. (2000) From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol, 8, 202-204.
Bonifield, H.R. and Hughes, K.T. (2003) Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol, 185, 3567-3574.
Branden, C. and Tooze, J. (1998) Introduction to Protein Structure, 2nd ed. P21-22. Garland Publishing, New York.
Chalmers, R., Sewitz, S., Lipkow, K. and Crellin, P. (2000) Complete nucleotide sequence of Tn10. J Bacteriol, 182, 2970-2972.
Chen, Y., Smith, M.R., Thirumalai, K. and Zychlinsky, A. (1996) A bacterial invasin induces macrophage apoptosis by binding directly to ICE. Embo J, 15, 3853-3860.
Chiu, C.H., Tang, P., Chu, C., Hu, S., Bao, Q., Yu, J., Chou, Y.Y., Wang, H.S. and Lee, Y.S. (2005) The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res, 33, 1690-1698.
Collazo, C.M. and Galan, J.E. (1997) The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol Microbiol, 24, 747-756.
Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T.D., Ozoren, N., Jagirdar, R., Inohara, N., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E.P. and Nunez, G. (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol, 7, 576-582.
Fritz, J.H., Ferrero, R.L., Philpott, D.J. and Girardin, S.E. (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol, 7, 1250-1257.
Galan, J.E. (1996) Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol, 20, 263-271.
Gray, J.T., Fedorka-Cray, P.J., Stabel, T.J. and Ackermann, M.R. (1995) Influence of inoculation route on the carrier state of Salmonella choleraesuis in swine. Vet Microbiol, 47, 43-59.
Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M. and Aderem, A. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410, 1099-1103.
Heichman, K.A. and Johnson, R.C. (1990) The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science, 249, 511-517.
Hersh, D., Monack, D.M., Smith, M.R., Ghori, N., Falkow, S. and Zychlinsky, A. (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A, 96, 2396-2401.
Ho, K.C. and Chang, G.N. (2000) The fliU and fliV genes are expressed as a single ORF in Salmonella choleraesuis. Can J Microbiol, 46, 1149-1152.
Hueck, C.J. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev, 62, 379-433.
Iida, S., Meyer, J., Kennedy, K.E. and Arber, W. (1982) A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. Embo J, 1, 1445-1453.
Iino, T. (1969) Genetics and chemistry of bacterial flagella. Bacteriol Rev, 33, 454-475.
Inoue, Y.H., Kutsukake, K., Iino, T. and Yamaguchi, S. (1989) Sequence analysis of operator mutants of the phase-1 flagellin-encoding gene, fliC, in Salmonella typhimurium. Gene, 85, 221-226.
Janeway, C.A., Jr. and Medzhitov, R. (2002) Innate immune recognition. Annu Rev Immunol, 20, 197-216.
Jesenberger, V., Procyk, K.J., Yuan, J., Reipert, S. and Baccarini, M. (2000) Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J Exp Med, 192, 1035-1046.
Johnson, R.C. and Simon, M.I. (1985) Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell, 41, 781-791.
Journet, L., Hughes, K.T. and Cornelis, G.R. (2005) Type III secretion: a secretory pathway serving both motility and virulence (review). Mol Membr Biol, 22, 41-50.
Kaniga, K., Tucker, S., Trollinger, D. and Galan, J.E. (1995) Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. J Bacteriol, 177, 3965-3971.
Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J.E. and Aizawa, S.I. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science, 280, 602-605.
Kutsukake, K. and Iino, T. (1980) Inversions of specific DNA segments in flagellar phase variation of Salmonella and inversion systems of bacteriophages P1 and Mu. Proc Natl Acad Sci U S A, 77, 7338-7341.
Kutsukake, K., Nakashima, H., Tominaga, A. and Abo, T. (2006) Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol, 188, 950-957.
Macnab, R.M. (1977) Bacterial flagella rotating in bundles: a study in helical geometry. Proc Natl Acad Sci U S A, 74, 221-225.
Macnab, R.M. (1999) The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol, 181, 7149-7153.
Macnab, R.M. (2003) How bacteria assemble flagella. Annu Rev Microbiol, 57, 77-100.
Majander, K., Korhonen, T.K. and Westerlund-Wikstrom, B. (2005) Simultaneous display of multiple foreign peptides in the FliD capping and FliC filament proteins of the Escherichia coli flagellum. Appl Environ Microbiol, 71, 4263-4268.
Matsui, H., Abe, A., Suzuki, S., Kijima, M., Tamura, Y., Nakamura, M., Kawahara, K. and Danbara, H. (1993) Molecular mechanism of the regulation of expression of plasmid-encoded mouse bacteremia (mba) genes in Salmonella enterica serovar Choleraesuis. Mol Gen Genet, 236, 219-226.
McQuiston, J.R., Parrenas, R., Ortiz-Rivera, M., Gheesling, L., Brenner, F. and Fields, P.I. (2004) Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. J Clin Microbiol, 42, 1923-1932.
Meier, P., Finch, A. and Evan, G. (2000) Apoptosis in development. Nature, 407, 796-801.
Miao, E.A., Alpuche-Aranda, C.M., Dors, M., Clark, A.E., Bader, M.W., Miller, S.I. and Aderem, A. (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol, 7, 569-575.
Molofsky, A.B., Byrne, B.G., Whitfield, N.N., Madigan, C.A., Fuse, E.T., Tateda, K. and Swanson, M.S. (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med, 203, 1093-1104.
Ohl, M.E. and Miller, S.I. (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med, 52, 259-274.
Pallen, M.J., Penn, C.W. and Chaudhuri, R.R. (2005) Bacterial flagellar diversity in the post-genomic era. Trends Microbiol, 13, 143-149.
Plano, G.V., Day, J.B. and Ferracci, F. (2001) Type III export: new uses for an old pathway. Mol Microbiol, 40, 284-293.
Penn, C.W. and Luke , C.J.﹙1992﹚Bacterial flagellar diversity and significance in pathogenesis. FEMS Microbiol Lett, 100, 331-336.
Ren, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F. and Vance, R.E. (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog, 2, e18.
Rosqvist, R., Hakansson, S., Forsberg, A. and Wolf-Watz, H. (1995) Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. Embo J, 14, 4187-4195.
Roy, C.R. and Zamboni, D.S. (2006) Cytosolic detection of flagellin: a deadly twist. Nat Immunol, 7, 549-551.
Samatey, F.A., Imada, K., Nagashima, S., Vonderviszt, F., Kumasaka, T., Yamamoto, M. and Namba, K. (2001) Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature, 410, 331-337.
Silverman, M., Zieg, J., Hilmen, M. and Simon, M. (1979) Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci U S A, 76, 391-395.
Smith, K.D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M.A., Barrett, S.L., Cookson, B.T. and Aderem, A. (2003) Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol, 4, 1247-1253.
Steiner, T.S. (2007) How flagellin and toll-like receptor 5 contribute to enteric infection. Infect Immun, 75, 545-552.
Stuart, L. and Hughes, J. (2002) Apoptosis and autoimmunity. Nephrol Dial Transplant, 17, 697-700.
Suzuki, H. and Iino, T. (1973) In vitro synthesis of phase-specific flagellin of Salmonella. J Mol Biol, 81, 57-70.
Thomas, J., Stafford, G.P. and Hughes, C. (2004) Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A, 101, 3945-3950.
van der Velden, A.W., Lindgren, S.W., Worley, M.J. and Heffron, F. (2000) Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype Typhimurium. Infect Immun, 68, 5702-5709.
Watson, P.R., Gautier, A.V., Paulin, S.M., Bland, A.P., Jones, P.W. and Wallis, T.S. (2000) Salmonella enterica serovars Typhimurium and Dublin can lyse macrophages by a mechanism distinct from apoptosis. Infect Immun, 68, 3744-3747.
Wei, L.N. and Joys, T.M. (1985) Covalent structure of three phase-1 flagellar filament proteins of Salmonella. J Mol Biol, 186, 791-803.
Yamamoto, S. and Kutsukake, K. (2006) FljA-mediated posttranscriptional control of phase 1 flagellin expression in flagellar phase variation of Salmonella enterica serovar Typhimurium. J Bacteriol, 188, 958-967.
Yokoseki, T., Kutsukake, K., Ohnishi, K. and Iino, T. (1995) Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology, 141 ( Pt 7), 1715-1722.
Yonekura, K., Maki, S., Morgan, D.G., DeRosier, D.J., Vonderviszt, F., Imada, K. and Namba, K. (2000) The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science, 290, 2148-2152.
Yonekura, K., Maki-Yonekura, S. and Namba, K. (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 424, 643-650.
Young, G.M., Schmiel, D.H. and Miller, V.L. (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A, 96, 6456-6461.
Zieg, J., Silverman, M., Hilmen, M. and Simon, M. (1977) Recombinational switch for gene expression. Science, 196, 170-172.
Zieg, J. and Simon, M. (1980) Analysis of the nucleotide sequence of an invertible controlling element. Proc Natl Acad Sci U S A, 77, 4196-4200.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top